PRISMA+ Colloquium

April 23, 2025 at 1 p.m. in Lorentz-Raum, 05-127, Staudingerweg 7

Prof. Dr. Tobias Hurth
Institut für Physik, THEP
hurth@uni-mainz.de

Neutrino Interactions and Future Experiments
Prof. Dr. Xianguo Lu (University of Warwick, England, UK)


Neutrinos, though nearly massless and weakly interacting, play a central role in modern physics—from the origin of mass and the nature of matter–antimatter asymmetry to the search for physics beyond the Standard Model. Yet one of the main obstacles to fully realising their potential lies in our limited understanding of how neutrinos interact with matter. These interactions are complex, often involving nuclear effects that are difficult to model and challenging to measure. As a result, they introduce significant systematic uncertainties in precision experiments, including those aiming to determine mixing parameters and explore CP violation.

This talk will provide an accessible overview of why neutrino interaction physics is both essential and challenging, and how it connects nuclear and particle physics. I will outline current experimental limitations and discuss the key requirements for future progress: well-characterised neutrino beams, dedicated measurements, and new experimental strategies. These advances are not only crucial for interpreting results from current and future experiments, but also for enabling discoveries that may reshape our understanding of fundamental physics. As an illustrative example, I will introduce nuSTORM—a proposed facility based on stored muons—as a next-generation platform for precision neutrino scattering and searches for new physics.