PRISMA+ Colloquium

Jan. 11, 2023 at 1 p.m. in Lorentz-Raum, 05-127, Staudingerweg 7

Prof. Dr. Tobias Hurth
Institut für Physik, THEP
hurth@uni-mainz.de

Ultracold neutron source and neutron oscillations searches in the HighNESS project
Dr. Valentina Santoro (ESS, Lund, Sweden)


The European Spallation Source, ESS, currently under construction in Lund, will be the world’s most powerful facility for research using neutrons. Supported by 3MEuro Research and Innovation Action within the EU Horizon 2020 program, a design study (HighNESS) is now underway to develop a second neutron source below the spallation target. Compared to the first source, located above the spallation target and designed for high cold and thermal brightness, the new source will provide a higher intensity (the total number of neutrons from the moderator), and a shift to longer wavelengths in the spectral regions of Cold (4-10 ˚A), Very Cold (10-100 ˚A), and Ultra Cold (> 500 ˚A) neutrons. The core of the second source will consist of a large liquid deuterium moderator to deliver a high flux of cold neutrons and to serve secondary VCN and UCN sources, for which different options are under study. The features of this new source will boost several areas of condensed matter research and will also provide unique opportunities in fundamental physics with the neutron antineutron oscillations experiment NNBAR. This experiment will search for the baryon number violating process of n → ¯n oscillation with a sensitivity of three orders of magnitude over the previously attained limit obtained at the Institut Laue-Langevin ILL. As a part of the HighNESS project work is ongoing to deliver the Conceptual Design Report of the experiment.

Concerning the design of the Ultra Cold Neutron and Very cold neutron source for the ESS, a digital workshop has been held from February 2nd to February 4th, 2022 where experts from various laboratories and Universities have gathered to propose and discuss ideas and challenges for the development of these sources. During the course of the workshop, several possibilities have been identified on where to locate the VCN and UCN sources. The UCN source could be placed in close vicinity or at some distance from the primary cold source. Regarding the VCN source, we have identified two possibilities. In the first option, the VCNs are extracted from the main CN source using advanced reflectors. While in the other case we make use of a dedicated VCN converter, for which a material capable of delivering a high flux of VCNs is needed. From the point of view of neutronic performance, two promising materials, which are under study in the HighNESS project, are solid deuterium at about 5 K and deuterated clathrate hydrates at around 2 K. In summary in the the talk, the referent will discuss the HighNESS project, the status of the NNBAR experiment and all
the possibilities for a dedicated UCN and VCN source at the ESS.


Attachment