PRISMA+ Colloquium

Nov. 30, 2022 at 1 p.m. in Lorentz-Raum, 05-127, Staudingerweg 7

Prof. Dr. Tobias Hurth
Institut für Physik, THEP
hurth@uni-mainz.de

Unravelling the phase structure of QCD at high μB with CBM
Prof. Dr. Tetyana Galatyuk (GSI Darmstadt)


What happens when gold nuclei, accelerated to about 90% of the speed of light, strike gold nuclei at rest? For an extremely short time, t~10^-23 seconds, states of matter at extreme temperatures (10^12 K) and densities (>280 Mt/cm^3) are produced. The microscopic properties of the strong-interaction matter under extreme conditions of temperature and density is a topic of great current interest. Despite 18 orders of magnitude difference in system size and time, the conditions present in heavy-ion collisions share great overlap with the conditions of the strong-interaction matter in neutron-star mergers. The possibility to form and explore in the laboratory strong-interaction matter under extreme conditions is truly fascinating.

The Compressed Baryonic Matter (CBM) experiment at FAIR has the potential to discover the most prominent landmarks of the QCD phase diagram expected to exist at high net baryon densities. The measurement of comprehensive set of diagnostic probes offers the possibility to find signatures of exotic phases, and to discover the conjectured first order deconfinement phase transition and its critical endpoint.

In this talk the referent will focus on relevant observables to study criticality, emissivity, vorticity and equation-of-state of baryon rich matter. Particular emphasis is put on rare probes which are not accessible by other experiments in this energy range.