PRISMA+ Colloquium

June 22, 2022 at 1 p.m. in Lorentz-Raum, 05-127, Staudingerweg 7

Prof. Dr. Tobias Hurth
Institut für Physik, THEP
hurth@uni-mainz.de

Towards an understanding of neutrinos (DUNE and MAJORANA DEMONSTRATOR experiments)
Clara Cuesta (CIEMAT Madrid, Spain)


The combined result of a number of experiments demonstrated that neutrinos have mass and oscillate. However fundamental questions about neutrinos remain: Is the neutrino its own antiparticle? What is the absolute scale of neutrino masses? How are the three neutrino mass states ordered? Is the CP symmetry violated in the neutrino sector? Are there sterile neutrino species? Current and future neutrino experiments are designed with state-of-the-art technology to provide answers to these questions. In this colloquium, the status of two of these experiments will be presented. On one hand, the Deep Underground Neutrino Experiment (DUNE) is a next generation experiment for long-baseline neutrino oscillation studies, neutrino astrophysics and beyond the standard model searches. DUNE will consist of a beam of neutrinos located at Fermilab (US), a near detector, and a far detector placed at Sanford Underground Research Facility 1,300 km away. The far detector will have a total mass of 70 kton of liquid argon and as a previous step the ProtoDUNE program is on-going at the CERN Neutrino Platform. On the other hand, the MAJORANA DEMONSTRATOR operated an array of germanium detectors searching for neutrinoless double-beta decay (0𝜈𝛽𝛽). The excellent performance of the detectors provided new exclusion limits on the searches for neutrinoless double-beta decay and other rare-events, such as dark matter and axions.


Attachment