Theorie-Palaver

Nov. 24, 2020 at 2:30 p.m. only via Zoom

Upalaparna Banerjee

Federico Gasparotto

Pouria Mazloumi

Yong Xu

Utilizing the causal spectrum of gravity waves to probe free streaming particles and the cosmological expansion
Davide Racco (Perimeter Institute)


The low frequency part of the gravitational wave spectrum generated by local physics, such as a phase transition, is largely fixed by causality, offering a clean window into the early Universe. Due to the difference between sub-horizon and super-horizon physics, it is inevitable that there will be a distinct spectral feature that could allow for the direct measurement of the conformal Hubble rate at which the phase transition occurred.
As an example, free-streaming particles present during the phase transition affect the production of super-horizon modes. This leads to a steeper decrease in the spectrum at low frequencies as compared to the well-known causal \(k^3\) super-horizon scaling of stochastic gravity waves. If a sizeable fraction of the energy density is in free-streaming particles, they even lead to the appearance of oscillatory features in the spectrum.
If the universe was not radiation dominated when the waves were generated, a similar feature also occurs at the transition between sub-horizon to super-horizon causality. These features can be used to show surprising consequences, such as the fact that a period of matter domination following the production of gravity waves actually increases their power spectrum at low frequencies.


Attachment