Utilizing the causal spectrum of GWs to probe free streaming particles and the cosmological expansion with Anson Hook, Gustavo Marques-Tavares (U. of Maryland) arXiv: 2010.03568

Davide Racco

Perimeter Institute for Theoretical Physics

Johannes Gutenberg Universität Mainz

24th Nov. 2020

The era of Gravitational Wave astronomy

- 2015 marked the beginning of the era of GW astronomy.
- GW150914: first measurement of GWs from a Binary Black Hole merger!

[LIGO, 1602.03837]

LIGO

• The detection of many more mergers of compact objects allows us to study the properties of black holes, neutron stars in an unprecedented way.

• Exciting prospects regarding astrophysical BHs, binary formation, H_0 measurements, BH superradiance, astro vs primordial BHs, ...

Stochastic Gravitational Wave Background

- One of the next frontiers in this exciting era is the search for a stochastic GW background, analogous to the CMB.
- Present upper limit from LIGO on stochastic GW background: $\Omega_{\text{GW}}(10 100 \text{ Hz}) < 1.7 \cdot 10^{-7}$ [1612.02029]
- Future space-based experiments will extend the reach in GW frequencies down to 0.1 mHz.

Stochastic Gravitational Wave Background

• At present there is a very interesting result from the NANOGrav collaboration (using Pulsar Timing). [NANOGrav 2009.04496]

- It's soon to tell the origin of this red-noise process:
 - Improperly modelled source of systematic noise;
 - SGWB from the mergers of supermassive BHs;
 - SGWB from new physics. 3
- Regardless, we could witness in the near future the discovery of a stochastic background of GWs!

Astrophysical background: binary BH mergers

Unresolved sources lead to a stochastic background. From stellar-mass BBHs: within reach of LIGO-VIRGO.

Distinguishing features: tilt +2/3 at low f, and peculiar frequency dep. of anisotropy spectrum. [Bartolo+ '19; Cusin+ '19; Hotinli+ '19; for PTs, Geller+ '18]

Primordial GWs from inflation

The primordial tensor modes generated by inflation are below $\Omega_{\text{GW}} \lesssim 10^{-15}$ for the presently allowed value of r (and flat spectrum) \implies unobservable.

Phase transitions

Cosmological phase transitions of the first order source GWs.

In the SM, both EW and QCD phase transitions are of 2^{nd} order, but new physics can generically display 1^{st} order phase transitions.

Phase transitions

GWs can be generated by three sources:

- bubble collisions (dynamics of the scalar field);
- e sound waves in the plasma;
- turbulences in the plasma.

- The scaling as f^3 at low frequencies is a universal feature (assuming RD). [Caprini+ '09]
- What is the physical origin of this general behaviour?

Causality prevents local phenomena from being correlated beyond H^{-1} .

• Source $\Pi_{ij}(x)$ of GWs has a correlation length $\lambda_{\text{source}} \ll H_{\star}^{-1}$:

$$\begin{split} \langle \Pi(0) \; \Pi(d \gg \lambda_{\text{source}}) \rangle &= 0 \; \Rightarrow \\ \langle \widetilde{\Pi}(k) \; \widetilde{\Pi}(-k) \rangle \stackrel{k \ll \lambda_{\text{source}}^{-1}}{\longrightarrow} \; \text{constant} \end{split}$$

- The spectral tilt at low f does not depend on the source.
- Wavelengths which were super-horizon are not sensitive to the details of the generation, but only to the universe expansion and the GW propagation.

Causality-limited GWs $\implies k^3$ scaling

• We consider GWs for which

wavelength $k^{-1} \gg {
m corr.}$ length of the source $\lambda_{
m source}$

period $f^{-1} \gg$ duration of the phase transition β^{-1}

• Eq. of motion for the GW $h_{ij}^{(+,\times)}(k,\tau)\equiv h$:

$$\partial_{\tau}^{2}h + 2\mathcal{H}\,\partial_{\tau}h + k^{2}h = 4\mathcal{H}^{2}\Pi(k,\tau) = J_{\star}\,\delta(\tau - \tau_{\star})$$

approximating the source as instantaneous and constant at small k.
The solution in a radiation-dominated universe is

$$h(\tau) = \frac{a_{\star}}{a} \underbrace{\frac{1}{k}}_{\text{specific of RD}} J_{\star} \sin k(\tau - \tau_{\star})$$

• The spectrum of $\Omega_{\rm GW}$ at low frequencies is

- Causality (absence of correlation beyond Hubble for local processes) is precisely what makes the source J_{\star} independent from k for $k \ll \lambda_{\text{source.}}^{-1}$
- The universality of the spectrum at low frequencies for causality-limited processes makes it an exciting tool to study our universe. [Hook, Marques-Tavares, DR 2010.03568]
- Phase transitions are the key example, but also preheating and GWs at 2nd order from peaks in the scalar perturbations are possible causality-limited scenarios.
- What can we extract from it?
- **4** How can we physically understand the f^3 scaling?
- Observe the propagation of GWs and hence their causality-limited spectrum?
- O How is the expansion history of the Universe influencing the causality-limited spectrum?

Causality-limited spectrum: physical understanding

• Let us investigate the physical origin of the k scaling of causality-limited GWs:

$$h(\tau) = \frac{a_{\star}}{a} \underbrace{\frac{1}{k}}_{\text{specific of RD}} J_{\star} \sin k(\tau - \tau_{\star})$$

 For long period f⁻¹ of the GW compared to the duration of the phase transition, it can be treated as an instantaneous impulse at τ_{*}:

$$\partial_{\tau}^{2}h + 2\mathcal{H}\,\partial_{\tau}h + k^{2}h = 4\mathcal{H}^{2}\Pi(k,\tau) = J_{\star}\,\delta(\tau - \tau_{\star})$$

• The system right after τ_{\star} is

$$\begin{split} \partial_{\tau}^2 h + 2\mathcal{H} \, \partial_{\tau} h + k^2 h &= 0 \,, \\ h(\tau_{\star} + \epsilon) &= 0 \,, \\ \partial_{\tau} h(\tau_{\star} + \epsilon) &= J_{\star} \,. \end{split}$$

 The sudden beat given to the oscillator imprints a velocity and zero displacement to the wave, similarly to a hammer hitting on a string.

Causality-limited spectrum: sub-horizon modes

Sub-horizon modes
$$\lambda_{\text{source}}^{-1} \gg k \gg \mathcal{H}_{\star}$$

 Modes which are sub-horizon at generation (but still beyond the correlation length of the source) are under-damped

$$\partial_{\tau}^2 h + 2\mathcal{H} \,\partial_{\tau} h + k^2 h = 0$$

• The solution is a frictionless oscillation, whose amplitude red-shifts as 1/a:

$$h(\tau) \approx \frac{a_{\star}}{a} \underbrace{\frac{1}{k}}_{\text{sub-hor.}} J_{\star} \sin k(\tau - \tau_{\star})$$

- Apart from the redshift, the eq. of state w of the universe does not enter.
- Sub-horizon modes are insensitive to the expansion rate.
- \bullet The corresponding Ω_{GW} is

Causality-limited spectrum: super-horizon modes

Super-horizon modes $k \ll \mathcal{H}_{\star}$

• Super-horizon modes are over-damped : Hubble friction prevails.

$$\partial_{\tau}^2 h + 2\mathcal{H} \partial_{\tau} h + k^2 h = 0$$

 $\begin{cases} h = 0 \\ h' = J_{\star} & \longrightarrow \begin{cases} h = \frac{J_{\star}}{\mathcal{H}_{\star}} \\ h' = 0 \end{cases} \xrightarrow{} \text{frozen}$

- The dependence on \mathcal{H} along the whole super-horizon phase explains why they are a tool to study the Universe expansion.
- Suppression of k/\mathcal{H}_{\star} due to the excitation of an over-damped oscillator:

$$hpprox rac{J_{\star}}{k}\sin$$
 (sub-hor.) vs. $hpprox rac{J_{\star}}{\mathcal{H}_{\star}}$ (super-hor.)

- While super-hor., h doesn't redshift \rightarrow *boost* compared to sub-hor. modes.
- After Hubble crossing at $\mathcal{H}(\tau_k) = k$, h starts redshifting and oscillating:

$$h \approx \frac{a(\tau_k)}{a} \frac{J_\star}{\mathcal{H}_\star} \sin k\tau$$

Radiation domination

• Super-horizon modes: $\mathcal{H}\sim \frac{1}{\tau}\sim \frac{1}{a}$ and they enter the horizon at $\mathcal{H}(\tau_k)=k$, so

$$h \approx \frac{a(\tau_k)}{a} \frac{J_\star}{\mathcal{H}_\star} \sin k\tau = \frac{a_\star}{a} \frac{J_\star}{k} \sin k\tau$$

- They match precisely the sub-horizon solution!
- The reason is that two competing effects precisely cancel during RD:
 Suppression ^k/_{H_⋆} due to exciting over-damped mode;
 Boost of ^{a(τ_k)}/_{a_⋆} due to mode being frozen while super-horizon RD/_k.
- As a result, for the standard case of a phase transition during RD, there are no features around $k\sim \mathcal{H}_{\star}.$
- All modes have an amplitude $\frac{1}{k},$ and $\Omega_{\rm GW}\sim k^3.$

< □

Causality-limited spectrum: scaling for generic w

Generic equation of state $a \sim \tau^n$

• Generic equation of state: $a \sim \tau^n$ where $n = \frac{2}{1+3w}$ is 1 for RD, 2 for MD.

• Super-horizon modes: $\mathcal{H} \sim rac{1}{ au} \sim rac{1}{a^{1/n}}$ so

$$h \approx \frac{a(\tau_k)}{a} \frac{J_\star}{\mathcal{H}_\star} \sin k\tau = \frac{a_\star}{a} \left(\frac{\mathcal{H}_\star}{k}\right)^{n-1} \frac{J_\star}{k} \sin k\tau$$

- For $n \neq 1$ the scaling is not 1/k like sub-horizon modes.
- Physically, the boost in amplitude due to the mode being frozen is $\left(\frac{H_{\star}}{k}\right)^n$, which for MD is larger than the suppression $\frac{k}{H_{\star}}$ due to over-damping.
- The conformal time before horizon-entry is the same (from \mathcal{H}_{\star} to k), but the expansion of a during that time is different.
- The spectral tilt is then

 $\Omega_{\mathsf{GW}} \sim k^3$ (sub-horizon)

$$\Omega_{
m GW} \sim k^{5-2n} = egin{cases} k^3 & {
m RD} \ k & {
m MD} \ \end{array}$$
 (super-horizon)

Davide Racco

Transition from sub-horizon to super-horizon

- To confirm these estimates, we solve the full eq. of motion, getting Bessel functions $j_{n-1}(k\tau)$, $y_{n-1}(k\tau)$.
- Notice the change in slope appearing at $k = \mathcal{H}_{\star}$, the conformal Hubble at the phase transition.

- What can alter the propagation of GWs and hence their causality-limited spectrum?
 - An important effect for the GW spectrum, also known as Weinberg damping [Weinberg '04], concerns the impact of free-streaming (FS) particles on the GW propagation.

 GWs are sourced by the anisotropic component π_{ij} of the stress tensor:

$$h_{ij}^{\prime\prime} + 2\mathcal{H}h_{ij}^{\prime} + k^2 h_{ij} = 4\mathcal{H}^2 \pi_{ij}$$

- FS particles travel distances $\sim H^{-1}$ along geodesics, and are affected by passing GWs.
- In turn, FS particles react on the GWs by acting as a small friction term: $\pi_{ij} \propto h'_{ij}$.
- The effect is active as soon as $h' \neq 0$ and decreases in time as the particles' momenta redshift.
- Only relativistic FS particles have an impact, $T_{ij} \sim p_i p_j$.

Weinberg damping in the SM

- In the SM, the only FS species are neutrinos after their decoupling around $T \sim \text{MeV}$, and they contribute with $f_{\nu} = \frac{\rho_{\nu}}{\rho_{\text{tot}}} = 0.4$.
- In the case of primordial GWs, they were frozen (h'=0) until horizon-entry. The damping is effective as the mode crosses the horizon and starts oscillating.
- The eq. of motion is [Weinberg '04]

$$h'' + 2\mathcal{H}h' + k^2h = -24 \int_{\nu} \mathcal{H}^2 \int_{\tau_0}^{\tau} K\left(k(\tau - \tilde{\tau})\right) \frac{h'(\tilde{\tau})}{h'(\tilde{\tau})} d\tilde{\tau}$$
$$K(s) = \frac{3\sin s}{s^5} - \frac{3\cos s}{s^4} - \frac{\sin s}{s^3}$$

 In the SM, this effect is frequency independent and reduces the GW amplitude by 0.8:

 $\Omega_{\rm GW}(k) \longrightarrow 0.64 \,\Omega_{\rm GW}(k)$

Weinberg damping for phase transitions

- In the case of primordial waves, the effect only occurs at Hubble crossing because *h* is frozen before.
- In the super-horizon limit $k\to 0,$ the eq. of motion simplifies: $K(s)\to \frac{1}{15}$, and the integral is solved to

$$h^{\prime\prime} + 2\mathcal{H}h^{\prime} + k^{2}h_{ij} = -\frac{8f_{\text{FS}}}{5}\mathcal{H}^{2}\left(h(\tau) - h(\tau_{0})\right)$$

- For phase transitions (fast GW source), there is a further effect *at* generation, if some new FS particles are present at early times.
- The damping occurs for modes which are super-horizon at generation \Rightarrow feature at $k = \mathcal{H}_{\star}$.
- Initial condition for fast sources: $\begin{cases} h = 0 \\ h' = J_{\star} \end{cases}$

$$h'' + \frac{2}{\tau}h' + \left(k^2 + \frac{8f_{\rm FS}}{5\tau^2}\right)h = 0$$

Weinberg damping for phase transitions

• Sub-horizon modes $k \gg \mathcal{H}_{\star}$ at generation: both Hubble friction and Weinberg damping are negligible.

$$h'' + 2\mathcal{H}h' + \left(\frac{k^2}{5} + \frac{8f_{\text{FS}}}{5}\mathcal{H}^2\right)h = 0$$

These modes are unaffected.

Super-horizon modes k ≪ H_⋆: these modes are damped by Hubble friction, and the Weinberg term determines whether they are over- or under-damped.

$$h'' + \underbrace{2\mathcal{H}h'}_{\text{friction}} + \underbrace{\left(k^2 + \frac{8f_{\text{FS}}}{5}\mathcal{H}^2\right)h}_{\text{friction}} = 0$$

- **Over-damped**: $(friction)^2 \gg (mass)^2$, or $f_{FS} \ll 1$. The mode does not oscillate while super-horizon, and its amplitude is dampened compared to the case $f_{FS} = 0$.
- Under-damped: $(friction)^2 < (mass)^2$, or $f_{FS} > 16\%$. The Weinberg term is so large to induce oscillations while super-horizon. On top of the damping, oscillations appear in the spectrum.

< □

Free-streaming particles

• In presence of rel. FS particles at the phase transition, the GW spectrum changes tilt below $k < \mathcal{H}_{\star}$:

$$\frac{\Omega_{\rm GW}^{(f_{\rm FS})}}{\Omega_{\rm GW}} \sim \begin{cases} k^{\frac{16f_{\rm FS}}{5}} & f_{\rm FS} < \frac{5}{32} \\ k \Big[c_1 + c_2 \sin \left(\sqrt{\frac{32}{5}} f_{\rm FS} - 1 \, \ln(k\tau_\star) + c_3 \right) \Big] & f_{\rm FS} > \frac{5}{32} \end{cases}$$

• Current bounds $\Delta N_{\rm eff} < 0.3$ allow for $f_{\rm FS} \sim 9\%$ at early times.

- O How is the expansion history of the Universe influencing the causality-limited spectrum?
 - Alternative expansion histories imply two modifications:
 - Change the shape of the GW spectrum for modes which are super-horizon at generation;
 - (a) Change the rescaling between comoving modes k and physical frequencies f=k/a.

- We consider an intermediate MD era:
 - case 1: only RD

4

- case 2: RD \rightarrow intermediate MD \rightarrow RD.
- The transition from RD to MD happens due to some non rel. species taking over.
- This species later decays into radiation.
- The scale factor has an overall difference

$$\Delta a = \left(\frac{T_{\mathsf{R}\to\mathsf{M}}}{T_{\mathsf{M}\to\mathsf{R}}}\right)^{1/3} > 1$$

Intermediate phase of MD

- GW modes that were sub-horizon during MD redshift more in case 2: *a* expands more.
- \Rightarrow suppression $(\Delta a)^{-4}$ at high f.
- Modes which enter after M→R have the same evolution in the two cases.
- The intermediate range interpolates between the two, with $\Omega_{\rm GW}\sim k.$

- The physical frequency f = k/a is moved to lower values in case 2, because of the larger redshift: $f \rightarrow f/(\Delta a)$.
- Given the tilt f^3 , this implies that low frequency modes have an overall boost of $(\Delta a)^3$.
- The net effect for high frequencies is a suppression $(\Delta a)^{-1}$.

Intermediate phase of MD

- The numerical solution confirms these scalings.
- The low-frequency range (which could be the only one potentially accessible for GWs from reheating) is made more visible by a MD phase.

• The GW spectrum for super-horizon modes and generic eq. of state is

$$\Omega_{\rm GW}(k) \sim k^{5-2n} = k^{\frac{1+15w}{1+3w}}$$

- This is valid for constant w. For generic $w(\tau)$, there is no exact solution.
- If we identify w for each mode k with its value at Hubble crossing, we can approximate (as long as $w'(\tau)\ll \mathcal{H})$

- The agreement ends up being quite good, although approximate.
- Could we distinguish between two kinds of $k^3 \rightarrow k$ transitions?
 - k_{a}^{3} of super-hor. modes entering in RD ightarrow k of super-hor. modes during MD
 - k^3 of sub-hor. modes ightarrow k of super-hor. modes entering in MD
- Despite possible in principle, it seems infeasible in practice.

Conclusions

- Gravity waves generated by causal phenomena (uncorrelated beyond the Hubble radius), such as a phase transition, are insensitive to the details of the generation.
- The universal behaviour of that part of the spectrum makes it an attracting tool to explore the cosmology of the early universe.
- Deviations from the standard prediction of f^3 would signal new physics in a robust way.
- Their physics can be understood in simple physical terms, which highlight the impact of modifications of the cosmological model.
- The presence of extra free-streaming species could be read off from the GW spectrum, and cross-checked with measurements of $\Delta N_{\rm eff}$.
- Intermediate phases of MD, which can arise in modifications of ΛCDM, amplify the GW signal at low frequencies.
- Various phenomena could imprint a change of tilt around k = H_{*}, potentially allowing to measure the conformal Hubble rate around the phase transition.

Thanks for your attention!

1. BACKUP SLIDES

[CMB-S4 Science report 1907.04473]

Schematic derivation of Weinberg damping

[Weinberg '04; Watanabe, Komatsu '06]

• GWs are sourced by the anisotropic component π_{ij} of the stress tensor:

$$h_{ij}'' + 2\mathcal{H}h_{ij}' + k^2 h_{ij} = 4\mathcal{H}^2 \pi_{ij}$$
$$T_{ij} = p g_{ij} + a^2 \pi_{ij}, \qquad T_{ij}^{(\nu)} = \frac{1}{\sqrt{-g}} \int \frac{\mathrm{d}^3 q}{q^0} q_i q_j F^{(\nu)}(q)$$

- The ν phase space distribution F(x,p) is obtained from the collisionless Boltzmann (i. e. Vlasov) equation.
- By decomposing $F(x,p) = \overline{F}(p) + \delta F(x,p)$ where $\overline{F}(p)$ is the equilibrium distribution, and keeping 1st order terms in perturbation theory:

$$0 = \frac{\mathrm{d}F}{\mathrm{d}t} = \frac{\partial F}{\partial \tau} + \frac{\mathrm{d}x^i}{\mathrm{d}t}\frac{\partial F}{\partial x^i} + \frac{\mathrm{d}p^0}{\mathrm{d}t}\frac{\partial F}{\partial p^0}$$

• The last term is obtained from the geodesic equation:

$$\frac{\mathrm{d}p^{\mu}}{\mathrm{d}\lambda} = -\Gamma^{\mu}_{\alpha\beta}p^{\alpha}p^{\beta} \implies \frac{1}{p^{0}}\frac{\mathrm{d}p^{0}}{\mathrm{d}t} = -H - \frac{1}{2}\left.\frac{\partial h_{ij}}{\partial t}\right|\frac{p^{i}p^{j}}{(p^{0})^{2}}$$

As ν 's propagate in a FRW universe with GWs, they lose (or gain) energy depending on the sign of h'.

• δF is computing by integrating the Boltzmann eq. over time, and the result is

$$h'' + 2\mathcal{H}h' + k^2h = -24f_{\nu}\mathcal{H}^2 \int_{\tau_0}^{\tau} \mathrm{d}\tau' \frac{j_2[k(\tau - \tau')]}{k^2(\tau - \tau')^2} h'(\tau')$$

Davide Racco

< □