PRISMA+ Colloquium

May 22, 2019 at 1 p.m. in Lorentz-Raum 05-127, Staudingerweg 7

Prof. Dr. Tobias Hurth
Institut für Physik, THEP
hurth@uni-mainz.de

Antimatter measurements at the HLC and implications for indirect dark matter searches
Francesca Bellini (CERN)


The observation of anti-deuteron and anti-helium in cosmic rays has been suggested as a smoking gun in indirect searches for Dark Matter in the Galaxy, under the hypothesis that the background from secondary astrophysical production is negligible. Constraining predictions for the secondary cosmic-ray flux of anti-helium and anti-deuteron with data is therefore crucial to searches with space-based or balloon-based experiments such as AMS-02 and GAPS. To this end, the LHC can be used as “anti-matter factory” to measure the production of d, 3He and 4He in the laboratory. In proton-proton, proton-nucleus and nucleus-nucleus collisions at the TeV collision-energy scale, light nuclei and their anti-matter counterparts are produced in equal amounts for a given species. Not only accelerator data on light (anti-)nuclei provide unique information to characterise the system produced in high-energy collisions, but they can also be used to test and constrain coalescence production models widely employed in astrophysics. In this Seminar, I will present the most recent results on anti-nuclei production at the LHC and discuss their implications for cosmic ray physics and indirect dark matter searches. Finally, I will present perspectives for future precision measurements with the increased integrated luminosity foreseen for the upcoming High-Luminosity phase of the LHC in years 2021-2029.
1