PRISMA+ Colloquium

May 30, 2018 at 1 p.m. in Lorentz-Raum 05-127, Staudingerweg 7

Prof. Dr. Tobias Hurth
Institut für Physik, THEP
hurth@uni-mainz.de

Status of and first results from the DEAP-3600 dark matter detector
Tina Pollmann (TUM- Garching)


DEAP-3600 is a single-phase liquid-argon Dark Matter direct detection experiment located 2 km underground at SNOLAB, in Sudbury, Canada. With a 1 tonne fiducial mass, the target sensitivity to spin-independent scattering of 100 GeV weakly interacting massive particles (WIMPs) is 10^-46 cm^2. The detector was designed and built to reach a background level of less than 0.6 events in 3 tonne-years exposure. This included designing all parts of the detector to prevent or veto backgrounds, radio-purity screening for all detector materials, working with suppliers to source radio-pure materials, and using construction techniques that limit contaminations with radio-isotopes. The largest remaining background - beta decays from Ar-39 - is mitigated offline through pulse shape analysis. DEAP-3600 has been taking physics data since late 2016. This talk presents first results and the status of the experiment.