PRISMA+ Colloquium
May 31, 2017 at 1 p.m. in Lorentz-Raum 05-127, Staudingerweg 7Prof. Dr. Tobias Hurth
Institut für Physik, THEP
hurth@uni-mainz.de
abstract: The High Luminosity LHC (HL-LHC) will integrate 10 times more luminosity than the LHC, posing significant challenges for radiation tolerance and event pileup on detectors, especially for forward calorimetry, and hallmarks the issue for future colliders. As part of its HL-LHC upgrade program, the CMS collaboration is designing a High Granularity Calorimeter to replace the existing endcap calorimeters. It features unprecedented transverse and longitudinal segmentation for both electromagnetic (ECAL) and hadronic (HCAL) compartments. This will facilitate particle-flow calorimetry, where the fine structure of showers can be measured and used to enhance pileup rejection and particle identification, whilst still achieving good energy resolution.
The ECAL and a large fraction of HCAL will be based on hexagonal silicon sensors of 0.5 - 1 cm^2 cell size, with the remainder of the HCAL based on highly-segmented scintillators with SiPM readout.
An overview of the HGCAL project is presented, covering motivation, engineering design and performance from simulation and first beam tests.