Physikalisches Kolloquium

Dec. 10, 2024 at 4:15 p.m. in HS KPH

Prof. Dr. Friederike Schmid
Institut für Physik
friederike.schmid@uni-mainz.de

Prof. Dr. Concettina Sfienti
Institut für Kernphysik
sfienti@uni-mainz.de

Some Materials Science Aspects behind Sustainable Steel Production
Dierk Raabe (Max Planck-Institute for Sustainable Materials, Düsseldorf)


Iron- and steelmaking stand for about 8% of all global greenhouse gas emissions, which qualifies this sector as the biggest single cause of global warming. This originates from the use of fossil carbon carriers as precursors for the reduction of iron oxides. Mitigation strategies pursue the replacement of fossil carbon carriers by sustainably produced hydrogen and / or electrons as alternative reductants, to massively cut these CO2 emissions, thereby lying the foundations for transforming a 3000 years old industry within a few years.
As the sustainable production of hydrogen using renewable energy is a bottleneck in green steel making, the gigantic annual steel production of 1.85 billion tons requires strategies to use hydrogen and / or electrons very efficiently and to yield high metallization at fast reduction kinetic.
This presentation presents progress in understanding the governing mechanisms of hydrogen-based direct reduction and plasma reduction of iron oxides. The metallization degree, reduction kinetics and their dependence on the underlying redox reactions in hydrogen-containing direct and plasma reduction strongly depend on mass transport kinetics, Kirkendall effects, nucleation phenomena, chemical and stress partitioning, the oxide's chemistry and microstructure, the acquired and evolving porosity, crystal plasticity, damage and fracture effects associated with the phase transformation phenomena occurring during reduction. Understanding these effects, together with external boundary conditions such as other reductant gas mixtures, oxide feedstock composition, pressure and temperature, is key to produce hydrogen-based green steel and design corresponding direct reduction shaft or fluidized bed reactors, enabling the required massive C02 reductions at affordable costs. Possible simulation approaches that are capable of capturing some of these phenomena and their interplay are also discussed.