Seminar über Quanten-, Atom- und Neutronenphysik (QUANTUM)

Jan. 23, 2025 at 2:15 p.m. in IPH Lorentzraum 05-127

Prof. Dr. Peter van Loock
Institut für Physik
loock@uni-mainz.de

Dr. Lars von der Wense
Institut für Physik
lars.vonderwense@uni-mainz.de

Catching the wave - Controlling atom-ion quantum interaction to be attractive, repulsive - or turning them mutually invisible
Prof. Dr. Tobias Schätz (Universität Freiburg)


The field of ultra-cold chemistry of ions and atoms has been launching the fundamental quest for investigating its quantum regime for decades. A simplifying summary of the quest might be:
How do interactions and chemical reactions proceed at extremely low temperatures? The classical picture predicts that all dynamics comes to a standstill as zero velocity is approached. However, deviations are expected since the classical model ceases to be appropriate at microscopic scales and at low temperatures, where particle-wave dualism of matter get’s important. In this regime, quantum effects dominate and reactions are predicted to obey fundamentally different rules.

Examples are:
(i) collisions of atoms, necessary for a reaction, cannot be described as a billiard-like impact between hard spheres anymore, but rather as interfering waves, interacting at long range, which can coherently amplify or even decoherently annihilate each other.
(ii) energy barriers can exceed the available kinetic energy, but nevertheless be efficiently passed via quantum tunnelling, ruling the dynamics.

Experimentally, we immerse a single barium (Ba+) ion in a bath of fermionic lithium (Li) atoms. We span temperatures from far above room temperature down deep into the s-wave regime of nano-Kelvin. We report our results on exploiting the collision energy dependence of magnetically tunable atom-ion scattering (Feshbach) resonances and explain how to assign their partial-wave-classification experimentally.

In the first half, we will give a basic tutorial on quantum scattering of atom-ion ensembles and distill the substantial differences to atom-atom dynamics. We aim to discuss how to gain control and state-sensitive detection on the level of individual quanta within the merged ion-atom system and to study and establish optically trapping of ions and atoms in general - for example to reveal the quantum dynamics of ion-atom and ion-molecule reactions in absence of any detrimental radio-frequency fields.