Physikalisches Kolloquium

July 16, 2024 at 4:15 p.m. in HS KPH

Prof. Dr. Hans Jockers
Institut für Physik

Prof. Dr. Concettina Sfienti
Institut für Kernphysik

Colloquium in honor of Prof. Dr. Peter G. J. van Dongen and Prof. Dr. Martin Reuter (Part 2): Correlated Electrons from Zero to Infinite Dimensions: Early Days of KOMET in Mainz
Prof. Dr. Reinhard Noack (Philipps University Marburg)

Correlated Electrons from Zero to Infinite Dimensions: Early Days of KOMET 7 in Mainz.

I will talk about the problems in correlated electron systems that occupied us in the early days of the KOMET 7 research group headed by Peter van Dongen. These problems include quantum impurity problems as well as the dynamical mean field theory (DMFT), i.e., correlated electrons in the infinite-dimensional limit. At first glance, these two problems are very different because the impurity problem is in a sense zero-dimensional, whereas the DMFT is formally infinite-dimensional. However, the effective problems and solution methods of these two problems are losely related, and both approaches can be used to describe the behavior of real three-dimensional materials. In addition, a major activity of group members has been to develop and use matrix-product-state and tensor-network methods, especially the density matrix renormalization group.
These methods are ideally suited to study quasi-one-dimensional and two-dimensional strongly correlated systems. They can be applied to a variety of
systems ranging from transition-metal coumpounds such as the cuprates to organometallic materials such as Bechgaard salts as well as to quantum simulators formed from cold atomic gases on optical lattices.