Seminar über Quanten-, Atom- und Neutronenphysik (QUANTUM)

Jan. 25, 2024 at 2 p.m. in IPH Lorentzraum 05-127

Prof. Dr. Peter van Loock
Institut für Physik

Dr. Lars von der Wense
Institut für Physik

Real Life Integrability in Cold Atoms and Other Integrable Beasts
Dr. Aleksandra Zoilkowska (JGU NEUQUAM Research Group)

Cold atom experiments offer a distinctive platform for the investigation of many-body quantum physics, especially in non-equilibrium scenarios. The complexity inherent in these experiments often poses challenges to conventional theoretical methods. Nevertheless, exact analytical solutions become feasible when the underlying theory is integrable. Integrability plays a pivotal role in constraining the dynamics of many-body systems, enabling the derivation of, for instance, precise time-dependent density and velocity profiles after inhomogeneous quenches. This unique characteristic establishes a direct correspondence between theoretical predictions and experimental outcomes.

In this talk, I will delve into the essence of quantum integrability and its efficacy in non-equilibrium many-body calculations, utilizing the framework of Generalized Hydrodynamics. An examination of the Lieb-Liniger Hamiltonian will exemplify how integrability has been applied in cold atom setups, resulting in the experimental realization of Quantum Newton's Cradle. Furthermore, I will draw upon my own research to provide insights into other quantum ''beasts'' emerging in out-of-equilibrium physics, rooted in an integrable theory known as the Homogeneous Sine-Gordon Model.