Physikalisches Kolloquium

Feb. 6, 2024 at 4:15 p.m. in HS KPH

Prof. Dr. Hans Jockers
Institut für Physik
jockers@uni-mainz.de

Prof. Dr. Concettina Sfienti
Institut für Kernphysik
sfienti@uni-mainz.de

Visualizing Quantum Matter
Prof. J.C. Seamus Davis (University of Oxford)


Everything around us, everything each of us has ever experienced, and virtually everything underpinning our technological society and economy is governed by quantum mechanics. Yet this most fundamental physical theory of nature often feels as if it is a set of somewhat eerie and counterintuitive ideas of no direct relevance to our lives. Why is this? One reason is that we cannot perceive the strangeness (and astonishing beauty) of the quantum mechanical phenomena all around us by using our own senses.

I will describe the history of development of techniques that allow us to visualize electronic quantum phenomena and new states of quantum matter directly at the atomic scale. As recent examples, we will visually explore the previously unseen and very beautiful forms of quantum matter making up electronic liquid crystals[1,2], high temperature superconductors[2,3,4] and electron-pair crystals[5,6,7,8]. I will discuss the implications for fundamental physics research and also for advanced materials and new technologies, arising from quantum matter visualization.

References:
1. Science 344, 612 (2014)
2. Nature 570, 484 (2019)
3. Science 357, 75 (2017)
4. Science 364, 976 (2019)
5. Nature 571, 234 (2020)
6. Nature 532, 343 (2016)
7. Science 372, 1447 (2021)
8. Nature 618, 921 (2023)


Attachment