Seminar über Quanten-, Atom- und Neutronenphysik (QUANTUM)

Dec. 8, 2022 at 2 p.m. in IPH Lorentzraum 05-127

Prof. Dr. Peter van Loock
Institut für Physik
loock@uni-mainz.de

Dr. Lars von der Wense
Institut für Physik
lars.vonderwense@uni-mainz.de

Quantum plumbing: the mysteries of nanoscale flows
Dr. Nikita Kavokine (MPI for Polymer Research, Mainz)


Liquids are usually described within classical physics, whereas solids require the tools of quantum mechanics. I will show how in nanoscale systems this distinction no longer holds. At these scales, liquid flows may in fact exhibit quantum effects as they interact with electrons in the solid walls. I will first discuss the quantum friction phenomenon, where charge fluctuations in the liquid interact with electronic excitations in the solid to produce a hydrodynamic friction force. Using many-body quantum theory, we predict that this effect is particularly important for water flowing on carbon-based materials, and we obtain experimental evidence of the underlying mechanism from pump-probe terahertz spectroscopy. I will then show how the theory can be pushed one step further to describe hydrodynamic Coulomb drag – the generation of electric current by a liquid in the solid along which it flows. This phenomenon involves a subtle interplay of electrostatic and electron-phonon interactions, and suggests strategies for designing materials with low hydrodynamic friction.

Bio: Nikita Kavokine obtained a Bachelor in Chemistry and a Master in Theoretical Physics from Ecole Normale Supérieure (ENS) in Paris. He continued at ENS for his PhD, in the group of Prof. Lydéric Bocquet, working on both theory and experiments in nanoscale fluid dynamics. He then obtained a Flatiron Research Fellowship and spent a year in New York, learning advanced numerical methods for condensed matter systems. He is now a postdoctoral fellow at the Max Planck Institute for Polymer Research. His research is at the interface between ‘hard’ and ’soft’ condensed matter, focussing on the quantum behavior of liquids near solid surfaces.