Physikalisches Kolloquium

Jan. 12, 2021 at 4:15 p.m. only via Recording of the presentation

Prof. Dr. Friederike Schmid
Institut für Physik
friederike.schmid@uni-mainz.de

Prof. Dr. Concettina Sfienti
Institut für Kernphysik
sfienti@uni-mainz.de

Laser-based ultrasensitive trace analysis methods
Zheng-Tian Lu (University of Science and Technology of China)


The long-lived noble-gas isotope 81Kr is the ideal tracer for water and ice with ages of 105 - 106 years, a range beyond the reach of 14C. 81Kr-dating, a concept pursued over the past five decades, is finally available to the earth science community at large. This is made possible by the development of the Atom Trap Trace Analysis (ATTA) method, in which individual atoms of the desired isotope are captured and detected. ATTA possesses superior selectivity, and is thus far used to analyze the environmental radioactive isotopes 81Kr, 85Kr, and 39Ar. These three isotopes have extremely low isotopic abundances in the range of 10-17 to 10-11, and cover a wide range of ages and applications. In collaboration with earth scientists, we are dating groundwater and mapping its flow in major aquifers around the world. We are also dating old ice from the deep ice cores of Antarctica, Greenland, and the Tibetan Plateau. For an update on this worldwide effort, please google “ATTA Primer”.