Seminar über die Physik der kondensierten Materie (SFB/TRR173 Spin+X und SFB/TR288 Kolloquium, TopDyn-Seminar)

Feb. 6, 2020 at 2 p.m. in MAINZ Seminarraum, Staudinger Weg 9, 3. Stock, 03-122

Univ-Prof. Dr. Jure Demsar
Univ.-Prof. Dr. Hans-Joachim Elmers
Univ.-Prof. Dr. Mathias Kläui
Univ.-Prof. Dr. Thomas Palberg

Dynamics of spin textures in chiral magnets
Markus Garst (KIT Karlsruhe, Germany)


The weak Dzyaloshinskii-Moriya interaction (DMI) in chiral magnets stabilizes spatially modulated magnetic textures like helices and skyrmion crystals. In this talk we focus on the dynamical properties of such textures. In the field-polarized phase of chiral magnets, the DMI results in a pronounced non-reciprocity of the magnon spectrum, i.e. the excitation energy is not symmetric with respect to an inversion of the wavevector. In the conical helix phase, the spin waves experience Bragg scattering off the periodic magnetic texture that leads to a backfolding of the magnon spectrum. As a result, the spectrum becomes reciprocal for wavevectors along the helix axes. However, the distribution of spectral weight in the spin structure factor remains non-reciprocal as confirmed by inelastic neutron scattering [1,2]. For wavevector with a finite perpendicular component of the wavevector, dipolar interactions induce a non-reciprocity which was detected by Brillouin light scattering [3]. We also discuss the spin wave spectrum of the skyrmion crystal phase where the non-trivial topology leads to an emergent electrodynamics for magnons. As a result the spectral weight of the spin structure factor is widely distributed at high energies. The spin wave excitations propagating along the skyrmion strings also exhibit a non-reciprocity as confirmed by spin wave spectroscopy [4]. Finally, we discuss the non-linear dynamics of a single skyrmion string [5].