Seminar über Quanten-, Atom- und Neutronenphysik (QUANTUM)
Dec. 19, 2019 at 2 p.m. c.t. in Lorentz-Raum (05-127), Staudingerweg 7Prof. Dr. Peter van Loock
Institut für Physik
loock@uni-mainz.de
Dr. Lars von der Wense
Institut für Physik
lars.vonderwense@uni-mainz.de
Ultrathin optical fibres, with diameters on the order of the propagating light wavelength, have already proven their versatility across a variety of different areas, such as sensing, particle manipulation, cold atom physics, and as optical couplers. The intense evanescent field at the fibre waist is one of the main advantages offered by these systems as it allows us to achieve ultrahigh light intensities that may otherwise not be attainable in a standard laboratory. In this talk, I will present work conducted at OIST with particular focus on our work on optical nanofibre-mediated multiphoton processes for the generation of highly excited Rydberg atoms and for exploring some other effects, such as quadrupole transitions and stimulated emission from Rb atoms. Overall, the versatility of these fibres for many different experimental platforms particularly if one goes beyond the basic, single mode fibre design will be promoted.