Seminar über Quanten-, Atom- und Neutronenphysik (QUANTUM)
Dec. 12, 2019 at 2 p.m. c.t. in Lorentz-Raum (05-127), Staudingerweg 7Prof. Dr. Peter van Loock
Institut für Physik
loock@uni-mainz.de
Dr. Lars von der Wense
Institut für Physik
lars.vonderwense@uni-mainz.de
Developing new approaches to study quantum many-body systems is of fundamental importance in various felds of physics ranging from high energy and condensed matter physics to quantum information and quantum computation. It also holds promise for a better understanding of materials, such as high-Tc superconductors, and fault-tolerant quantum computing which could strongly impact our modern societies. Ultracold atoms have emerged as versatile and well controlled platforms to study fundamental problems in quantum many-body physics. In particular, spin-resolved quantum gas microscopy enables to probe strongly correlated fermions with a resolution down to the single particle and offers fascinating opportunities for experiments. I will detail here this technique and discuss our recent experimental studies of the interplay between magnetism and doping in the Fermi-Hubbard model, a minimal model for high-Tc superconductivity.