Seminar über die Physik der kondensierten Materie (SFB/TRR173 Spin+X und SFB/TR288 Kolloquium, TopDyn-Seminar)

April 11, 2018 at 2 p.m. in MEDIEN-Raum, Staudinger Weg 7, 03-431

Univ-Prof. Dr. Jure Demsar
Univ.-Prof. Dr. Hans-Joachim Elmers
Univ.-Prof. Dr. Mathias Kläui
Univ.-Prof. Dr. Thomas Palberg

Elemental 2D materials beyond graphene: Insights from computational theory
Prof. Udo Schwingenschloegl (Institut für Physik/Universität Augsburg and King Abdullah University of Science and Technology, Saudi Arabia)


The presentation will address recent developments related to elemental 2D materials beyond graphene, with a focus on silicene, germanene, and arsenene. Several examples will be discussed in order to illustrate how computational theory based on first-principles calculations can contribute to understanding basic physical and chemical phenomena in 2D condensed matter. Silicene is of particular interest due to its compatibility with established Si technology. Regrettably, strong interaction with common substrates eliminates the Dirac states. Alternative substrates will be analyzed and the effects on silicene evaluated with respect to technological requirements. Germanene attracts more and more attention, because effects of spin-orbit coupling are accessible in contrast to lighter 2D materials. While the same is true for arsenene, the material's strongly buckled structure is not compatible with Dirac physics. Recovering the sp2 bonding, on the other hand, makes it possible to realize unusual properties.