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what are the most general interactions of spin-1 particles?

p1, a

p2, b

 p3, c

   eg, photons?
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Lorentz: most general amplitude:

Cabc (⟨12⟩[23]⟨31⟩ + [12]⟨23⟩[31] + perm) /M2

+C′￼abc ⟨12⟩⟨23⟩⟨31⟩/Λ2 + C′￼′￼abc [12][23][31]/Λ2

+ 𝒪(mass-splittings)

(massless) Benincasa Cachazo  ’08

Durieux Kitahara YS Weiss ’19


Liu Yin ‘22
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Lorentz: most general amplitude:

Cabc (⟨12⟩[23]⟨31⟩ + [12]⟨23⟩[31] + perm)/M2

+C′￼abc ⟨12⟩⟨23⟩⟨31⟩/Λ2 + C′￼′￼abc [12][23][31]/Λ2

(massless) Benincasa Cachazo  ’08

Durieux Kitahara YS Weiss ’19


Liu Yin ‘22

+ 𝒪(mass-splittings)

Lorentz part ( ) written  just in terms of 2-component spinorsp1 p2 p3
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Lorentz: most general amplitude:

Cabc (⟨12⟩[23]⟨31⟩ + [12]⟨23⟩[31] + perm)/M2

+C′￼abc ⟨12⟩⟨23⟩⟨31⟩/Λ2 + C′￼′￼abc [12][23][31]/Λ2

+ 𝒪(mass-splittings)

Lorentz part ( ) written  just in terms of 2-component spinorsp1 p2 p3

completely antisymmetric 

Cabc—>              completely antisymmetric 
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what are the most general interactions of spin-1 particles?

p1, a

p2, b

 p3, c ∝ Cabc completely antisymmetric
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what are the most general interactions of spin-1 particles?

p1, a

p2, b

 p3, c ∝ Cabc completely antisymmetric

   so:


coupling of 3 photons = 0           (indeed)


need at least 3 “photons”  for a nonzero interaction  (indeed realized in nature: )

  

      

W+W−Z
power of Lorentz
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what are the most general interactions of spin-1 particles?

p1, a

p2, b

 p3, c ∝ Cabc completely antisymmetric

   so:


coupling of 3 photons = 0           (indeed)


need at least 3 “photons”  for a nonzero interaction  (indeed realized in nature: )

  

and probably rings a bell..

W+W−Z
power of Lorentz
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Lie groups

[Ta, Tb] = i f abc Tc

([Ja, Jb] = i εabc Tc)
f abc totally antisymmetric

obey Jacobi identity: f abc f ade + ⋯ = 0

 —> classification of all Lie algebras
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Lie groups

[Ta, Tb] = i f abc Tc

Sophus Lie ~ 1870s 

        something that physicists will never lay their hands on..

f abc totally antisymmetric

 —> classification of all Lie algebras

([Ja, Jb] = i εabc Tc)

obey Jacobi identity: f abc f ade + ⋯ = 0
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* Jacobi identity:


consistent factorization of 4-vector amplitude on 3-vector amplitude

vector self-coupling 

math: Lie algebras;  full classification 

physics: the structure of gauge field theories   all (almost) you

 learn in QFT1

come back to this
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2) The Higgs (and electroweak symmetry breaking)


what we know; what we dont know

3) Effective Theories (EFTs)


in practice: all the physics we do..

1) Amplitudes & the amplitude bootstrap

plan
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2) The Higgs (and electroweak symmetry breaking)


what we know; what we dont know

3) Effective Theories (EFTs)


in practice: all the physics we do..

1) Amplitudes & the amplitude bootstrap

plan

putting it 


all together
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scattering amplitudes & the amplitude bootstrap

Shadmi                                                                               PRISMA colloquium                                                                               Feb 25



scattering amplitudes & the amplitude bootstrap

Münchhausen zieht sich am  
Zopf aus dem Sump, Distelli  
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Why amplitudes?

 1st clue: amplitudes: the whole is SMALLER than the sum of its parts:


gauge boson amplitudes: many Feynman diagrams (~10 million for tree 10-gluon):  


      

+

+

+

+

+

=   0
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1986: Parke & Taylor: expressions for the amplitudes-squared 

  of n-gluons of  definite helicities:                                       (one page PRL)


                                                       


-2- FERMILAB-Pub-86/42-T 

For the n gluon scattering amplitude, there are [(n + 2)/21 independent helicity 
amplitudes. At the tree level, the two helicity amplitudes which most violate the 
conservation of helicity are zero. Thii is easily seen by embedding the Yang-Mills 
theory in a supersymmetric theory ‘J. Here we give an expression for the next 
helicity amplitude, also at tree level, to leading order in the number of colors in 
SU(N) Yang-Mills theory. 

If the helicity amplitude for gluons I.. n, of momenta pi.. pn and helicities 
Xi.. . X, is M,(Xr,. . X,), where the momenta and helicities are labelled as though 
all particles are outgoing, then the three helicity amplitudes squared of interest are 

IM,,(+ + + + +. .)I’ = cn(s,N) IO + O(g’) I (1) 

IJL- + + + + . .)I’ = 4!?,N) 10 + OW) I (2) 

IMn(--+++...)I* = Cn(g*N) I(1.2)’ ~(,.2)(2.3)(31.4).,.(n.l) 

+ O(Aq + O(g2) ] (3) 

where c”(g,N) = g *n-4N”-2(NZ - 1)/2”-‘n and (i. j) = pi . pj. The sum 
is over all permutations, P, of 1.. . n. Eqn(3) has the correct dimensions for a 
n particle scattering amplitude squared and also agrees with the known result&’ 
for n=4, 5 and 6. The agreement for n=6 is numerical.’ More importantly, this 
set of amplitudes is consistent with the Altarelli and Paris? relationship for all n, 
when two of the gluons are made parallel. This is trivial for the first two helicity 
amplitudes but is a highly non-trivial statement for the last amplitude, as shown 
below, 

I&(--+++...)I? -+ o 
1 II 2 

I&,--+++...)I* -+ 2g’N +=: *) ; lJLt(- - + + .)I’ (5) 
2 II 3 

IMn(- - + + + . . .)I’ --* 2g’N +y *) ; IJG-I(- -+ + . ..)I’ (‘5) 
3 II 4 

where s is the corresponding pole and z is the momentum fraction. The result for 
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Why so much simpler?

Feynman diagram calculation comes from Lagrangian:


gluon (massless spin-1, just like photon) described by vector field     


4 degrees of freedom                                                          


amplitudes more efficient: focus on physical dof’s only: 2   (gluon polarizations)

(ϕ(x), ⃗A (x))

x ≡ (t, ⃗x)
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Why so much simpler?

Feynman diagram calculation comes from Lagrangian:


gluon (massless spin-1, just like photon) described by vector field      


4 degrees of freedom                                                          


amplitudes more efficient: focus on physical dof’s only: 2   (gluon polarizations)

(ϕ(x), ⃗A (x))

x ≡ (t, ⃗x)

for manifest Lorentz invariance
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amplitude is function of: 


• momenta


• polarizations for external particles of nonzero spin


         
A(p1, p2, …, pn) p2 = (p0)2 − ⃗p2 = m2

function of the momenta (complex plane)

singularities encode physical spectrum:
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poles:  

            (p1 + ⋯ + pk)2 = m2
particle

n, pn
 1, p1

 k, pk

n, pn
 1, p1

 k, pk

~

1
(p1 + ⋯ + pk)2 − m2

particle
~

 1, p1

 k, pk

 1, p1

 k, pk

n, pn

some propagator

goes ``on-shell’’

 (on mass-shell)
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poles:  

            (p1 + ⋯ + pk)2 = m2
particle

n, pn
 1, p1

 k, pk

n, pn
 1, p1

 k, pk

~

1
(p1 + ⋯ + pk)2 − m2

particle
~

 1, p1

 k, pk

 1, p1

 k, pk

n, pn

   know all 3-point amplitudes


    —> know all residues of 4-point amplitudes        


    —> determine 4-point amplitude


        …
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Jacobi identity:


consistent factorization of 4-vector amplitude on 3-vector amplitude

vector self-
coupling 

Lie algebras 

b

c

d

e

a a
∝ f abc f ade + ⋯+⋯
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bootstrap

construct amplitudes recursively from the bottom up: w/out Lagrangian


start with 3-point amplitudes


       determine from: Lorentz, global symmetries, Bose/Fermi statistics


factorization —> higher point amplitudes (almost)


[rediscover QFT: Lie groups, gauge theory massless + massive: Higgsing]


interested in electroweak symmetry breaking 
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The Higgs  
(and the standard model)

and now to something completely different
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  all described by a beautiful and simple theory:  

   


  the standard model  


  (+ classical gravity)  
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   with the Higgs field hidden in the picture:  

   


  eg: electron mass —> atoms  


  neutrinos invisible (weak interaction is weak=short range)  
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V(Φ) = − μ2Φ†Φ + λ(Φ†Φ)2 v = −μ2/λ

simple parametrization in terms of Higgs doublet

correct description?


 measured   (W, Z masses)


higgs mass determines        

v

λ

→ V(h) =
1
2

m2
hh2 + #λvh3 + λ4h4

m2
h =

1
2

λv2

SM Higgs:
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V(Φ) = − μ2Φ†Φ + λ(Φ†Φ)2 v = −μ2/λ

parametrized by

correct description?


 measured   (W, Z masses)


higgs mass determines        

v

λ

potential predicts:


cubic Higgs self-coupling  


quartic Higgs self-coupling 

∝ λv

∝ λ
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V(Φ) = − μ2Φ†Φ + λ(Φ†Φ)2 v = −μ2/λ

parametrized by

correct description?


 measured   (W, Z masses)


higgs mass determines        

v

λ

potential predicts:


cubic Higgs self-coupling  


quartic Higgs self-coupling 

∝ λv

∝ λ
??
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so: back to basics..
start in the IR   ( meters)

and work our way up with experiments guiding the way

EFFECTIVE THEORIES:
a model independent & well-defined framework

 the ultimate quantum machine

every possible initial state —> every possible final state


 Higgs produced and decays in many different processes 

 LHC



so far: learned that the heavier particles get their mass from the Higgs:

   
 

  p
ar

tic
le

 c
ou

pl
in

g 
to

 H
ig

gs
   

   
 

   particle mass (GeV)              

     


just like particle in medium: effective mass


    size of the particle interaction with the Higgs

    

   

∝

∝ v = 246 GeV
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so far: learned that the heavier particles get their mass from the Higgs:

??


electron


up, down,


strange, charm

   
 

  p
ar

tic
le

 c
ou

pl
in

g 
to

 H
ig

gs
   

   
 

   particle mass (GeV)              
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Higgs self coupling/SM prediction
ATLAS Phys. Rev. Lett. 133 (2024)

one contribution to production

Higgs self coupling:
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+ another layer of questions (theory)


“by hand:” 


? minimum away from origin


? 246 GeV scale


? stable against radiative corrections
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“by hand:” 


? minimum away from origin


? 246 GeV scale


? stable against radiative corrections


 


   eg (weakly coupled): supersymmetric extensions of SM


         stop mass + top Yukawa —> minimum away from origin   


    origin of scale: new dynamics: dynamical supersymmetry breaking  
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simple parametrization in terms of Higgs mechanism


“by hand:” 


? minimum away from origin


? 246 GeV scale


? stable against radiative corrections


 


   eg (weakly coupled): supersymmetric extensions of SM


         stop mass + top Yukawa —> minimum away from origin   


    origin of scale: new dynamics: dynamical supersymmetry breaking  


??
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How do you look for a theory you don’t know?


   


   bottom-up Effective Theories (EFTs)       
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taking a step back:


    Higgs was first discovered long ago.. 1890’s: beta decay       
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2012


  h

1890s     


      beta decay


EFT  footprints of W

1982


 W

Higgs discovery timeline
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2012


  h

1890s     


      beta decay


EFT  footprints of W

1982


 W

What is the origin of the  

Higgs potential?  

Is there new physics involved? 

Higgs discovery timeline

?? 

EFT
parametrize our ignorance
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the beauty of the quantum world: sensitivity to high energy scales 

even though not directly accessible
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Perturbation theory (quantum mechanics) 17 languages
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In quantum mechanics, perturbation theory is a set of approximation schemes directly related to mathematical perturbation for describing
a complicated quantum system in terms of a simpler one. The idea is to start with a simple system for which a mathematical solution is
known, and add an additional "perturbing" Hamiltonian representing a weak disturbance to the system. If the disturbance is not too large,
the various physical quantities associated with the perturbed system (e.g. its energy levels and eigenstates) can be expressed as
"corrections" to those of the simple system. These corrections, being small compared to the size of the quantities themselves, can be
calculated using approximate methods such as asymptotic series. The complicated system can therefore be studied based on knowledge of
the simpler one. In effect, it is describing a complicated unsolved system using a simple, solvable system.

Approximate Hamiltonians [ edit ]

Perturbation theory is an important tool for describing real quantum systems, as it turns out to be very difficult to find exact solutions to the
Schrödinger equation for Hamiltonians of even moderate complexity. The Hamiltonians to which we know exact solutions, such as the
hydrogen atom, the quantum harmonic oscillator and the particle in a box, are too idealized to adequately describe most systems. Using
perturbation theory, we can use the known solutions of these simple Hamiltonians to generate solutions for a range of more complicated
systems.

Applying perturbation theory [ edit ]

Perturbation theory is applicable if the problem at hand cannot be solved exactly, but can be formulated by adding a "small" term to the
mathematical description of the exactly solvable problem.

For example, by adding a perturbative electric potential to the quantum mechanical model of the hydrogen atom, tiny shifts in the spectral
lines of hydrogen caused by the presence of an electric field (the Stark effect) can be calculated. This is only approximate because the sum
of a Coulomb potential with a linear potential is unstable (has no true bound states) although the tunneling time (decay rate) is very long.
This instability shows up as a broadening of the energy spectrum lines, which perturbation theory fails to reproduce entirely.

The expressions produced by perturbation theory are not exact, but they can lead to accurate results as long as the expansion parameter,
say α, is very small. Typically, the results are expressed in terms of finite power series in α that seem to converge to the exact values when
summed to higher order. After a certain order n ~ 1/α however, the results become increasingly worse since the series are usually divergent
(being asymptotic series). There exist ways to convert them into convergent series, which can be evaluated for large-expansion parameters,
most efficiently by the variational method. In practice, convergent perturbation expansions often converge slowly while divergent
perturbation expansions sometimes give good results, c.f. the exact solution, at lower order.[1]

In the theory of quantum electrodynamics (QED), in which the electron–photon interaction is treated perturbatively, the calculation of the
electron's magnetic moment has been found to agree with experiment to eleven decimal places.[2] In QED and other quantum field theories,
special calculation techniques known as Feynman diagrams are used to systematically sum the power series terms.

Limitations [ edit ]

Large perturbations [ edit ]

Under some circumstances, perturbation theory is an invalid approach to take. This happens when the system we wish to describe cannot
be described by a small perturbation imposed on some simple system. In quantum chromodynamics, for instance, the interaction of quarks
with the gluon field cannot be treated perturbatively at low energies because the coupling constant (the expansion parameter) becomes too
large, violating the requirement that corrections must be small.

Non-adiabatic states [ edit ]

Perturbation theory also fails to describe states that are not generated adiabatically from the "free model", including bound states and
various collective phenomena such as solitons.[citation needed] Imagine, for example, that we have a system of free (i.e. non-interacting)
particles, to which an attractive interaction is introduced. Depending on the form of the interaction, this may create an entirely new set of
eigenstates corresponding to groups of particles bound to one another. An example of this phenomenon may be found in conventional
superconductivity, in which the phonon-mediated attraction between conduction electrons leads to the formation of correlated electron pairs
known as Cooper pairs. When faced with such systems, one usually turns to other approximation schemes, such as the variational method
and the WKB approximation. This is because there is no analogue of a bound particle in the unperturbed model and the energy of a soliton
typically goes as the inverse of the expansion parameter. However, if we "integrate" over the solitonic phenomena, the nonperturbative
corrections in this case will be tiny; of the order of exp(−1/g) or exp(−1/g2) in the perturbation parameter g. Perturbation theory can only
detect solutions "close" to the unperturbed solution, even if there are other solutions for which the perturbative expansion is not
valid.[citation needed]

Difficult computations [ edit ]

The problem of non-perturbative systems has been somewhat alleviated by the advent of modern computers. It has become practical to
obtain numerical non-perturbative solutions for certain problems, using methods such as density functional theory. These advances have
been of particular benefit to the field of quantum chemistry.[3] Computers have also been used to carry out perturbation theory calculations
to extraordinarily high levels of precision, which has proven important in particle physics for generating theoretical results that can be
compared with experiment.

Time-independent perturbation theory [ edit ]

Time-independent perturbation theory is one of two categories of perturbation theory, the other being time-dependent perturbation (see next
section). In time-independent perturbation theory, the perturbation Hamiltonian is static (i.e., possesses no time dependence). Time-
independent perturbation theory was presented by Erwin Schrödinger in a 1926 paper,[4] shortly after he produced his theories in wave
mechanics. In this paper Schrödinger referred to earlier work of Lord Rayleigh,[5] who investigated harmonic vibrations of a string perturbed
by small inhomogeneities. This is why this perturbation theory is often referred to as Rayleigh–Schrödinger perturbation theory.[6]

First order corrections [ edit ]

The process begins with an unperturbed Hamiltonian H0, which is assumed to have no time dependence.[7] It has known energy levels and
eigenstates, arising from the time-independent Schrödinger equation:

For simplicity, it is assumed that the energies are discrete. The (0) superscripts denote that these quantities are associated with the
unperturbed system. Note the use of bra–ket notation.

A perturbation is then introduced to the Hamiltonian. Let V be a Hamiltonian representing a weak physical disturbance, such as a potential
energy produced by an external field. Thus, V is formally a Hermitian operator. Let λ be a dimensionless parameter that can take on values
ranging continuously from 0 (no perturbation) to 1 (the full perturbation). The perturbed Hamiltonian is:

The energy levels and eigenstates of the perturbed Hamiltonian are again given by the time-independent Schrödinger equation,

The objective is to express En and  in terms of the energy levels and eigenstates of the old Hamiltonian. If the perturbation is sufficiently
weak, they can be written as a (Maclaurin) power series in λ,

where

When k = 0, these reduce to the unperturbed values, which are the first term in each series. Since the perturbation is weak, the energy
levels and eigenstates should not deviate too much from their unperturbed values, and the terms should rapidly become smaller as the
order is increased.

Substituting the power series expansion into the Schrödinger equation produces:

Expanding this equation and comparing coefficients of each power of λ results in an infinite series of simultaneous equations. The zeroth-
order equation is simply the Schrödinger equation for the unperturbed system,

The first-order equation is

Operating through by , the first term on the left-hand side cancels the first term on the right-hand side. (Recall, the unperturbed
Hamiltonian is Hermitian). This leads to the first-order energy shift,

This is simply the expectation value of the perturbation Hamiltonian while the system is in the unperturbed eigenstate.

This result can be interpreted in the following way: supposing that the perturbation is applied, but the system is kept in the quantum state 
, which is a valid quantum state though no longer an energy eigenstate. The perturbation causes the average energy of this state to

increase by . However, the true energy shift is slightly different, because the perturbed eigenstate is not exactly the same as 
. These further shifts are given by the second and higher order corrections to the energy.

Before corrections to the energy eigenstate are computed, the issue of normalization must be addressed. Supposing that

but perturbation theory also assumes that .

Then at first order in λ, the following must be true:

Since the overall phase is not determined in quantum mechanics, without loss of generality, in time-independent theory it can be assumed
that  is purely real. Therefore,

leading to

To obtain the first-order correction to the energy eigenstate, the expression for the first-order energy correction is inserted back into the
result shown above, equating the first-order coefficients of λ. Then by using the resolution of the identity:

where the  are in the orthogonal complement of , i.e., the other eigenvectors.

The first-order equation may thus be expressed as

Supposing that the zeroth-order energy level is not degenerate, i.e. that there is no eigenstate of H0 in the orthogonal complement of 

with the energy . After renaming the summation dummy index above as , any  can be chosen and multiplying the first-order
equation through by  gives

The above  also gives us the component of the first-order correction along .

Thus, in total, the result is,

The first-order change in the n-th energy eigenket has a contribution from each of the energy eigenstates k ≠ n. Each term is proportional to
the matrix element , which is a measure of how much the perturbation mixes eigenstate n with eigenstate k; it is also
inversely proportional to the energy difference between eigenstates k and n, which means that the perturbation deforms the eigenstate to a
greater extent if there are more eigenstates at nearby energies. The expression is singular if any of these states have the same energy as
state n, which is why it was assumed that there is no degeneracy. The above formula for the perturbed eigenstates also implies that the
perturbation theory can be legitimately used only when the absolute magnitude of the matrix elements of the perturbation is small compared

with the corresponding differences in the unperturbed energy levels, i.e., 

Second-order and higher-order corrections [ edit ]

We can find the higher-order deviations by a similar procedure, though the calculations become quite tedious with our current formulation.
Our normalization prescription gives that

Up to second order, the expressions for the energies and (normalized) eigenstates are:

If an intermediate normalization is taken (it means, if we require that ), we obtain the same expression for the second-
order correction to the wave function, except for the last term.

Extending the process further, the third-order energy correction can be shown to be [8]

Corrections to fifth order (energies) and fourth order (states) in compact notation

It is possible to relate the k-th order correction to the energy En to the k-point connected correlation function of the perturbation V in the
state . For , one has to consider the inverse Laplace transform  of the two-point correlator:

where  is the perturbing operator V in the interaction picture, evolving in Euclidean time. Then

Similar formulas exist to all orders in perturbation theory, allowing one to express  in terms of the inverse Laplace transform  of the
connected correlation function

To be precise, if we write

then the k-th order energy shift is given by [9]

Effects of degeneracy [ edit ]

Suppose that two or more energy eigenstates of the unperturbed Hamiltonian are degenerate. The first-order energy shift is not well
defined, since there is no unique way to choose a basis of eigenstates for the unperturbed system. The various eigenstates for a given
energy will perturb with different energies, or may well possess no continuous family of perturbations at all.

This is manifested in the calculation of the perturbed eigenstate via the fact that the operator

does not have a well-defined inverse.

Let D denote the subspace spanned by these degenerate eigenstates. No matter how small the perturbation is, in the degenerate subspace
D the energy differences between the eigenstates of H are non-zero, so complete mixing of at least some of these states is assured.
Typically, the eigenvalues will split, and the eigenspaces will become simple (one-dimensional), or at least of smaller dimension than D.

The successful perturbations will not be "small" relative to a poorly chosen basis of D. Instead, we consider the perturbation "small" if the
new eigenstate is close to the subspace D. The new Hamiltonian must be diagonalized in D, or a slight variation of D, so to speak. These
perturbed eigenstates in D are now the basis for the perturbation expansion,

For the first-order perturbation, we need solve the perturbed Hamiltonian restricted to the degenerate subspace D,

simultaneously for all the degenerate eigenstates, where  are first-order corrections to the degenerate energy levels, and "small" is a
vector of  orthogonal to D. This amounts to diagonalizing the matrix

This procedure is approximate, since we neglected states outside the D subspace ("small"). The splitting of degenerate energies  is
generally observed. Although the splitting may be small, , compared to the range of energies found in the system, it is crucial in
understanding certain details, such as spectral lines in Electron Spin Resonance experiments.

Higher-order corrections due to other eigenstates outside D can be found in the same way as for the non-degenerate case,

The operator on the left-hand side is not singular when applied to eigenstates outside D, so we can write

but the effect on the degenerate states is of .

Near-degenerate states should also be treated similarly, when the original Hamiltonian splits aren't larger than the perturbation in the near-
degenerate subspace. An application is found in the nearly free electron model, where near-degeneracy, treated properly, gives rise to an
energy gap even for small perturbations. Other eigenstates will only shift the absolute energy of all near-degenerate states simultaneously.

Degeneracy lifted to first order [ edit ]

Let us consider degenerate energy eigenstates and a perturbation that completely lifts the degeneracy to first order of correction.

The perturbed Hamiltonian is denoted as

where  is the unperturbed Hamiltonian,  is the perturbation operator, and  is the parameter of the perturbation.

Let us focus on the degeneracy of the -th unperturbed energy . We will denote the unperturbed states in this degenerate subspace as

 and the other unperturbed states as , where  is the index of the unperturbed state in the degenerate subspace and 

represents all other energy eigenstates with energies different from . The eventual degeneracy among the other states with 

does not change our arguments. All states  with various values of  share the same energy  when there is no perturbation, i.e.,

when . The energies  of the other states  with  are all different from , but not necessarily unique, i.e. not

necessarily always different among themselves.

By  and , we denote the matrix elements of the perturbation operator  in the basis of the unperturbed eigenstates. We

assume that the basis vectors  in the degenerate subspace are chosen such that the matrix elements  are

diagonal. Assuming also that the degeneracy is completely lifted to the first order, i.e. that  if , we have the following
formulae for the energy correction to the second order in 

and for the state correction to the first order in 

Notice that here the first order correction to the state is orthogonal to the unperturbed state,

Generalization to multi-parameter case [ edit ]

The generalization of time-independent perturbation theory to the case where there are multiple small parameters  in
place of λ can be formulated more systematically using the language of differential geometry, which basically defines the derivatives of the
quantum states and calculates the perturbative corrections by taking derivatives iteratively at the unperturbed point.

Hamiltonian and force operator [ edit ]

From the differential geometric point of view, a parameterized Hamiltonian is considered as a function defined on the parameter manifold
that maps each particular set of parameters  to an Hermitian operator H(x µ) that acts on the Hilbert space. The parameters
here can be external field, interaction strength, or driving parameters in the quantum phase transition. Let En(x µ) and  be the n-th
eigenenergy and eigenstate of H(x µ) respectively. In the language of differential geometry, the states  form a vector bundle over
the parameter manifold, on which derivatives of these states can be defined. The perturbation theory is to answer the following question:
given  and  at an unperturbed reference point , how to estimate the En(x µ) and  at x µ close to that reference
point.

Without loss of generality, the coordinate system can be shifted, such that the reference point  is set to be the origin. The following
linearly parameterized Hamiltonian is frequently used

If the parameters x µ are considered as generalized coordinates, then Fµ should be identified as the generalized force operators related to
those coordinates. Different indices µ label the different forces along different directions in the parameter manifold. For example, if x µ

denotes the external magnetic field in the µ-direction, then Fµ should be the magnetization in the same direction.

Perturbation theory as power series expansion [ edit ]

The validity of perturbation theory lies on the adiabatic assumption, which assumes the eigenenergies and eigenstates of the Hamiltonian
are smooth functions of parameters such that their values in the vicinity region can be calculated in power series (like Taylor expansion) of
the parameters:

Here ∂µ denotes the derivative with respect to x µ. When applying to the state , it should be understood as the covariant derivative if
the vector bundle is equipped with non-vanishing connection. All the terms on the right-hand-side of the series are evaluated at x µ = 0, e.g.
En ≡ En(0) and . This convention will be adopted throughout this subsection, that all functions without the parameter
dependence explicitly stated are assumed to be evaluated at the origin. The power series may converge slowly or even not converge when
the energy levels are close to each other. The adiabatic assumption breaks down when there is energy level degeneracy, and hence the
perturbation theory is not applicable in that case.

Hellmann–Feynman theorems [ edit ]

The above power series expansion can be readily evaluated if there is a systematic approach to calculate the derivates to any order. Using
the chain rule, the derivatives can be broken down to the single derivative on either the energy or the state. The Hellmann–Feynman
theorems are used to calculate these single derivatives. The first Hellmann–Feynman theorem gives the derivative of the energy,

The second Hellmann–Feynman theorem gives the derivative of the state (resolved by the complete basis with m ≠ n),

For the linearly parameterized Hamiltonian, ∂µH simply stands for the generalized force operator Fµ.

The theorems can be simply derived by applying the differential operator ∂µ to both sides of the Schrödinger equation 
which reads

Then overlap with the state  from left and make use of the Schrödinger equation  again,

Given that the eigenstates of the Hamiltonian always form an orthonormal basis , the cases of m = n and m ≠ n can be
discussed separately. The first case will lead to the first theorem and the second case to the second theorem, which can be shown
immediately by rearranging the terms. With the differential rules given by the Hellmann–Feynman theorems, the perturbative correction to
the energies and states can be calculated systematically.

Correction of energy and state [ edit ]

To the second order, the energy correction reads

where  denotes the real part function. The first order derivative ∂µEn is given by the first Hellmann–Feynman theorem directly. To obtain
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parametrize our ignorance: effective theory


main two versions (two levels of ignorance)

Λ Mheavy ???

E

ℒeffective = ∑
i

ci𝒪i(ϕ1, …, ϕn)

standard model  SU(3)xSU(2)xU(1) 


(known) fields     Higgs is part of a doublet
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parametrize our ignorance: effective theory


main two versions (two levels of ignorance)

Λ Mheavy ???

E

ℒeffective = ∑
i

ci𝒪i(ϕ1, …, ϕn)

standard model  SU(3)xSU(2)xU(1) 


(known) fields     Higgs is part of a doublet
SM-EFT or SMEFT
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parametrize our ignorance: effective theory


main two versions (two levels of ignorance)

Λ Mheavy ???

E

ℒeffective = ∑
i

ci𝒪i(ϕ1, …, ϕn)

just  SU(3)xU(1)EM 


(really known) fields   

Higgs not part of a doublet
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parametrize our ignorance: effective theory


main two versions (two levels of ignorance)

Λ Mheavy ???

E

ℒeffective = ∑
i

ci𝒪i(ϕ1, …, ϕn)

just  SU(3)xU(1)EM 


(really known) fields   

Higgs not part of a doublet

Generic EFT extension of SM 

“HEFT”
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•write down the most general Lagrangian: impose

•global symmetries

•gauge symmetry

• [Lorentz, locality]

•need: basis of operators: complete set of independent operators: 


             operators can be traded for each other via: 

  

      field redefinitions, integration by parts, use of equations of motion

      ~1000 operators at leading order (dim-6)..


• using a complete basis is important: various operators affect multiple processes; 

each process typically affected by multiple operators (global fits)
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•write down the most general Lagrangian: impose

•global symmetries

•gauge symmetry

• [Lorentz, locality]

•need: basis of operators: complete set of independent operators: 


             operators can be traded for each other via: 

  

      field redefinitions, integration by parts, use of equations of motion

      ~1000 operators at leading order (dim-6)..


• using a complete basis is important: various operators affect multiple processes; 

each process typically affected by multiple operators (global fits)

  hard problem   
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made easier by amplitudes:
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bootstrap

only possibly missing pieces: new “contact” interactions: exactly what we are after

𝑐

𝑎
𝑏

=
𝑏𝑎

𝑑 𝑐 𝑑

+ …

𝑏𝑎

𝑑 𝑐
+

1
Λ2
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u ν

ed

ν

e

u

d

∝
1

(pd − pu)2 − M2
W

∝
1

(pd − pu)2 − M2
W

∝
1

M2
W

∼ GF

(MW ∼ 80 mproton)

CONSTANT !

W

local “contact term”
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EFT via on-shell bootstrap

usually: start with SM fields:  most general  

consistent with symmetries (global, gauge)

ℒ

ℒ = ∑
i

ci𝒪i(ϕ1, …, ϕn)
1,p1

2,p2

 n, pn

∝ ci
1-1 correspondence

on-shell: start with SM particles: most general  

consistent with symmetries (global, gauge)

𝒜

YS Weiss ‘18

…

local “contact term”
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• no redundancies, field redefinitions, physical dof’s only


• + theory-wise: we are looking for the theory of electroweak symmetry breaking

   —> back to basics: physical dof’s


   —> on-shell/amplitude understanding of Higgs mechanism
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EFT applications

Shadmi                                                                               PRISMA colloquium                                                                               Feb 25



On-shell applications to EFTs (massless)

selection rules: explain zeros in 


• matrix of anomalous dimensions of EFT operators (loop cuts & generalized cuts)


• interference of SM x EFT amplitudes (tree)


derive anomalous dimensions of EFT operators (loop cuts & generalized cuts)


Barratella Fernandez von Harling Pomarol ’20

Bern Parra-Martinez Sawyer ’20


Jiang Ma Shu ’20

De Angelis Accettulli-Huber ’21


Barratella  ’22

…

Azatov Contino Machado Riva ‘16

Cheung Shen ’15

Bern Parra-Martinez Sawyer ’20 

Shadmi                                                                               PRISMA colloquium                                                                               Feb 25



count (& construct ) bases of EFT operators: 


  

    


UV matching   

                …

YS Weiss ’18

Ma Shu Xiao ’19


Remmen Rodd ’19

Li Ren Shu Xiao Yu Zheng ’20


Durieux Machado ’20

…


also used in Henning Melia Murayama ‘15

On-shell applications to EFTs (massless + massive)

De Angelis Durieux ‘23
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amplitude

ℒ

amplitude LHC
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in many of these:



amplitude

ℒ

amplitude LHC
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Instead:



SMEFT: to derive predictions:


• basis of operators in unbroken theory


• turn on Higgs VEV  —>  Lagrangian in broken theory:  SM fields, couplings shift


• derive Feynman rules of broken theory in some gauge 


• redefine parameters from “input” physical masses, couplings


amplitudes: working with physical dof’s, couplings only
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HEFT: 

“sick” EFT : eg, integrated out fields with masses from EWSB


<—> no scale separation 


UV matching ambiguous 


amplitudes: make concrete

Dawson Fontes Quezada-Calonge Sanz-Cillero ‘23
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amplitude construction: bottom-up:

• 3-points (renormalizable + higher-dim): dictated by little group, symmetries


• factorizable parts of higher-point amplitudes (determined by 3-pts..)


• higher-point contact terms: dictated by little group, symmetries  

—>  starting with the massive (and massless) particles we know: 

construct most general amplitudes
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YS Weiss ‘18

Durieux Kitahara YS Weiss ’19


Durieux Kitahara Machado YS Weiss ’20

…

𝒜 =
[ ⋅ ⋅ ] ⋅ ⋅ ⟨ ⋅ ⋅ ⟩

Λ#
P ( sij

Λ2 )
local: no poles

contact-term part of amplitude:
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𝒜 =
[ ⋅ ⋅ ] ⋅ ⋅ ⟨ ⋅ ⋅ ⟩

Λ#
P ( sij

Λ2 )
carries LG weight; “stripped” off 


all Lorentz invariants 

“stripped contact term”   SCT

sij

different SCTs can come from integrating out

 different UV fields — different suppressions

Chang Chen Liu Luty ’22 
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𝒜 =
[ ⋅ ⋅ ] ⋅ ⋅ ⟨ ⋅ ⋅ ⟩

Λ#
P ( sij

Λ2 )
carries LG weight; “stripped” of 


all Lorentz invariants 

“stripped contact term”   SCT

sij

polynomial in Lorentz

invariants  


subject to kinematical constraints,

eg, 

sij

s12 + s13 + s23 = ∑ m2

derivative expansion
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? construct observables to isolate novel SCTs not appearing in SM


   

𝒜 =
[ ⋅ ⋅ ] ⋅ ⋅ ⟨ ⋅ ⋅ ⟩

Λ#
P ( s

Λ2
,

t
Λ2 )

SCT


scattering 
angle 

and 


decay angles

scattering 
angle

structure of 2 to 2 contact-terms:
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𝒜 =
[ ⋅ ⋅ ] ⋅ ⋅ ⟨ ⋅ ⋅ ⟩

Λ#
P ( sij

Λ2 )
carries LG weight; “stripped” of 


all Lorentz invariants 

“stripped contact term”   SCT

sij

polynomial in Lorentz

invariants  


subject to kinematical constraints,

eg, 

sij

s12 + s13 + s23 = ∑ m2

derivative expansion

  bottom up construction; input: physical particles  

SU(3)xU(1) 


higgs = gauge singlet


gives  HEFT amplitudes
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What about (low-energy) SMEFT amplitudes?


use on-shell Higgsing
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EWSB m ∼ v

EFT: new fields  Λ massless      impose full  SU(3)xSU(2)xU(1)  𝒜

derive massive 


(contact term part only) 

ℳ

Balkin Durieux Kitahara YS Weiss ‘21
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anatomy of on-shell Higgsing   
Balkin Durieux Kitahara YS Weiss ‘21

massless amplitudes of unbroken theory —>  “Higgs” to get low-energy massive amplitudes   

extra Higgs legs non-dynamical: soft:   


                                                                                                                          


 matching at high energy:


 

H(qi) qi → 0

Mn(1,…, n) = An(1,…, n) + v lim
q∼v→0

An+1(1,…, n; H(q)) + ⋯

·
.

probe field space 

E ≫ q ∼ m ( ∼ VEV v)

+ Cheung Helset Parra-Martinez’23
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results:   HEFT,   SMEFT
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• all HEFT 3-points  (+matching to SMEFT)                                                Durieux Kitahara YS Weiss ‘19 

• [all generic 3-points for spins up to 3                      

• all generic 4-pt SCTs for spins 0, 1/2, 1  ]                                Durieux Kitahara Machado YS Weiss’20 

• HEFT 4-points: hggg, Zggg,  ffVh, WWhh                  Shadmi et al ’18, Durieux  et al ’19, Balkin et al ’21 

  + some full amplitudes (factorizable + contact terms): ffWh, ffZh, WWhh 

•  5V (4W+Z etc)                                                                                                      De Angelis  ‘21 

• Higgs, top 4pts in terms of momenta+polarizations                                   Chang et al ’22, ‘23    

• all HEFT 4pts up to d=8                                                                           Liu Ma YS Waterbury ’23 

• SMEFT 4pts up to d=8 for VV                                                                      Goldberg Liu YS ’24                           

HEFT inventory       (observables; many more results on operators, anomalous dim’s via on-shell)
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• dimension counting: classify contact terms by energy growth

all HEFT 4-pts up to d=8

• most relevant for collider studies: 2 to 2

Liu Ma YS Waterbury ’23

[Dong Ma Shu Zhou ’22   HEFT operators]
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can be viewed as dimension-six, since it generates E
2 terms. Alternatively, it can be

viewed as dimension-four, since it corresponds to the operator V
2
h
2. In any case, the

physical quantity is the numerical coefficient of each kinematic structure, and these
differences are just a matter of theory interpretation. Moreover, there is no sharp
distinction in the HEFT between the cutoff ⇤̄ and the electroweak mass scale v, with
⇤̄ ⇠ v. In the following, when we refer to HEFT dimensions, we will refer to the
dimension of the corresponding operator. The contact terms h12i[12] and h13i[23]

are then dimension-4 and 5 respectively. Furthermore, it is easy to read off the minimal
dimensions of these operators in the SMEFT. To leading order in the v expansion,
⇤̄�2 = ⇤�2, and ⇤̄�1 = v⇤�2. Therefore, both of these contact terms can be first
generated at dimension-six in the SMEFT. This is consistent with the fact that the
factorizable fermion-fermion-vector-higgs amplitudes only feature E/M growth (see
Table 4), so C

±⌥0,fac
ffV h

= 0. Indeed, as was shown in [33], perturbative unitarity of
this amplitude only implies relations between SM couplings, specifically, the relation
between the fermion mass, the Yukawa coupling, and the Higgs VEV.

Massive amplitudes E
2 contact terms

M(WWhh) C
00
WWhh

h12i[12], C±±
WWhh

(12)2

M(ZZhh) C
00
ZZhh

h12i[12], C±±
ZZhh

(12)2

M(gghh) C
±±
gghh

(12)2

M(��hh) C
±±
��hh

(12)2

M(�Zhh) C
±
�Zhh

(12)2

M(hhhh) Chhhh

M(f c
fhh) C

±±
ffhh

(12)

M(f c
fWh) C

+�0
ffWh

[13]h23i , C�+0
ffWh

h13i[23] , C±±±
ffWh

(13)(23)

M(f c
fZh) C

+�0
ffZh

[13]h23i , C�+0
ffZh

h13i[23] , C±±±
ffZh

(13)(23)

M(f c
f�h) C

±±±
ff�h

(13)(23)

M(qcqgh) C
±±±
qqgh

(13)(23)

M(f c
ff

c
f)

C
±±±±,1
ffff

(12)(34), C��++
ffff

h12i[34], C�+�+
ffff

h13i[24], C�++�
ffff

h14i[23]

C
±±±±,2
ffff

(13)(24), C++��
ffff

[12]h34i, C+�+�
ffff

[13]h24i, C+��+
ffff

[14]h23i

Table 1: Contact terms with E
2 growth. The C’s stand for independent HEFT coefficients,

and are mostly generated at ⇤̄�2, corresponding to d = 6 operators. The only exceptions
are C

00
WWhh

and C
±⌥0
ffV h

which appear with M
�2
V

and (MV ⇤̄)�1 respectively, corresponding
to d = 4 and d = 5 operators (for details see text). Color structures and indices are not
shown but can be added unambiguously. For identical Majorana neutrinos, the structures
C

±±±
ffZh

(13)(23) and C
±±±
ff�h

(13)(23) do not appear.

10

full set of EFT contact terms with  growth:  (mostly dim-6 operators)E2

(12) = [12] or ⟨12⟩

most suppressed by 

(amplitude dim-less)

Λ̄2

’s: Wilson coefficientsC

Ma Liu YS Waterbury 2301.11349

LOW ENERGY 

AMPLITUDES
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• similarly: derived full set of  CTs with  growth


• corresponding to  HEFT operators


• clear identification of operator dimension from dim-analysis:


                   factors of     (external massive vector)     


                  any extra powers  of   compensated by powers of    

 

                    —>  read off dimension  of operator      

E3, E4

d ≤ 8

p]p⟩ → p]p⟩/M

E Λ

but recall  ;       terms in amplitudes reflect non-locality of HEFT 


(cancel in SMEFT amplitudes: gauge invariance <—> perturbative unitarity)

Λ ∼ v E/v
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Massive d = 6 amplitudes SMEFT Wilson coefficients
M(W+

L
W

�
L
hh) = C

00
WWhh

h12i[12] C
00
WWhh

= (c(+)
(H†H)2 � 3c(�)

(H†H)2)/2

M(W+
±W

�
± hh) = C

±±
WWhh

(12)2 C
±±
WWhh

= 2c±±
WWHH

M(ZLZLhh) = C
00
ZZhh

h12i[12] C
00
ZZhh

= �2c(+)
(H†H)2

M(Z±Z±hh) = C
±±
ZZhh

(12)2 C
±±
ZZhh

= c
2
W
c
±±
WWHH

+ s
2
W
c
±±
BBHH

+ cW sW c
±±
BWHH

M(g±g±hh) = C
±±
gghh

(12)2 C
±±
gghh

= c
±±
GGHH

M(�±�±hh) = C
±±
��hh

(12)2 C
±±
��hh

= s
2
W
c
±±
WWHH

+ c
2
W
c
±±
BBHH

� cW sW c
±±
BWHH

M(�±Zhh) = C
±
�Zhh

(12)2 C
±
�Zhh

= sW cW c
±±
WWHH

� sW cW c
±±
BBHH

+ 1
2(s

2
W

� c
2
W
)c±±

BWHH

M(hhhh) = Chhhh Chhhh = �3c(H†H)2 + 45 v
2
c(H†H)3

M(f c

±f±hh) = C
±±
ffhh

(12) C
±±
ffhh

= 3c±±
  HHH

v/(2
p
2)

M(f c

+f
0
�WLh) = C

+�0
ffWh

[13]h23i C
+�0
ffWh

= (c+�,(+)
  HH

� c
+�,(�)
  HH

)/2

M(f c

�f
0
+WLh) = C

�+0
ffWh

h13i[23] C
�+0
ffWh

= c
�+
 R 

0
RHH

M(f c

±f
0
±W±h) = C

±±±
ffWh

(13)(23) C
±±±
ffWh

= c
±±±
  WH

/2

M(f c

+f�ZLh) = C
+�0
ffZh

[13]h23i C
+�0
eLeLZh

= �i
p
2c+�,(+)
  HH

, C+�0
⌫L⌫LZh

= �i(c+�,(+)
  HH

+ c
+�,(�)
  HH

)/
p
2

M(f c

�f+ZLh) = C
�+0
ffZh

h13i[23] C
�+0,CT
ffZh

= �i
p
2c�+
  HH

M(f c

±f±Z±h) = C
±±±
ffZh

(13)(23) C
±±±
ffZh

= �(sW c
±±±
  BH

+ cW c
±±±
  WH

)/
p
2

M(f c

±f±�±h) = C
±±±
ff�h

(13)(23) C
±±±
ff�h

= (�sW c
±±±
  WH

+ cW c
±±±
  BH

)/
p
2

M(qc±q±g
A

±h) = C
±±±
qqgh

�
A(13)(23) C

±±±
qqgh

= c
±±±
  GH

/
p
2

Table 3: The low-energy E
2 contact terms (left column) and their d = 6 coefficients in

the SMEFT (right column). c(H†H)2 without a superscript is the renormalizable four-Higgs
coupling. The mapping for four fermion contact terms is trivial, so we do not include them
here.

Four-fermion contact terms are not shown here because their matching to the high-
energy amplitudes is straightforward. Each of the Wilson coefficients C in Table 3 is d =

6, and is suppressed by ⇤2. As explained in Section 3.1, the low-energy amplitudes may
also contain mass-suppressed contact terms in longitudinal vector helicity categories,
which are associated with the factorizable part of the amplitude. Thus for example,
the structure h12i[12] in the WWhh amplitude has two pieces: one comes with a
coefficient C

00,fac
WWhh

, which is determined by three-point couplings, and one which is an
independent SMEFT d = 6 four-point coupling, C00,CT

WWhh
. Only the latter is given in

Table 3, but we omit the superscript CT for simplicity.
Note furthermore that high-energy four-point contact terms with Higgs legs may

also correct the three-point couplings. The d = 6 SMEFT corrections to the three-
points were derived in Ref. [33] by matching to the Feynman diagram result obtained
using Ref. [65]. These corrections can also be obtained by on-shell Higgsing. For an

14

SMEFT 4-pts 

full list of CTs from  SMEFT d ≤ 6

Ma Liu YS Waterbury 2301.11349
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to get these:


start with massless dim-6 SMEFT amplitudes


and Higgs these to get massive amplitudes


Ma Shu Xiao ‘19

Amplitude Contact term Warsaw basis operator Coefficient
A(Hc

i
H

c

j
H

c

k
H

l
H

m
H

n) T
+ lmn

ijk
OH/6 c(H†H)3

A(Hc

i
H

c

j
H

k
H

l) s12T
+ kl

ij
OHD/2 +OH ⇤/4 c

(+)
(H†H)2

A(Hc

i
H

c

j
H

k
H

l) (s13 � s23)T
� kl

ij
OHD/2�OH ⇤/4 c

(�)
(H†H)2

A(B±
B

±
H

c

i
H

j) (12)2�j
i

(OHB ± iO
HB̃

)/2 c
±±
BBHH

A(B±
W

I±
H

c

i
H

j) (12)2(�I)j
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Table 2: Massless d = 6 SMEFT contact terms [34] and their relations to Warsaw basis
operators [3]. For each operator (or operator combination) O in the third column, cO gen-
erates the structure in the second column with the coefficient c given in the fourth column.
c-superscripts denote charge conjugation.

For each amplitude in Table 2, we show the kinematic and group theory structure.
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for completeness provide full mapping 

of 4-pt  EFT amplitudes

to Warsaw basis 


d ≤ 6
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derived all low-energy 4-pt CTs generated by dim-8 SMEFT 


               ..     (massless fermions)


• nonzero mass “resurrect” vanishing SM-SMEFT interference 


• good at           (not just high-E where EFT not reliable)


• sensitivity to anomalous Higgs self couplings 


• up/down quark SU(2) relations broken (first happens at dim-8)

VV → VV f̄f → VV

∝ MW , MZ

MV ∼ E ≪ Λ

VV pair production from dim=8 SMEFT:               V = W, Z, γ, g
Goldberg Liu YS 2407.07945
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 +  distinguish HEFT vs SMEFT:


• various coupling relations in SMEFT


• some SMEFT zeros  (due to hypercharge or accidental)

VV pair production from dim=8 SMEFT:               V = W, Z, γ, g
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EFT of electroweak precision measurements & spurion analysis 

Z- and W-pole measurements: 3-points — simple & “exact” (no kinematic expansion)


 

M(Q̄i Qj V) = Ci
j

[13]⟨23⟩
MV

Northey, YS, Soreq, Ueda, 2502.?????
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EFT of electroweak precision measurements & spurion analysis 

       


       

Note that both Eq. (51) and Eq. (52) are triplets of SU(2)W , while Eq. (52) also carries a
hypercharge Y = +1. Eq. (51) breaks SU(2)W in one direction, and Eq. (52) breaks both
SU(2)W and U(1)Y in another. Considering the charge conjugate of Eq. (67), we can also write
a third direction with: H†

⌧
aH̃ ! 1/2

�
�
a1 + i�

a2
�
, a SU(2)W triplet with Y = �1. Together

these correspond to the three broken generators of SU(2)W ⇥ U(1)Y , and there are no more
independent Higgs-spurion combinations we can write without breaking U(1)EM. We do not
consider a single power H, since we are in the limit of massless fermions, and the Yukawa cou-
plings are taken to vanish.

Let us now apply the Higgs-spurion combinations to the EW 3-point amplitudes. The unbroken
amplitudes of the SM respect the global part of the SU(2)W ⇥U(1)Y symmetry. Specifically in
the case of LH-quarks; M

�
Q

i
, Qj , B

�
transforms as a singlet combination of a doublet and anti-

doublet, while M
�
Q

i
, Qj ,W

a
�

transforms as triplet combination of a doublet and anti-doublet.
Therefore the SMEFT, which also respects this symmetry, can only deform the amplitudes via
combinations of H which preserve these transformation properties. Thus, our Higgs-spurion

combinations can appear in the 3-point amplitude involving LH quark doublets Qj =

✓
UL

DL

◆

as follows,

M
�
Q

i
, Qj , B

�
⇠ cQ1�

i

j + cQ2(⌧
a) i

j

�
H†

⌧
aH

�
, (53)

M
�
Q

i
, Qj ,W

a
�
⇠ cQ3(⌧

a) i

j + cQ4�
i

j

�
H†

⌧
aH

�
+ cQ5i"

abc(⌧ b) i

j

�
H†

⌧
cH

�
, (54)

and for RH quark singlets UR and DR,

M
�
UR, UR, B

�
⇠ cU1 , (55)

M
�
UR, UR,W

a
�
⇠ cU2

�
H†

⌧
aH

�
, (56)

M
�
DR, DR, B

�
⇠ cD1 , (57)

M
�
DR, DR,W

a
�
⇠ cD2

�
H†

⌧
aH

�
(58)

M
�
UR, DR,W

a
�
⇠ cUD

�
H̃†

⌧
aH

�
. (59)

Note that the structure of lepton-doublet amplitudes is identical to Eq. (53) and Eq. (54)
(replacing the subscripts Q ! L). For the RH lepton singlet ER, the amplitude is of the same
structure as Eq. (55) or Eq. (57) and Eq. (56) or Eq. (58) (replacing the subscripts U orD ! E).
There is no leptonic version of Eq. (59), because there are no RH neutrinos in the SMEFT.

It is important to notice that we did not include H†H or other singlet combinations with
H, since these are trivial deformations, modifying coefficients that we already have, specifically
those which span the EWSB pattern of the SM. Indeed, we can regard these singlet terms
with no hypercharge, such as H†H, Higgs-spurion combinations in the "0-direction" of EWSB.
Considering the "spurion coefficients" of Eqs. (53)-(59), we count 10 parameters which must be
determined. This is one parameter more than the couplings (observables) of Sec. 3.2, since in
Sec. 3.1 we chose to neglect Eq. (19), corresponding to Eq. (59).

To obtain the broken phase amplitudes we rotate to the mass basis,

Z = �sWB + cWW
3
, (60)

W
+ =

1p
2

�
W

1 � iW
2
�
, (61)

15

5 structures


C’s functions of H†H

SU(2) structure to all orders via “spurion” analysis        spurion = normalized Higgs VEV

simple-minded (amplitude!) version of GeoSMEFT Helset Martin Trott ‘20

Northey, YS, Soreq, Ueda, 2502.?????
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Note that both Eq. (51) and Eq. (52) are triplets of SU(2)W , while Eq. (52) also carries a
hypercharge Y = +1. Eq. (51) breaks SU(2)W in one direction, and Eq. (52) breaks both
SU(2)W and U(1)Y in another. Considering the charge conjugate of Eq. (67), we can also write
a third direction with: H†

⌧
aH̃ ! 1/2

�
�
a1 + i�

a2
�
, a SU(2)W triplet with Y = �1. Together

these correspond to the three broken generators of SU(2)W ⇥ U(1)Y , and there are no more
independent Higgs-spurion combinations we can write without breaking U(1)EM. We do not
consider a single power H, since we are in the limit of massless fermions, and the Yukawa cou-
plings are taken to vanish.

Let us now apply the Higgs-spurion combinations to the EW 3-point amplitudes. The unbroken
amplitudes of the SM respect the global part of the SU(2)W ⇥U(1)Y symmetry. Specifically in
the case of LH-quarks; M

�
Q

i
, Qj , B

�
transforms as a singlet combination of a doublet and anti-

doublet, while M
�
Q

i
, Qj ,W

a
�

transforms as triplet combination of a doublet and anti-doublet.
Therefore the SMEFT, which also respects this symmetry, can only deform the amplitudes via
combinations of H which preserve these transformation properties. Thus, our Higgs-spurion

combinations can appear in the 3-point amplitude involving LH quark doublets Qj =
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as follows,
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and for RH quark singlets UR and DR,

M
�
UR, UR, B

�
⇠ cU1 , (55)

M
�
UR, UR,W
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�
⇠ cU2
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H†
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Note that the structure of lepton-doublet amplitudes is identical to Eq. (53) and Eq. (54)
(replacing the subscripts Q ! L). For the RH lepton singlet ER, the amplitude is of the same
structure as Eq. (55) or Eq. (57) and Eq. (56) or Eq. (58) (replacing the subscripts U orD ! E).
There is no leptonic version of Eq. (59), because there are no RH neutrinos in the SMEFT.

It is important to notice that we did not include H†H or other singlet combinations with
H, since these are trivial deformations, modifying coefficients that we already have, specifically
those which span the EWSB pattern of the SM. Indeed, we can regard these singlet terms
with no hypercharge, such as H†H, Higgs-spurion combinations in the "0-direction" of EWSB.
Considering the "spurion coefficients" of Eqs. (53)-(59), we count 10 parameters which must be
determined. This is one parameter more than the couplings (observables) of Sec. 3.2, since in
Sec. 3.1 we chose to neglect Eq. (19), corresponding to Eq. (59).

To obtain the broken phase amplitudes we rotate to the mass basis,

Z = �sWB + cWW
3
, (60)

W
+ =

1p
2

�
W

1 � iW
2
�
, (61)

15

examine on-shell Higgsing to see:


start @ dim-6

SU(2) structure to all orders via “spurion” analysis        spurion = Higgs VEV

(a) (b)

Figure 2: The two 4-point contact-terms contributing at d = 6.
(a) 4-point contact term including two fermions of opposite helicity, and two scalars.
(b) 4-point contact term including two vectors of the same polarisation, and two scalars.
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and for RH quarks which label collectively as QR = UR, DR,
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YQR
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. (72)

We can go to the broken phase by assigning indices to the gauge group structures, expressing
the EW bosons in the mass basis (Eqs. (60)-(61)) and Higgsing the Lorentz structure (detailed
in the Appendix A). This leads us to the following massive 3-points amplitudes at d = 4,
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4.2.1 Dimension-6 contributions

We now consider the contributions to the massive 3-points coming from d > 4 SMEFT operators.
These are generated by higher-point amplitudes. Ref. [49] classified the generic massless contact
terms for spins  1. At d = 6, there are two massless contact terms that can contribute to the
massive 3-points of interest: a 4-point contact term with two fermions and two scalars, and a
4-point with two vectors and two scalars (see Fig. 2).

The SMEFT amplitude corresponding to Fig. 2a (see also [19, 20]) for LH quarks is,
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Figure 2: The two 4-point contact-terms contributing at d = 6.
(a) 4-point contact term including two fermions of opposite helicity, and two scalars.
(b) 4-point contact term including two vectors of the same polarisation, and two scalars.
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We can go to the broken phase by assigning indices to the gauge group structures, expressing
the EW bosons in the mass basis (Eqs. (60)-(61)) and Higgsing the Lorentz structure (detailed
in the Appendix A). This leads us to the following massive 3-points amplitudes at d = 4,
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4.2.1 Dimension-6 contributions

We now consider the contributions to the massive 3-points coming from d > 4 SMEFT operators.
These are generated by higher-point amplitudes. Ref. [49] classified the generic massless contact
terms for spins  1. At d = 6, there are two massless contact terms that can contribute to the
massive 3-points of interest: a 4-point contact term with two fermions and two scalars, and a
4-point with two vectors and two scalars (see Fig. 2).

The SMEFT amplitude corresponding to Fig. 2a (see also [19, 20]) for LH quarks is,
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Note that both Eq. (51) and Eq. (52) are triplets of SU(2)W , while Eq. (52) also carries a
hypercharge Y = +1. Eq. (51) breaks SU(2)W in one direction, and Eq. (52) breaks both
SU(2)W and U(1)Y in another. Considering the charge conjugate of Eq. (67), we can also write
a third direction with: H†

⌧
aH̃ ! 1/2

�
�
a1 + i�

a2
�
, a SU(2)W triplet with Y = �1. Together

these correspond to the three broken generators of SU(2)W ⇥ U(1)Y , and there are no more
independent Higgs-spurion combinations we can write without breaking U(1)EM. We do not
consider a single power H, since we are in the limit of massless fermions, and the Yukawa cou-
plings are taken to vanish.

Let us now apply the Higgs-spurion combinations to the EW 3-point amplitudes. The unbroken
amplitudes of the SM respect the global part of the SU(2)W ⇥U(1)Y symmetry. Specifically in
the case of LH-quarks; M

�
Q

i
, Qj , B

�
transforms as a singlet combination of a doublet and anti-

doublet, while M
�
Q

i
, Qj ,W

a
�

transforms as triplet combination of a doublet and anti-doublet.
Therefore the SMEFT, which also respects this symmetry, can only deform the amplitudes via
combinations of H which preserve these transformation properties. Thus, our Higgs-spurion

combinations can appear in the 3-point amplitude involving LH quark doublets Qj =
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as follows,
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�
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⇠ cQ1�

i

j + cQ2(⌧
a) i

j
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⌧
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, (53)

M
�
Q

i
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a
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j + cQ4�
i

j

�
H†

⌧
aH

�
+ cQ5i"

abc(⌧ b) i

j

�
H†

⌧
cH

�
, (54)

and for RH quark singlets UR and DR,

M
�
UR, UR, B

�
⇠ cU1 , (55)

M
�
UR, UR,W

a
�
⇠ cU2

�
H†

⌧
aH

�
, (56)

M
�
DR, DR, B

�
⇠ cD1 , (57)

M
�
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�
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�
(58)

M
�
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a
�
⇠ cUD

�
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⌧
aH
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Note that the structure of lepton-doublet amplitudes is identical to Eq. (53) and Eq. (54)
(replacing the subscripts Q ! L). For the RH lepton singlet ER, the amplitude is of the same
structure as Eq. (55) or Eq. (57) and Eq. (56) or Eq. (58) (replacing the subscripts U orD ! E).
There is no leptonic version of Eq. (59), because there are no RH neutrinos in the SMEFT.

It is important to notice that we did not include H†H or other singlet combinations with
H, since these are trivial deformations, modifying coefficients that we already have, specifically
those which span the EWSB pattern of the SM. Indeed, we can regard these singlet terms
with no hypercharge, such as H†H, Higgs-spurion combinations in the "0-direction" of EWSB.
Considering the "spurion coefficients" of Eqs. (53)-(59), we count 10 parameters which must be
determined. This is one parameter more than the couplings (observables) of Sec. 3.2, since in
Sec. 3.1 we chose to neglect Eq. (19), corresponding to Eq. (59).

To obtain the broken phase amplitudes we rotate to the mass basis,

Z = �sWB + cWW
3
, (60)

W
+ =

1p
2

�
W

1 � iW
2
�
, (61)

15

examine on-shell Higgsing to see:


start @ dim-8

SU(2) structure to all orders via “spurion” analysis        spurion = Higgs VEV

Figure 4: A 5-point of a massless amplitude of two fermions of opposite helicity, two scalars
and a vector of positive polarisation, contributing at d = 8.

To obtain the massive contact term, we take p5 ! 0. The remaining kinematic structure
reduces to [13]h23i at low energies. Again, since we are only interested in cQ5 we look at the
contribution of the "

abc term in Eq. (99), which yields,

cQ5 ⇠
v
4

⇤4
. (100)
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to conclude:


now in the process of understanding electroweak symmetry breaking at LHC experiments

           ? uncover origin of Higgs mechanism (at this point: ad-hoc parametrization)


mature(ing) methods for on-shell derivation of low-energy EFT amplitudes:


clear distinction between HEFT, SMEFT

alow for an interpretation of LHC measurements directly in terms of observables


re-learn QFT from physical amplitudes: start to develop an on-shell understanding of                              
field space — Higgs mechanism   (power of Lorentz)


what will the LHC experiments tell us?      hundreds of measurements never done before!




Thank you!



on to dim-8 SMEFT    

can have interesting effects (eg example here) 

~ 1000 operators;  with amplitudes, easy to concentrate on the relevant ones for a given observable 


example: WW, ZZ .. production  (sensitive probe of EWSB)        


all relevant 4-pt CTs first generated at dim-8            (dim-6 SMEFT merely corrects SM-3pts)


  from VVVV, VVHH etc:  easy to see at amplitude level:   8 powers of     —>  


                                                                                      or  6 powers in ffVV —>  SMEFT:  


p] ( or p⟩ ) Λ4

Λ4

Goldberg Liu YS 2407.07945
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