
Tensor networks and quantum computing 
for particle physics and related issues

Enrique Rico Ortega

Wednesday, 26 November 2025



• Born and undergrad: Madrid

• PhD: Barcelona

• Postdoc: Innsbruck, Vienna, Ulm

• Habilitation: Strasbourg

• Ikerbasque Professor: Bilbao

• LD staff at CERN-TH: Geneva



• Born and undergrad: Madrid

• PhD: Barcelona

• Postdoc: Innsbruck, Vienna, Ulm

• Habilitation: Strasbourg

• Ikerbasque Professor: Bilbao

• LD staff at CERN-TH: Geneva

Background and Research interest: 

Quantum Information tools to characterise phases of matter, 
e.g. entanglement entropy.


Quantum technologies to simulate High Energy models


New non-perturbative methods in Hamiltonian formulation 
and real-time dynamics following the LQCD program
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TODAY 
Quantum Co-Design for QCD

Solved dynamical properties


(e.g., string dynamics)

“History doesn't repeat itself, but it often rhymes.”
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Quantum Simulators & 

Entanglement tailored classical algorithms (tensor networks)
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quarks

• Renormalisation group as a tool to 
study Nature at different scales
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modern microscopes

(semi-inclusive)  
deep-inelastic lepton scattering

highly virtual photons resolve 
inner (partonic) structure

factorization theorems 
separate non-calculable from 

calculable parts 
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• Implementing the gauge invariant dynamics

energy

penalty

U color singlet 
hopping


Internal symmetry

b)

encoding

gauge invariant 

degrees of freedom
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Calculation cost:


NdD
3NdD

2 vs dN
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The witnesses to the existence of the predicted confining phase of the model are provided by 
nonlocal order parameters from Wilson loops and disorder parameters from ’t Hooft strings.

Hadron structure study requires the measurement of flux tubes (Wilson lines) 
among its constituents (partons) in space and real-time
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Goal: Simulate time dynamics using 2nd order Trotter circuits
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Customized error  
mitigation techniques:

Gauge dynamical decoupling (GDD)

Pauli Twirling (PT)


Gauge configuration recovery (GCR)

Operator decoherence renormalization (ODR)
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Confined Deconfined “Higgs” 

String dynamics:

bending mode

String dynamics:

io-io mode
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