

Future Colliders: Possibilities and Challenges

Jacqueline Keintzel

Acknowledgements: Many colleauges from various design studies

Prisma+ Colloquium Mainz, Germany 28 May 2025

jacqueline.keintzel@cern.ch

Short CV

- Sep 2013: Start studying technical physics at Vienna University of Technology
- Sep 2017: Start undergraduate studentship at CERN
- Nov 2018: Start PhD at CERN as doctoral student
- Nov 2021: Start CERN senior fellow
- Nov 2023: Start CERN staff LD

- Research areas:
 - Accelerator physics
 - · Beam dynamics and beam optics
 - Spin dynamics and polarization
 - Experimental tests and simulations
 - LHC, FCC, SuperKEKB, KARA, ...

TECHNISCHE UNIVERSITÄT WIEN Vienna University of Technology

Dissertation

Beam Optics Design, Measurement and Correction Strategies for Circular Colliders at the Energy and Luminosity Frontier

zur Erlangung des akademischen Grades Doktor der technischen Wissenschaften im Fachbereich Physik

> ausgeführt am Atominstitut der TU Wien in Zusammenarbeit mit CERN

unter Betreuung von Privatdoz. Dipl.Ing. Dr.techn. Michael Benedikt und

CERN-THESIS 18/03/2022

durch Dipl.Ing. Jacqueline Keintzel Matr. Num.: 01325138

Dr. Rogelio Tomás García (CERN)

Gutachter: Prof. Dr. Leonid Rivkin (PSI and EPFL)

Dr. Angeles Faus-Golfe (IJCLab)

Wien, February 2, 2022

Jacqueline Keintzel Michael Benedik

MAINZ 28 MAY 2025

JACQUELINE KEINTZEL

Current Accelerators

Ref :

https://nucleus.iaea.org/sites/accelerators/Pages/Interactive-Map-of-Accelerators.aspx

https://www-elsa.physik.uni-bonn.de/accelerator_list.html

- Many applications
 - Medical accelerators
 - Light sources
 - Accelerator based neutron sources
 - High Energy Physics (HEP) research
 - 7 colliders currently in operation
 - e.g: RHIC, LHC, SKEKB

	Species	E_b, GeV	C, m	\mathcal{L}_{peak}^{max}	Years
VEPP-4M	e^+e^-	6	366	2×10^{31}	1979-
BEPC-I/II	e^+e^-	2.3	238	10^{33}	1989-
DAΦNE	e^+e^-	0.51	98	$4.5 imes 10^{32}$	1997-
RHIC	p, i	255	3834	2.5×10^{32}	2000-
LHC	p, i	6500	2669	$2.1 imes 10^{34}$	2009-
VEPP2000	e^+e^-	1.0	24	4×10^{31}	2010-
S-KEKB	e^+e^-	7+4	3016	8×10^{35} *	2018-

RHIC at BNL

- Relativistic Heavy Icon Collider
- Located at

Brookhavn National Laboratory (BNL)

 First collider ever build dedicated to collide heavy ions

	(PHOBOS) Electron lenses	Polarized Jet Ta RHIC	arget (BRAHMS) Electron cooling
(s)PHENIX	RL AGS	STAR	RF
		TPL Tandems	
e)			

Operation	: 2000 – 2025 (planned)
Circumference	: 3.8 km
Max dipole field	1: 3.5 T
Energy	: 255 GeV polarized p
	: 100 GeV/nucleon Au
Species	: p to U (incl. asymmetric)
Experiments	: BRAHMS, PHOBOS (complete
ST	AR, PHENIXgsPHENIX

4 14 14 14 1

SuperKEKB at KEK

- SuperKEKB at KEK (Kō Enerugī Kasokuki Kenkyū Kikō)
- Largest currently operating electron-positron collider
- Record instantaneous luminosity of 5 x 10³⁴ cm⁻²s⁻¹
- Asymmetric beam energies of 4 and 7 GeV for b-physics

LHC at CERN

- Large Hadron Collider (LHC) at CERN for hadron collisions with four big experiments
- Largest collider in existence with 27 km; last stage of the accelerator chain
- 14 TeV collision energy for proton-proton collisions; also heavy-ion collisions

• Colliders started in the 1960s

Ref: V. Shiltsev and F. Zimmermann, Rev. Mod. Phys. 93, 015006, 2021.

Note: Possible start for various future machines later than shown in plots

The Very First: AdA

- Anello Di Accumulazione (AdA) with 4 m circumference
- Located at Frascati, Italy
- Operation from 1961 1965

- First proof of principle of e⁺e⁻ storage ring
- First observations of e⁺e⁻ annihilations
- Observation of the Touschek Effect

2: Rotation of the ring

C. Bernardini, AdA: The First Electron-Positron Collider. Phys. perspect. 6, 156–183 (2004).

- 2013: Francois Englert and Peter **Higgs** "for the theoretical discovery of a mechanism that contributes to our understanding of the origin of mass of subatomic particles, and which recently was confirmed through the discovery of the predicted fundamental particle, by the ATLAS and CMS experiments at CERN's Large Hadron Collider"
- 2008: Makoto Kobayashi and Toshihide Maskawa "for the discovery of the origin of the **broken symmetry** which predicts the existence of at least three families of quarks in nature"
- 2004: David J. Gross, H. David Politzer and Frank Wilczek "for the discovery of asymptotic freedom in the theory of the strong interaction"
- 1995: Martin L. Perl "for the discovery of the tau lepton" and Frederick Reines "for the detection of the neutrino"

• 1992: Georges Charpak - "for his invention and development of particle detectors, in particular the **multiwire proportional chamber**"

- 2013: Francois Englert and Peter **Higgs** "for the theoretical discovery of a mechanism that contributes to our understanding of the origin of mass of subatomic particles, and which recently was confirmed through the discovery of the predicted fundamental particle, by the ATLAS and CMS experiments at CERN's Large Hadron Collider"
- 2008: Makoto Kobayashi and Toshihide Maskawa "for the discovery of the origin of the **broken symmetry** which predicts the existence of at least three families of quarks in nature"
- 2004: David J. Gross, H. David Politzer and Frank Wilczek "for the discovery of asymptotic freedom in the theory of the strong interaction"
- 1995: Martin L. Perl "for the discovery of the tau lepton" and Frederick Reines "for the detection of the neutrino"

• 1992: Georges Charpak - "for his invention and development of particle detectors, in particular the **multiwire proportional chamber**"

- 1990: Jerome I. Friedman, Henry W. Kendall and Richard E. Taylor "for their pioneering investigations concerning deep inelastic scattering of electrons on protons and bound neutrons, which have been of essential importance for the development of the **quark model** in particle physics"
- 1984: Carlo Rubbia and Simon van der Meer "for their decisive contributions to the large project, which led to the discovery of the field particles **W and Z**, communicators of weak interaction"
- 1979: Sheldon Glashow, Abdus Salam and Steven Weinberg "for their contributions to the theory of the **unified weak and electromagnetic** interaction between elementary particles, including, inter alia, the prediction of the weak neutral current"
- 1976: Burton Richter and Samuel C.C. Ting "for their pioneering work in the discovery of a **heavy elementary particle** of a new kind"
- 1996: Murray Gell-Mann "for his contributions and discoveries concerning the classification of **elementary particles and their interactions**"

- 1986: Luis Alvarez "for his decisive contributions to elementary particle physics, in particular the discovery of a large number of resonance states, made possible through his development of the technique of using hydrogen bubble chamber and data analysis"
- 1965: Sin-Itiro Tomonaga, Julian Schwinger and Richard P. Feynman "for their **fundamental work in quantum electrodynamics**, with deep-ploughing consequences for the physics of elementary particles"
- 1960: Donald A. Glaser "for the invention of the bubble chamber"
- 1959: Emilio Segrè and Owen Chamberlain "for their discovery of the antiproton"
- 1957: Chen Ning Yang and Tsung-Dao Lee "for their penetrating investigation of the so-called **parity laws** which has led to important discoveries regarding the elementary particles"
- 1951: John Cockcroft and Ernest T.S. Walton "for their pioneer work on the transmutation of atomic nuclei by artificially accelerated atomic particles"
- 1949: Hideki Yukawa "for his prediction of the existence of mesons on the basis of theoretical work on nuclear forces"

History

- About 14 past circular electron-positron colliders
- About 3 past circular hadron colliders
- So far 1 electron-hadron collider
- 7 colliders currently in operation
- 2 approved future collider projects + 1 upgrade
- Possible option for the future
 - Circular, linear, novel concepts ?
 - Americas, Europe, Asia ?

Colliders	Species	E_{cm} , GeV	C, m	$L, 10^{32}$	Years	Host lab, country
AdA	e^+e^-	0.5	4.1	10^{-7}	1964	Frascati/Orsay
VEP-1	e^-e^-	0.32	2.7	5×10^{-5}	1964-68	Novosibirsk, USSR
CBX	e^-e^-	1.0	11.8	2×10^{-4}	1965-68	Stanford, USA
VEPP-2	e^+e^-	1.34	11.5	4×10^{-4}	1966-70	Novosibirsk, USSR
ACO	e^+e^-	1.08	22	0.001	1967-72	Orsay, France
ADONE	e^+e^-	3.0	105	0.006	1969-93	Frascati, Italy
CEA	e^+e^-	6.0	226	$0.8 imes 10^{-4}$	1971-73	Cambridge, USA
ISR	pp	62.8	943	1.4	1971-80	CERN
SPEAR	e^+e^-	8.4	234	0.12	1972-90	SLAC, USA
DORIS	e^+e^-	11.2	289	0.33	1973-93	DESY, Germany
VEPP-2M	e^+e^-	1.4	18	0.05	1974-2000	Novosibirsk, USSR
VEPP-3	e^+e^-	3.1	74	2×10^{-5}	1974-75	Novosibirsk, USSR
DCI	e^+e^-	3.6	94.6	0.02	1977-84	Orsay, France
PETRA	e^+e^-	46.8	2304	0.24	1978-86	DESY, Germany
CESR	e^+e^-	12	768	13	1979-2008	Cornell, USA
PEP	e^+e^-	30	2200	0.6	1980-90	SLAC, USA
$Sp\bar{p}S$	$p\bar{p}$	910	6911	0.06	1981-90	CERN
TRISTAN	e^+e^-	64	3018	0.4	1987-95	KEK, Japan
Tevatron	$p\bar{p}$	1960	6283	4.3	1987-2011	Fermilab, USA
SLC	e^+e^-	100	2920	0.025	1989-98	SLAC, USA
LEP	e^+e^-	209.2	26659	1	1989-2000	CERN
HERA	ep	30 + 920	6336	0.75	1992-2007	DESY, Germany
PEP-II	e^+e^-	3.1 + 9	2200	120	1999-2008	SLAC, USA
KEKB	e^+e^-	3.5 + 8.0	3016	210	1999-2010	KEK, Japan
VEPP-4M	e^+e^-	12	366	0.22	1979-	Novosibirsk, Russia
BEPC-I/II	e^+e^-	4.6	238	10	1989-	IHEP, China
DAONE	e^+e^-	1.02	98	4.5	1997-	Frascati, Italy
RHIC	p, i	510	3834	2.5	2000-	BNL, USA
LHC	p, i	13600	26659	210	2009-	CERN
VEPP2000	e^+e^-	2.0	24	0.4	2010-	Novosibirsk, Russia
S-KEKB	e^+e^-	7+4	3016	6000*	2018-	KEK, Japan
NICA	p, i	13	503	1*	2024(tbd)	JINR, Russia
EIC	ep	10 + 275	3834	105*	2032(tbd)	BNL, USA

Ref: V. Shiltsev and F. Zimmermann, Rev. Mod. Phys. 93, 015006, 2021; S. Nagaitesev

EIC at BNL

- Electron-Ion Collider
- Hadron storage ring: 40 275 GeV (existing)
 - 1160 bunches, 1 A beam current
 - Small vertical emittance
 - Strong cooling
- Electron storage ring: 2.5 18 GeV (new)
 - Up to 1160 polarized bunches
 - Large beam current of 2.5 A \rightarrow 9 MW SR power
 - Superconducting RF

MAINZ

28 MAY 2025

- Rapid cycling synchrotron (RCS): 0.4 18 GeV (new)
- High luminosity interaction regions: (new)

High-Luminosity LHC

- HL-LHC is major upgrad of the LHC
- Main goals:
 - Total integrated luminosity of 3000 fb⁻¹ (10 x LHC)
 - Target of ~ 250 fb⁻¹ integrated luminosity per year
- Some changes:
 - New 11 T magnets with collimators in between
 - Higher bunch-charge
 - Smaller beta-function at the interaction point, achieved by Achromatic Telescopic Squeeze (ATS) Optics

	LHC 2024	HL-LHC
Protons per bunch	1.6 x 1011	2.2 x 10 ¹¹
Number of bunches	2352	2750
Normalized emittance	1.8 micron	2.5 micron
Beta*	30 cm	15 cm
Full crossing angle	320 microrad	500 microrad
Geometric reduction factor F	0.6	0.35
"Virtual" luminosity	4.2 x 10 ³⁴ cm ⁻² s ⁻¹	2.4 x 10 ³⁵ cm ⁻² s ⁻¹
Levelled luminosity	2.1 x 10 ³⁴ cm ⁻² s ⁻¹	5 x 10 ³⁴ cm ⁻² s ⁻¹

Particle Physics - Status

- Standard Model (SM) confirmed to high accuracy up to several TeV
- Higgs-boson discovered
 - At the mass predicted within the SM by LEP precision electro-weak measurements
- Absence of new physics at the TeV scale

- Need for a new, broad and ambitious program
 - → more precision
 - \rightarrow more energy
 - \rightarrow for more sensitivity for new physics

https://forumias.com/blog/the-standard-model-of-particle-physics-gets-a-jolt/#gsc.tab=0

Courtesy: R. Bruce, E. Metral

Considerations

• The What?

Hadrons (protons or ions)

- Mix of quarks and gluons
- Discoveries at physics frontiers
- Typically high collision energy
- Main limitation: dipole field and ring size

Leptons

- Elementary particles colliding
- High-precision measurements
- Well-defined center-of-mass energy
- Main limitation: energy loss from synchrotron radiation

Considerations

- The What?
- The How?

Linear Collider

- Single-pass
- Few magnets, many RF-cavities
- Main limitation: length of collider and accelerating technology

Circular Collider

- Multi-pass
- More magnets, fewer RF-cavities
- Main limitation: Circumference of colliding to bend particles; SR energy loss for light particles

MAINZ

28 MAY 2025

Considerations

- The What?
- The How?
- The When?

Order

- Would an electron-positron or hadron machine be the logical next step?
- Or should we go for muons?

Technological readiness

- Completeness of designs/proposals
- High-field magnet technology
- Accelerating gradients
- Energy efficiency and sustainability

Ressources

 Are there enough ressources to build as many as we want?

MAINZ

Considerations

- The What?
- The How?
- The When?
- The Why?

- Higgs Particle
- Precision studies at a Higgs-Factory ~ 250 GeV

Next Energy Scale

Need to probe parton collisions up to 10 TeV

SM and Dark Matter

- SM seems incomplete
- Answers on dark matter and dark energy
- Matter antimatter asymmetry

- Electro-weak Measurements
- Studies at the ttbar-threshhold up to $\sim 500 \; \text{GeV}$

What We Want:

https://www.persoenlich.com/kategorie-werbung/eineeierlegende-wollmilchsau-fur-vw

Future Landscape - Leptons

• Lower energy regime

• Higher energy regime

Future Landscape - Hadrons

• Next generation of circular hadron colliders to probe next order of magnitude of energies

Circular e+e- Colliders

Proposals

- CERN, Switzerland
 - Future e+e- Circular Collider, FCC-ee
 - Future hadron Circular Collider, FCC-hh
- CERN, Switzerland
 - Large Electron Positron Collider 3, LEP3

- IHEP, China
 - Circular Electron Positron Collider, CEPC
 - Super proton-proton Collider, SppC

FCC-ee Physics Potential

- CDR baseline runs (2IPs)
- ---- Additional opportunities

- Many opportunities beyond the baseline plan
- Complementary experiments using e.g. beam dump, re-using synchrotron radiation photons

CEPC Physics Progam

Higgs coupling precision can be improved by an order of magnititude

EW measurement can be improved by a large factor

Direct and indirect probe to new physics up to 10 TeV, an order of magntitude higher than the HL-LHC

Chinese Physics C Vol. 43, No. 4 (2019) 043002

Energy Stages

- CERN, Switzerland
 - Future e+e- Circular Collider, FCC-ee
 - 4 Interaction Points

- IHEP, China
 - Circular Electron Positron Collider, CEPC
 - 2 Interaction Points

	E _{Beam} [GeV]	Mode	
First measurements of	45.6	Z-lineshape	
Special mode, monochromatization	62.5	H-energy	Not mentioned in TDR
	80	WW	
LEP3 limit	120	ZH-production peak	First measurements of
	182.5	Top-pair-threshold	

Synchrotron Radiation (SR)

• Electrons/Positrons about 2000 times lighter than protons $\rightarrow 10^{13}$ greater radiation losses

$$P_{\gamma} = \frac{2}{3} r_0 E_0 c \frac{\gamma_{\rm rel}^4 \beta_{\rm rel}^4}{\rho^2}$$

• Leads to a natural damping of the emittance over time

$$\varepsilon(t) = e^{-2 t/\tau_{\rm SR}}$$
 $au_{\rm SR} = \frac{T_0 E}{j_{x,y} U}$

W. Barletta, USPAS lectures on synchrotron radiation, 2009.

JACQUELINE KEINTZEL

Synchrotron Radiation Challenges

- At highest proposed energy mode of 182.5 GeV at FCC-ee or CEPC up to almost 10 GeV energy losses per turn
- Synchrotron radiation damping only ~ 40 turns, while about 2300 turns at 45.6 GeV
- Significant energy variation of a few % over the circumference
- Large energy gain required by RF-system
- Machine protection challenges

Quantum Excitation

- Photons emitted in discrete quanta following a random Poisson process
- Sudden loss leads to an instantaneous jump of the particle if emitted in dispersive region
- Introduced **noise** leads to emittance growth towards equilibrium

Blue: only synchrotron radiation; Orange: with quantum excitation

Parameters - CEPC

	Higgs	Z	W	tt	
Number of IPs	2				
Circumference (km)	100.0				
SR power per beam (MW)	30				
Energy (GeV)	120	45.5	80	180	
Bunch number	268	11934	1297	35	
Emittance (nm/pm)	0.64/1.3 0.27/1.4 0.87/1.7 1.4/4.7				
Beam size at IP σ_{x}/σ_{y} (um/nm)	14/36 6/35 13/42 39/113				
Bunch length (natural/total) (mm)	2.3/4.1	2.5/8.7	2.5/4.9	2.2/2.9	
Beam-beam parameters ξ_x / ξ_y	0.015/0.11	0.004/0.127	0.012/0.113	0.071/0.1	
RF frequency (MHz)	650				
Luminosity per IP (10 ³⁴ cm ⁻² s ⁻¹)	5.0 115 16 0.5				

Design and parameters dominated by choice to allow for 30 MW synchrotron radiation power per beam

Defines

→ RF system

→ Beam parameters

Longer circumference than FCC

Start at Higgs-mode

Parameters - FCC-ee

	Z	ww	ZH	ttbar	
Beam energy [GeV]	45.6	80	120	182.5	D
SR power/beam [MW]		50			d
SR losses/turn [GeV]	0.0394	0.374	1.89	10.42	ra
Beam current [mA]	1270	137	26.7	4.9	
Bunches/beam [-]	11200	1780	440	60	D
Bunch intensity [10 ¹¹]	2.14	1.45	1.15	1.55	-
RF voltage 400/800MHz [GV]	0.08/0	1.0/0	2.1/0	2.1/9.4	
Horizontal β -function at IP [mm]	110	200	240	1000	
Vertical β -function at IP [mm]	0.7	1.0	1.0	1.6	
Horizontal emittance [nm]	0.71	2.17	0.71	1.59	
Vertical emittance [pm]	1.9	2.2	1.4	1.6	
Luminosity/IP [10 ³⁴ cm ⁻² s ⁻¹]	141	20	5	1.25	
Integrated luminosity/IP/year [ab ⁻¹]	15	12	12	11	
	4 years 5 x 10 ¹² Z LEP x 10 ⁵	2 years > 10 ⁸ WW LEP x 10 ⁴	3 years 2 x 10 ⁶ H	5 years 2 x 10 ⁶ ttba	r pai

Design and parameters dominated by choice to allow for 50 MW synchrotron radiation power per beam

Defines

→ RF system

→ Beam parameters

Superconducting RF Cavities

- 2-Cell 400MHz cavities for Z, W, H, ttbar
- Copper Nb coated, 1.5m long, 4.5K
- Reverse Phase Operation (RPO), all 400MHz cavities installed for Z to H operation modes
- •6-cell 800MHz for ttbar

MAINZ 28 MAY 2025

JACQUELINE KEINTZEL

Top-Up Injection

- Used at SuperKEKB
- First demonstrated at KEKB and PEP-II
- Injection at collision energy into collider rings
- Continous injection to keep constant beam current
- Average luminosity ~ peak luminosity

Polarization Build-Up

 $\begin{array}{c} e^{-} \\ \text{More likely} \\ \text{(by factor ~25)} \end{array} \overset{e^{-}}{} & \overset{N}{} & \overset{e^{-}}{} \\ S & \overset{N}{} & \overset{e^{-}}{} \\ \text{Less likely} \end{array} \overset{e^{-}}{} & \overset{N}{} & \overset{e^{-}}{} \\ \overset{N}{} & \overset{N}{} \\ \overset{N}{} & \overset{N}{} \\ \overset{N}{} \overset{N}{} \overset{N}{} \\ \overset{N}{} \overset{N}{} \\ \overset{N}{} \\ \overset{N}{} \overset{N}{} \overset{N$

- Statistically every 10^{10th} emitted synchrotron photon flips the spin
- Probability depends on the initial spin orientation
- Leads to a natural **polarization build-up** over time
- Orientation is **anti-parallel** to the guiding magnetic field for e⁻
- In a flat synchrotron only vertical bending \rightarrow vertical spin orientation
- Known as Sokolov-Ternov-Effekt
- Maximum theoretical polarization of **92.4** %
- In real accelerator max. polarization depends on various factors

Spin Tune

- Spin precesses through the lattice
- Spin tune v: Number of spin precessions per turn
- In an error-free flat machine without solenoids:
- 45.6 GeV e⁺/e⁻ → 103.5 spin tune
- Purely vertical spin orientation

a ... gyro-magnetic anomaly y_{Rel} ... Lorentz-factor

$$v = a * \gamma_{Rel}$$

Principle: Spin tune measurement Beam energy determination

Courtesy: V. Caudan

Linear RF e+e- Colliders

Proposals

• CERN:

- Compact Linear Collider (CLIC)
- Linear collider facility
- Japan:
 - International Linear Collider (ILC)
- USA:
 - Cool Copper Collider

Physics Potential

- Higgs and electro-weak factory up to a few TeV collision energy
- High longitudinally polarized beams (80 / 20-30 % electrons / positrons) essential part of physics program

MAINZ 28 MAY 2025

General Linear Collider

- Main parts of linear colliders:
 - RTML (Ring To Main Linac): injectors to achieve low emittance
 - Main linac for electrons and positrons \rightarrow RF and acceleration main technological challenges
 - BDS: beam delivery system to achieve nano-beams
- Staged:
 - Possibility to expand to reach higher energies with new/improved technology

ILC

- 1.3 GHz superconducting RF
- 35 MV/m accelerating gradient
- Located in Japan
- TDR published in 2013

ILC Scheme

- 1.3 GHz superconducting RF
- 35 MV/m accelerating gradient

- Long pulse
- Large structure \rightarrow low wakefields
- High effiviency thanks to superconductivity
- Long linac due to limited gradient
- Large damping ring

- Standing wave structure
- Theoretical field limit 50 60 MV/m
- 8000 cavities needed

ILC Parameters

Quantity	Symbol	Unit	Initial	\mathcal{L} Upgrade	Z pole	Ul	pgrades	
Centre of mass energy	\sqrt{s}	GeV	250	250	91.2	500	250	1000
Luminosity	\mathcal{L} 10 ³⁴	$\mathrm{cm}^{-2}\mathrm{s}^{-1}$	1.35	2.7	0.21/0.41	1.8/3.6	5.4	5.1
Polarization for e^-/e^+	$P_{-}(P_{+})$	%	80(30)	80(30)	80(30)	80(30)	80(30)	80(20)
Repetition frequency	$f_{ m rep}$	Hz	5	5	3.7	5	10	4
Bunches per pulse	$n_{ m bunch}$	1	1312	2625	1312/2625	1312/2625	2625	2450
Bunch population	$N_{ m e}$	10^{10}	2	2	2	2	2	1.74
Linac bunch interval	$\Delta t_{ m b}$	ns	554	366	554/366	554/366	366	366
Beam current in pulse	$I_{\rm pulse}$	$\mathbf{m}\mathbf{A}$	5.8	8.8	5.8/8.8	5.8/8.8	8.8	7.6
Beam pulse duration	t_{pulse}	μs	727	961	727/961	727/961	961	897
Average beam power	$P_{\rm ave}$	MW	5.3	10.5	$1.42/2.84^{*)}$	10.5/21	21	27.2
RMS bunch length	$\sigma^*_{ m z}$	$\mathbf{m}\mathbf{m}$	0.3	0.3	0.41	0.3	0.3	0.225
Norm. hor. emitt. at IP	$\gamma \epsilon_{\mathbf{x}}$	$\mu { m m}$	5	5	5	5	5	5
Norm. vert. emitt. at IP	$\gamma\epsilon_{ m y}$	nm	35	35	35	35	35	30
RMS hor. beam size at IP	σ^*_{x}	nm	516	516	1120	474	516	335
RMS vert. beam size at IP	$\sigma_{\rm y}^*$	nm	7.7	7.7	14.6	5.9	7.7	2.7
Luminosity in top 1%	$\mathcal{L}_{0.01}/\mathcal{L}$		73%	73%	99 %	58.3%	73%	44.5%
Beamstrahlung energy loss	$\delta_{ m BS}$		2.6%	2.6%	0.16%	4.5%	2.6%	10.5%
Site AC power	P_{site}	MW	111	138	94/115	173/215	198	300
Site length	$L_{ m site}$	\mathbf{km}	20.5	20.5	20.5	31	31	40

CLIC

- 12 GHz nomal conducting cavitiy
- 100 MV/m acceleration
- Initial phase:
 - 11 km length
 - 380 GeV center-of-mass energy
- Final stage:
 - Extentable up to 50 km
 - Up to 3 TeV center-of-mass energy
- Novel acceleration scheme

• 12 GHz nomal conducting cavitiy

• 100 MV/m acceleration

- Initial phase:
 - 11 km length
 - 380 GeV center-of-mass energy

• Final stage:

- Extentable up to 50 km
- Up to 3 TeV center-of-mass energy

	Novel	acce	leration	scheme
--	-------	------	----------	--------

Parameter	Unit	Stage 1	Stage 2	Stage 3	
Centre-of-mass energy	GeV	380	1500	3000	_ ^
Repetition frequency	Hz	50	50	50	Add:
Nb. of bunches per train		352	312	312	• 250 GeV
Bunch separation	ns	0.5	0.5	0.5	parameters
Pulse length	ns	244	244	244	• 100 Hz
Accelerating gradient	MV/m	72	72/100	72/100	both 250 and
Total luminosity	$1{\times}10^{34}{\rm cm}^{-2}{\rm s}^{-1}$	2.3	3.7	5.9	380 GeV
Lum. above 99% of \sqrt{s}	$1{\times}10^{34}{\rm cm}^{-2}{\rm s}^{-1}$	1.3	1.4	2	
Total int. lum. per year	fb^{-1}	276	444	708	
Main linac tunnel length	km	11.4	29.0	50.1	
Nb. of particles per bunch	1×10^{9}	5.2	3.7	3.7	
Bunch length	μm	70	44	44	
IP beam size	nm	149/2.0	$\sim 60/1.5$	$\sim \! 40/1$	
Final RMS energy spread	%	0.35	0.35	0.35	
Crossing angle (at IP)	mrad	16.5	20	20	- 6

CLIC Cavities

- 12 GHz nomal conducting cavitiy
- 100 MV /m

- High gradient \rightarrow short linac
- Small structure \rightarrow strong wakefields
- Small daming ring

• 25000 cavities needed

Drive Beam Acceleration

Courtesy: S. Stapnes

CLIC 380 GeV

(cérn)

JACQUELINE KEINTZEL

CLIC 3 TeV

(cérn)

Cool Copper Collider - C³

- New approach for a normal conducting linear electron collider
- Based on cold copper distributed coupling accelerating cavities
- Compact design with only 8 km footprint to achievet 250 and 500 GeV collision energy

SLAC-PUB-17629 November 1, 2021

 C^3 : A "Cool" Route to the Higgs Boson and Beyond

Mei Bai, Tim Barklow, Rainer Bartoldus, Martin Breidenbach^{*}, Philippe Grenier, Zhirong Huang, Michael Kagan, Zenghai Li, Thomas W. Markiewicz, Emilio A. Nanni^{*}, Mamdouh Nasr, Cho-Kuen Ng, Marco Oriunno, Michael E. Peskin^{*}, Thomas G. Rizzo, Ariel G. Schwartzman, Dong Su, Sami Tantawi, Caterina Vernieri^{*}, Glen White, Charles C. Young

Cool Copper Collider - C³

- Footprint of 8 km
- Accelerating gradient of 120 MV/m
- Promises same physics performance as ILC
- If technology proven feasible
 - $\rightarrow\,$ possibility to use for other linear machines

Scenario	$C^{3} - 250$	$C^{3} - 550$	C^3 -250 s.u.	C^3 -550 s.u.
Luminosity $[x10^{34}]$	1.3	2.4	1.3	2.4
Gradient $[MeV/m]$	70	120	70	120
Effective Gradient [MeV/m]	63	108	63	108
Length [km]	8	8	8	8
Num. Bunches per Train	133	75	266	150
Train Rep. Rate [Hz]	120	120	60	60
Bunch Spacing [ns]	5.26	3.5	2.65	1.65
Bunch Charge [nC]	1	1	1	1
Crossing Angle [rad]	0.014	0.014	0.014	0.014
Single Beam Power [MW]	2	2.45	2	2.45
Site Power [MW]	$\sim \! 150$	$\sim \! 175$	~ 110	~ 125

Circular Hadron Colliders

Proposals

- CERN, Switzerland
 - Future e+e- Circular Collider, FCC-ee
 - Future hadron Circular Collider, FCC-hh

- IHEP, China
 - Circular Electron Positron Collider, CEPC
 - Super proton-proton Collider, SppC

Physics Goals

- Aim to explore next order of magnitude of HEP collision experiments \rightarrow beam energy of 42 to 60 TeV for protons
 - \rightarrow Increase beam energy by factor 6 to 8.5 compared to LHC
 - \rightarrow Increase circumference by almost factor 3 compared to LHC
- Huge integrated luminosity of 20 000 fb⁻¹ per experiment over full operation time
 - \rightarrow Increase by factor ~7 with respect to HL-LHC
- · Possibility to perform electron-ion collisions in one IP
 - \rightarrow Incredibly rich physics program

FCC-hh Parameters

	FCC-hh	HL-LHC	LHC	
Collision energy [TeV]	81 - 115	14		
Dipole field [T]	14 - 20	8.33		
Circumference [km]	90.7	26.7		
Beam current [A]	0.5	1.1	0.58	
Bunch intensity [10 ¹¹]	1	2.2	1.15	
SR power/ring [kW]	1020 - 4250	7.3	3.6	
SR power/length [W/m/A]	13-54	0.33	0.17	
Events/bunch crossing [#]	~1000	132	27	
Stored beam energy [GJ]	6.1 - 8.9	0.7	0.36	
Luminosity/IP [10 ³⁴ cm ⁻² S ⁻¹]	~30	5*	1	
Integrated luminosity/IP/year [ab-1]	20000	3000	300	

Direct discovery potential up to 40 TeV

With fixed circumference the dipole field defines achievable beam and collission energy

Challenges

- High field superconducting magnets up to 20 T
- Power load from SR (cryo, vacuum, ..)
- Stored beam energy 9 GJ
- Number of events in detectors
- $(-1)_{i \in I} \cdots (-1)_{i \in I}$

With FCC-hh after FCC-ee significantly more time for high-field magnet R&D

Courtesy: CEPC-SppC TDR

SppC Parameters

With fixed circumference the dipole field defines achievable beam and collission energy

Compared to FCC-hh higher collision energy of 125 GeV

Challenges

- High field superconducting magnets of 20.3 T
- Power load from SR (cryo, vacuum, ..)
- Stored beam energy 4 GJ
- Number of events in detectors

-

Parameter	Value	Unit
General design parameters		
Circumference	100	km
Beam energy	62.5	TeV
Lorentz gamma	66631	
Dipole field	20.3	Т
Dipole curvature radius	10258.3	m
Arc filling factor	0.79	
Total dipole magnet length	64.455	km
Arc length	81.8	km
Number of long straight sections	8	
Total straight section length	18.2	km
Energy gain factor in collider rings	19.53	
Injection energy	3.2	TeV
Number of IPs	2	
Revolution frequency	3.00	kHz
Physics performance and beam parameters		
Initial luminosity per IP	4.3×10 ³⁴	cm ⁻² s ⁻¹
Beta function at collision	0.50	m
Circulating beam current	0.19	A
Nominal beam-beam tune shift limit per IP	0.015	
Bunch separation	25	ns
Number of bunches	10082	
Bunch population	4.0×10 ¹⁰	
Accumulated particles per beam	4.0×10 ¹⁴	
Normalized rms transverse emittance	1.2	μm
Beam lifetime due to burn-off	8.1	hours
Total inelastic cross section	161	mb
Reduction factor in luminosity	0.81	
Full crossing angle	73	μrad
rms bunch length	60	mm
rms IP spot size	3.0	μm
Beta at the first parasitic encounter	28.6	m
rms spot size at the first parasitic encounter	22.7	μm
Stored energy per beam	4.0	GJ
SR power per beam	2.2	MW
SR heat load at arc per aperture	27.4	W/m
Energy loss per turn	11.6	MeV

High Field Magnets: Nb₃Sn

- PSI Nb₃Sn main test carried out in 2022/2023
- Training via quenches (loss of superconductivity)
 - Controlled quenches help to achieve full field
- 100 % of maximum field achieved at 4.5 K
- More relaxed cyro-systems compared to ~2K

B_o target of 14 T, at T_{op}: 4.2 K Eng margin of 10% B_o short sample @ 1.9 K: 16 T

Stainless steel shell Iron yoke Coil collar Former Non-magnetic poles Nb₃Sn conductor

High Field Magnets: HTS

- Bottom line: HTS technology must catch up over the coming 10 years
- Significant power savings possible if HTS at 20-30 K feasible

Energy Recovery Linacs

Principle

- Combination of linear and circular machine design principles
- Same accelerating structure in straight part
 - Constraints on RF design
- Bend of particles in arc structure
 - Constraints on accelerator design
- Multi-turn acceleration

- High intensities
- High brilliance
- Use for high-power electron-hadron colliders

Figure 2.2: Schematic view of the three-turn LHeC configuration with two oppositely positioned electron linacs and three arcs housed in the same tunnel. Two configurations are shown: Outer: Default $E_e = 60 \text{ GeV}$ with linacs of about 1 km length and 1 km arc radius leading to an ERL circumference of about 9 km, or 1/3 of the LHC length. Inner: Sketch for $E_e = 50 \text{ GeV}$ with linacs of about 0.8 km length and 0.55 km arc radius leading to an ERL circumference of 5.4 km, or 1/5 of the LHC length, which is smaller than the size of the SPS. The 1/5 circumference configuration is flexible: it entails the possibility to stage the project as funds of physics dictate by using only partially equipped linacs, and it also permits upgrading to somewhat higher energies if one admits increased synchrotron power losses and operates at higher gradients.

Main Challenges

- Compact and efficient electron acceleration
 - \rightarrow SRF technologies, limit power consumption
- IR region design and integration in LHC and FCC-hh
 - \rightarrow Optics, synchrotron radiation
- Integrated luminosity of 1000 x HERA

BINP, BNL/Cornell (cBETA), Daresbury, IJC, Jlab, +

SCRF: High Q₀, complete Cryomodule

CERN, Jlab, Orsay +

μ+μ- Colliders

Motivation

- μ are elementary particles \rightarrow full collision energy available for particle production
- 10 to 14 TeV μ collisions comparable to 100 to 200 TeV proton collisions
 - \rightarrow Significant energy reach for possible physics discoveries

Motivation

• μ are elementary particles \rightarrow full collision energy available for particle production

- 10 to 14 TeV μ collisions comparable to 100 to 200 TeV proton collisions
 - \rightarrow Significant energy reach for possible physics discoveries
- A new type of collider:
 - With $m_u = 106 \text{ MeV/c}^2$ lower SR than electrons
 - Center-of-mass energy equivalent to possible future hadron colliders

MAINZ 28 MAY 2025

Courtesy: D. Schulte

Tentative Parameters

Parameter	Unit	3 TeV	10 TeV	14 TeV
L	10 ³⁴ cm ⁻² s ⁻¹	1.8	20	40
Ν	10 ¹²	2.2	1.8	1.8
f _r	Hz	5	5	5
P _{beam}	MW	5.3	14.4	20
С	km	4.5	10	14
	Т	7	10.5	10.5
ε	MeV m	7.5	7.5	7.5
σ _E / Ε	%	0.1	0.1	0.1
σ	mm	5	1.5	1.07
β	mm	5	1.5	1.07
ε	μm	25	25	25
$\sigma_{x,y}$	μm	3.0	0.9	0.63

MAINZ 28 MAY 2025

Overview

• BUT: μ decay is only y* 2.2 μ s

Prot	on Driver		Front End	Co	oolin	g			Acceleration	Collider Ring
SC Linar	Accumulator Buncher	Combiner	MW-Class Target Capture Sol. Decay Channel Buncher Phase Rotator	Initial 6D Cooling Charge Separator	6D Cooling	Bunch F	6D Cooling	Final Cooling	Accelerators: Linacs, RLA or FFAG, RCS	E _{COM} : Higgs Factory to ~10 TeV $\overline{\mu^{\dagger}}$ $\overline{\mu^{-}}$
• Hi bu ta	gh power proton be unches) and low rep rget.	eam (s etitio	short intense n rate on	 Stacov Me 	iges o oling	of muo in mat	n ion ter. ounch	isation	 Low energy acceleration with linacs. Acceleration to collision energy 	th recirculating
• Ta	rget and capture ch	anne	l, protons	on	e bui	nch.	unen		sequence of pulsed synchro	otrons.
pr	oduce pions which	decay	into muons.						 Collider packed with high fight 	eld magnets to
• La se	rge energy spread µ quence of bunches.	ı beaı	m split to						minimise circumference and luminosity.	d maximise

Ionization Cooling

- 4D cooling: Transverse emittance reducing on the costs of the longitudinal one
- High field solenoids (O(30 T)) to minimize beta-function and reduce scattering
- High RF gradients (O(30 MV/m)) and repitition rate (O(300 Hz)) to quickly compensate for ionization energy loss

$$\frac{d\varepsilon_{\perp,\mathrm{N}}}{ds} = -\frac{\varepsilon_{\perp,\mathrm{N}}}{\beta^2 E} \left\langle \frac{\partial E}{\partial s} \right\rangle + \frac{\beta_{\perp} \, pc}{2 \, m_{\mu} c^2} \frac{d\langle \vartheta^2 \rangle}{ds}.$$

Cooling due to energy deposition

Heating due to scattering

Muon Decay and Neutrino Flux

Plasma Wakefield Acceleration

Principle

- Drive beam (laser or charged particle beam) excites plasma wave and wake
- Due to space charge electrons from plasma are expelled and rush back on axis
- Converion of the transverse electric field of a drive bunch into a longitudinal electric field in the plasma

Principle

- Drive beam (laser or charged particle beam) excites plasma wave and wake
- Due to space charge electrons from plasma are expelled and rush back on axis
- Converion of the transverse electric field of a drive bunch into a longitudinal electric field in the plasma
- Witness bunch accelerated with gradients of ~ GV/m (e.g. at AWAKE at CERN)

Analogy

Analogy: lake → plasma

Boat \rightarrow particle beam (drive beam)

Surfer → accelerated particle beam (witness beam)

Summary

Colliders

	Circular e+e- colliders	Linear RF e+e- colliders	Circular hadron colliders	Muons
Machines	FCC-ee, CEPC	CLIC, ILC, C ³	FCC-hh, SppC	Muon collider
Collision energy up to	~ 365 GeV	~ few TeV	+/- 100 TeV	10 TeV
Key Technology	RF	RF	High-field magnets	High-field magnets, cooling, demonstrator
First collisions	~ 15 years	<~ 15 years	> 25 years	~ 20 years Optimistic?

- Novel acceleration concepts based on plasma wakefield acceleration → Higher gradients achievable
- → More compact accelerators

Can be combined with energy recovery linacs → FCC-eh

Detour: Linear Proton Colliders

- Not sufficient energy reach for frontier physics, but used for e.g. nuclear applications
- Myrrha designed with 400 m proton linac to achieve 600 GeV beam energy for 4 mA current

The world's Ist large scale Accelerator Driven System

MYRRHA (Multi-purpose hYbrid Research Reactor for High-tech Applications) is the world's first large scale Accelerator Driven System (ADS) that consists of a subcritical nuclear reactor driven by a high power linear accelerator. With the subcritical concentration of fission material, the nuclear reaction is sustained by the particle accelerator only. Turning off the proton beam results in an immediate and safe halt of the nuclear reactions.

https://www.myrrha.be/

MAINZ

28 MAY 2025

Recommendations

ESPPU and **P5**

• In 2020 the **European** Particle Physics Strategy Update (EPPSU) expressed the long-term plan for particle colliders:

- Europe, together with its international partners, should investigate the technical and financial feasibility of a **future hadron collider at CERN** with a center-of-mass energy of at least 100 TeV and with **an** electron-positron Higgs and electroweak factory as a possible first stage.
- Particle Physics Project Prioritization Panel (P5) published recommendations in 2023, high priority projects:
 - Explication of LHC and HL-LHC
 - **Oversea Higgs and electroweak factory**
- New EPPSU recommendation in 2026 !

MAINZ

Thank you!

Jacqueline Keintzel Acknowledgements: Many colleauges from various design studies

Prisma+ Colloquium Mainz, Germany 28 May 2025

jacqueline.keintzel@cern.ch

Comparison

Snowmass Report

On the Feasibility of Future Colliders: Report of the Snowmass'21 Implementation Task Force

Thomas Roser,¹ Reinhard Brinkmann,² Sarah Cousineau,³ Dmitri Denisov,¹ Spencer Gessner,⁴ Steve Gourlay,^{5,6} Philippe Lebrun,⁷ Meenakshi Narain,⁸ Katsunobu Oide,⁹ Tor Raubenheimer,⁴ John Seeman,⁴ Vladimir Shiltsev,⁶ Jim Strait,^{5,6} Marlene Turner,⁵ Lian-Tao Wang.¹⁰

https://arxiv.org/pdf/2208.06030

Higgs Factories

Proposal Name	CM energy	Lum./IP	Years of	Years to	Construction	Est. operating
	nom. (range)	@ nom. CME	pre-project	first	cost range	electric power
	[TeV]	$[10^{34} \text{ cm}^{-2} \text{s}^{-1}]$	R&D	physics	[2021 B\$]	[MW]
FCC-ee ^{1,2}	0.24	7.7 (28.9)	0-2	13-18	12-18	290
	(0.09-0.37)					
CEPC ^{1,2}	0.24	8.3 (16.6)	0-2	13-18	12-18	340
	(0.09-0.37)					
ILC ³ - Higgs	0.25	2.7	0-2	<12	7-12	140
factory	(0.09-1)					
CLIC ³ - Higgs	0.38	2.3	0-2	13-18	7-12	110
factory	(0.09-1)					
CCC ³ (Cool	0.25	1.3	3-5	13-18	7-12	150
Copper Collider)	(0.25-0.55)					
Muon Collider	0.13	0.01	>10	19-24	4-7	200
Higgs Factory ³						

Courtesy: Snowmass Report, 2022.

TeV Lepton Machines

Proposal Name	CM energy	Lum./IP	Years of	Years to	Construction	Est. operating
	nom. (range)	@ nom. CME	pre-project	first	cost range	electric power
	[TeV]	[10 ³⁴ cm ⁻² s ⁻¹]	R&D	physics	[2021 B\$]	[MW]
High Energy ILC	3	6.1	5-10	19-24	18-30	~400
	(1-3)					
High Energy CLIC	3	5.9	3-5	19-24	18-30	~550
	(1.5-3)					
High Energy CCC	3	6.0	3-5	19-24	12-18	~700
	(1-3)					
Muon Collider	3	2.3 (4.6)	>10	19-24	7-12	~230
	(1.5-14)					

Energy Frontier

Proposal Name	CM energy	Lum./IP	Years of	Years to	Construction	Est. operating
	nom. (range)	@ nom. CME	pre-project	first	cost range	electric power
	[TeV]	$[10^{34} \text{ cm}^{-2} \text{s}^{-1}]$	R&D	physics	[2021 B\$]	[MW]
Muon Collider	10	20 (40)	>10	>25	12-18	~300
	(1.5-14)					
FCC-hh	100	30 (60)	>10	>25	30-50	~560
SPPC	125	13 (26)	>10	>25	30-80	~400
	(75-125)					

