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Went to Caltech for
undergrad.

Found chemistry,

boring, math
difficult.

Majored in physics.

Advisor: David
Politzer.
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Undergrad research
working on CMS for
LHC.
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Went to Berkeley
wanting to do
particle physics.
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Experiment was
hard, chose thoery.
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Theoretical
Advanced Study
Institute was a
great experience.
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JUAN UV

Combination of quantum mechanics
and special relativity.

All objects represented as fields
(e.g. electric and magnetic field).

Particles are excitations in the field.




QFT is hard.

Most successful tool is 4
perturbation theory.

Terms In series represented
by Feynman diagrams.

Electron scattering:



QFT is hard.

Most successful tool is 4
perturbation theory.

(a)
Terms in series represented >:< >}< >.<><
by Feynman diagrams. W ~ o2 n oA ) ) )
Electron scattering: ON O ™~ et + e M >\“<3 >..<
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Electron magnetic moment:

g=72 (y” aﬂ — m)y(x) =0
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Quantum electrodynamics do 2612
characterized by charge of electron:e. L— ~ ——
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Often use dimensionless fine structure

e’ 1 |
constant:a = — ~

4 eghc 137

Fun fact: the fine structure constant is
not a constant, it “runs” with energy.
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Quantum electrodynamics do 2612
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QED (electromangetic force)

expansion parameter is
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A 137

What about theories where
expansion parameteris ~ 17
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theory!




QED (electromangetic force)
expansion parameter is

e’ 1
—=or —<< 1
4 137

What about theories where
expansion parameteris ~ 17

Strong force (QCD) is such a
theory!

Feynman diagrams are unhelpful.

Most of our understanding of strong
force Is from data.
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Things we know about the strong
force from data:

1. Confinement: do not see free
gquarks, only see bound
states.

Millennium Problems

Yang-Mills and Mass Gap
Riemann Hypothesis
P vs NP Problem
Navier—-Stokes Equation
Hodge Conjecture
Do T e TS

Birch and Swinnerton-Dyer Conjecture
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Things we know about the strong

force from data: V(g) = — m* K |2 + A ¢ |4

2. Spontaneous symmetry Vion

breaking: symmetry of LA
bound states different than \ R

that of physical laws.

Re(¢) —
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Two things are actually deeply connected.

1. Confinement:do not see free 2. Spontaneous symmetry
quarks, only see bouna breaking
states. V(on
2000 LA \
| +o
1500—j e B
S’ i _._—;—Z B mml >
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S : 1o
500 i 2= " — e)fperi}neni“ Re ( ¢) 1
Z s Im(¢)
i I ¢ QCD

0
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Two things are actually deeply connected.

1. Confinement: do not see free 2. Spontaneous symmetry
quarks, only see bound breaking
states. Vion
2000 q A
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Like electromagnetism, strong

coupling a, changes with energy.
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Like electromagnetism, strong

coupling a, changes with energy.

da T
E \) ~ ( ) \) Jstrong
dE 27

90

Coupling gets weaker at high energy:
asymptotic freedom.



Like electromagnetism, strong el | - —
_ I f T decay (NI3 | O) e
coupling a. chan i sl N low Q2 cont. (N3LO
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| | HERA jets (NNLO) 4
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¥ | "FOR THE DISCOVERY OF A5YMP=
HE STRONG INTERACTION" 10! 718

oS D ZEP AN NK WILCZEK

L A colourful
onnection

David ]. Gross “H avid Politzer Frank Wilczek

solved a mystery surrounding the strongest of nature’s four
fundamental forces. The three quarks within the proton
can sometimes appear to be free, although no free quarks
have ever been observed. The quarks have a quantum
mechanical property called colour and interact with each
other through the exchange of gluons — nature’s glue.

Inside the proton

The three quarks within the proton
are held together by the powerful
force mediated by the gluons, depict-
ed here as coiled springs. As the dis-
tance between the quarks increases,
so does the force between them

A high-energy
electron on
collision course
with

a quark, confined
In the proton

THE THEORY SHOWS ITS TRUE COLOURS

The aftermath of a high-energy collision between a proten and an
electran, as seen by the Hi experiment at the DESY laboratory in Ham
burg. The experiment Is shown in cross-section, perpendicular to col
liding beams of protons and electrons. The electron has struck one of
the quarks (n a proten. An impressive shower of particles - providing
Information about the struck quark - is spontaneously produced from
the energy stored in the gluon force-field. The charged particles in the
shower bend in the experiment’s strong magnetic field

The Standard Model
and the four forces

The quarks and gluons of the strong (or colour)
force are the third piece in the puzzle of nature’s
four forces. The first piece, the electromagnetic
force, is similar to the strong force but instead of

"glu(ms, pmti;'n;w of ]ighl, pholons, are the force
carriers. The gluons carry colour charge while the
photons are electrically neutral. The second piece
in the puzzle is the weak force, which controls

il some radioactive decays and energy production in
S, the sun. This force differs from the :
§ other two because the force- % Q?‘ /
4 carrying particles are very - c E Energy Is released .

heavy. The fourth force, gravi- . } ‘1’ :"‘C‘LP:""‘"L“' . /
ty, is the least understood even = M
though it Is experienced by us o p4 = ‘/é

A all. Gravitons are thought to be < S /M a4 ’ —

) the force-carrying particles, but ( .

® d

they have yet to be discovered.

7 o, The Standard Model provides a
. ] (:escnpnon of all the forces apart — == ::::L:Jl: f.f,:i(:‘dc.‘?“,‘(i'fm - e
LAY Ston | 1 gy colli =
’ fom gravity sion, it appears to behave as a ~~ \

g ¥y free particle for an Instant
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A good start ...

Frank Wilczek and David Politzer
were barely 20 years old and still
PhD students when their discovery
of asymptotic freedom was pub-
lished. These were their very first

Kavli [nstitute for Theoretical P_hysica California ' itute of Technology Massachusetts Institute of Technology g
. . . ) | Prize in Physics h University of California, Santa‘Barbara, USA = (Caltech), Pagadena, USA (MIT), Cambridge, USA scientific publications!
The scientists awarded this year’s Nobel Prize in Physics have y

Many tried, but failed, to find a theory In which the strength of
the strong force decreases as the energy increases. This year's
Nobel laureates found a theory with the required minus sign
When the quarks are very close to each other, l.e. when the
distance between them Is asymptotically approaching zero, the
force is so weak that they behave almost as free particles

p gl il 4 Np
PPsrie=3N"33

Strength
O—=

Actual Expected /
strength strength

Low energy - High energy -
large distances small distances

A unified theory
for all forces?

This year's prize paves the way for a more
fundamental future description of the forces
in nature. The electromagnetic, weak and
strong forces have much in common and are
perhaps different aspects of a single force.
They also appear to have the same strength
at very high energles, especially if ‘supersym-
metric’ particles exist. [ttmay even be possi-
ble to Include gravity if theo-
ries which treat matter as
small vibrating strings are
correct.
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The scientists awarded this year’s Nobel Prize in Physics have
solved a mystery surrounding the strongest of nature’s four
fundamental forces. The three quarks within the proton

can sometimes appear to be free, although no free quarks
have ever been observed. The quarks have a quantum
mechanical property called colour and interact with each
other through the exchange of gluons — nature’s glue.

=pldons, particles of light, photons, are the force

A SO | ~ THE NOBEL PI§

} "FOR THE DISCOVERY OF A5YMP=
STRONG INTERACTION' IC Y

0S D ZE AN NK WILCZEK

\ colourtul
onnection

. #
David J. Gross

Inside the proton

The three quarks within the proton
are held together by the powerful
force mediated by the gluons, depict-
ed here as coiled springs. As the dis-
tance between the quarks increases,
so does the force between them

A high-energy
electron on
collision course

with

a quark, confined
In the protor

The Standard Model
and the four forces

The quarks and gluons of the strong (or colour)
force are the third piece in the puzzle of nature’s
four forces. The first piece, the electromagnetic
force, is similar to the strong force but instead of

carriers. The gluons carry colour charge while the
photons are electrically neutral. The second piece
in the puzzle is the weak force, which controls
some radioactive decays and energy production in
the sun. This force differs from the
other two because the force- ; % e‘
carrying particles are very '
heavy. The fourth force, gravi-
Ly, is the least understood even
though it Is experienced by us
all. Gravitons are thought to be
the force-carrying particles, but
they have yet to be discovered.

The Standard Mode| provides a
descript f all th If a quark is knocked out of the : ——
ription of all the fDl(L‘S apan } E proton in a high-energy coll = \
B g v

fro
m gmvn\y slon, it appears to behave as 3 BN
free particle for an instant \

E
ARLIER NOBEA LAUREATES WHOSE WORK WAS OF GREAT CONSEQUENCE FOR THIS YEAR'S AWARD:

Energy Is released

and particles are
—
created - /
4
— ———
—_—

Tsunc-Dao Let, Parity SCHWINGER AND RICHARD P.
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Symmelry properties of ABDUS SALAM AND STEVEM The theory of phase

Kavli [nstitute for Theoretical Physics, California
University of California, Santa Barbara, USA" (Caltech),

o JEROME L FRIEDMAN, HENRY
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I
PHYSIERI0

ute of Technology Massachusetts Institute of Technology
dena, USA (MIT), Cambridge, USA

A good start ...

Frank Wilczek and David Politzer
were barely 20 years old and still
PhD students when their discovery
AT Wi o7l of asymptotic freedom was pub-
Frank Wilczek lished. These were their very first
scientific publications!

Many tried, but failed, to find a theory In which the strength of
the strong force decreases as the energy increases. This year's
Nobel laureates found a theory with the required minus sign
When the quarks are very close to each other, i.e. when the
distance between them Is asymptotically approaching zero, the
force is so weak that they behave almost as free particles

PlI SR 5155

ALR:
NOBEL

ol 4 Np

Strength
o—

Actual
strength

THE THEORY SHOWS ITS TRUE COLOURS

Expected /

strength

The aftermath of a high-energy collision between a proten and an Low energy -

electran, as seen by the Hi experiment at the DESY laboratory in Ham large distances
burg. The experiment Is shown in cross-section, perpendicular to col

liding beams of protons and electrons. The electron has struck one of
the quarks (n a proten. An impressive shower of particles - providing
Information about the struck quark - is spontaneously produced from
the energy stored in the gluon force-field. The charged particles in the i
shower bend in the experiment’s strong magnetic field

' correct.

‘I 9 9 GErarDUS ‘T HOOFY AND
W. KENDALL AND RicHARD E. Magrinus LG VELTMAN,

violation In particle physics FEYNMAN, QED - the quantum theory of elementary particles WeinsErc, The theory of electrowe: k transformations Tavior, The discovery of quarks through The quantum structure of the electro

elects 3
ectromagnetic interactions Interactions
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A unified theory
’ for all forces?

This year's prize paves the way for a more

| fundamental future description of the forces

in nature. The electromagnetic, weak and

| strong forces have much in common and are

i perhaps different aspects of a single force.

i They also appear to have the same strength
at very high energles, especially if ‘supersym-

| metric’ particles exist. [ttmay even be possi-

i ble to Include gravity if theo-

ries which treat matter as

small vibrating strings are

\ KUNGL.
VETENSKAPSAKADEMIEN

High energy -
small distances
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Supersymmetric theories are
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field theory.

Double number of particles.

SUSY version of many QFTs can
be solved.
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VIMEIRY ANU ENER

Does a spin up electron have the same energy as a spin down electron?

<1 |H|T>=<]|H||>

Of course it does. If | just rotate the physicist, | turn | T >
into | | > .

Laws of physics are invariant under rotation.

Can separate the energy with a magnetic field, but that
would be an explicit breaking of rotational symmetry.
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FROYMMEIRY ANL

Supersymmetry relates bosons to fermions.

O |fermion > = |boson >
Q| boson > = [fermion >

In supersymmetric theories, for every fermion, there is a boson with the
exact same mass (energy) and charge.

Supersymmetric electromagnetism:

Not our universe!
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yREARIN |\

To break supersymmetry, give mass to some spins and not others.

Electromagnetism with broken

supersymmetry.

Could be our universe!

26 DANIEL STOLARSKI A



DA D |
INCANNN
In general, new mass parameter for every particle. 1
g , p YP X = —= (i +7 + W) Y i,
' 1 * 'kl 2 ¢9
’7%7 — 39772 iy’ —4g 5fCA(¢i)]a

A simple mechanism to break SUSY Is called
anomaly mediation (AMSB).

ijk

Aijk = —(vi + 75 + 7)Yy mg .
_ _Liigte
L = 2’72 2 ¢Z7
Al = %
)
All new masses controlled by one parameter: 1y, . l
1
2 2

m; = Z’Vf Hibs pia

Breaking mechanism is extremely predictive!



Consider supersymmetric electromagnetism coupled to AMSB:

, da
mg, X ———
dE
dao |
— > 0 for electromagnetism.
dE

Partner of the electron becomes a tachyon
and gives mass to the photon! Re(¢)

SSM + AMSB does not describe our universe.

Vion

Im(¢)
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Some Exact Results in QCD-like Theories

Hitoshi Murayama

| propose a controlled approximation to QCD-like theories with massless quarks by
employing supersymmetric QCD perturbed by anomaly-mediated supersymmetry
breaking. They have identical massless particle contents. Thanks to the ultraviolet-
insensitivity of anomaly mediation, dynamics can be worked out exactly when m << A,
where m is the size of supersymmetry breaking and A the dynamical scale of the gauge

theory. | demonstrate that chiral symmetry is dynamically broken for Ny < %Nc while

the theories lead to non-trivial infrared fixed points for larger number of flavors. While
there may be a phase transition as m is increased beyond A, qualitative agreements with
expectations in QCD are encouraging and suggest that two limits m < A and m > A

may be in the same universality class.
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Some Exact Results in Chiral Gauge Theories

Csaba Csaki, Hitoshi Murayama, Ofri Telem
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Two dimensionful parameters:

« A\ - mass of bound states

» My - size of SUSY breaking




Quantum Chromodynamics (QCD) described

by N, = 3 colours and N, = 3 light flavours.
Promote /V, and /V; to variables.

Ny = N, + 1 has a particularly nice SUSY . ..

ass =2.2 MeVic? =~1.28 GeV/c2 =173.1 GeV/c2
- - charge | % 24 23
descrlptlon- spin | Y2 U Y C Yo t
up charm top

=4.7 MeV/c? =96 MeV/c? =4.18 GeV/c2
-1 =14 -4
. . = . i

down strange bottom



QCD with 2 colours is different. Can calculate potential for Meson field:

2]
|M|* —

4
V=|M| "+ 102474 3272

This potential has a minimum at M = 0.

"1
/(M)

Theory does not have spontaneous symmetry breaking! | )

~———

g

Non SUSY theory must have SSB. '~ &

w
e _
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JUUE ] ANUM/

Most robust tool to analyze strong
Interactions i1s 't Hooft anomaly
matching.

It theory at very high energy is tractable
(perturbative), get consistency condition
for low energy spectrum.

NB:’t Hooft anomaly matching #
anomaly mediated SUSY breaking

Energy
Weakly coupled
high energy
theory

Weakly coupled
low energy
theory
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Simplest Grand Unified Theory of the

Forces Merge at High Energies

0.16 —

SMis SU(5) GUT. ok N\ o :
= | N 5
Can describe all (gauge) forces and all Powsf o -

matter of SM. - electromagnetic E

! | ] 1 1 | 1 1 | L L L
108 10!2 10! 1p2°
Energy in GeV

0~00 i 1 1 1 | 1
10° 104
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Forces Merge at High Energies

. . 0.16 —

Simplest Grand Unified Theory of the e :
SMis SU(5) GUT. Sonk \Ls E
R NG §

Can describe all (gauge) forces and all Poos - T~
& E __}}"IejnTa}{‘_éut—' ...... e E

matter of SM. - clectromag -
popboe v o Lo v b v Ly

10  10% 108  10'%2 10'% 1020
Energy in GeV

What if we do not break it to SM, and
just let it evolve?

da 43 o
EF—=———<90
dE 3 2
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Forces Merge at High Energies

Simplest Grand Unified Theory of the - 3 E
SM is SU(5) GUT. NN :
- NG 5
Can describe all (gauge) forces and all f”m— I _,*:x_.ﬁ E
matter of SM. ) ‘ “electromagnetic _
S T REYS TR
What if we do not break it to SM, and !
just let it evolve?
Jstrong

do 43 o*
EF—=—-———-<0
dE 3 2 o b m——




VIAI LT

Compute anomalies at high energy. A [SU(3)§;] — 10

A|sU@)| =5
A [grav2 X U(l)B] =—15
A|U(| = -375

A [SUG); x U(1)g] = 10

A |SUB)Zx U(l)g| = =15



Compute anomalies at high energy.

Can use’t Hooft anomaly matching to
determine light bound states (baryons)
of the theory.

Boils down to solving linear equations
over integers.

A |SU3),| =10
A|sU@)| =5

A |grav: x U(1)g| = — 15
AUl = - 375

A |SUB); x U(1)g| = 10

A |SUB)zx U(l)g| = — 15



IR ANOMALY MAICHIN

Solutions are quite
complicated.

A relatively simple example:

Massless baryons

SUB) | SUB)a | SUB)F | Ull)s
10 3 1 1
5 1 3 -3
SUB)] | SUB)a | SUB)F | Ul)s
1 3 3 5
1 3 6 5
1 6 1 5
1 1 15 15
1 1 6 15
1 1 15 15
1 1 3 15




Another example;

[SUB) | SUB)a | SUB)F | U(l)s
A 10 3 1 1
7 5 I 3 3
[SUB) | SUB)a | SUB)F | U(l)s
(F)f 1 1 3 15
A5 or (AYF) 1 6 1 5
F(A2)f 1 3 3 5
(A3F 1 1 3 15




Another example;

Looks simpler, but (FS)

Is problematic.

.}.

state

[SUB) | SU@B)a | SUB)E | U()s
A 10 3 1 1
7 5 1 3 3
[SUB)] | SUB)a | SUB)F | U(l)s
A5 or (ATF) 1 6 1 5
F(A2)f 1 3 3 5
(A3F 1 1 3 15




Another example;

Looks simpler, but (FS)T state

Is problematic.

Color = anti-symmetric
Flavour = anti-symmetric
Spin =7

Not enough states to satisty
Fermi statistics.

[SUB) | SU@B)a | SUB)E | U()s
A 10 3 1 1
7 5 I 3 3
[SUB)] | SUB)a | SUB)F | U(l)s
A5 or (ATF) 1 6 1 5
F(A2)f 1 3 3 5
(A3F 1 1 3 15




Another example;

Looks simpler, but (FS)T state

Is problematic.

Color = anti-symmetric
Flavour = anti-symmetric
Spin =7

Not enough states to satisty
Fermi statistics.

SUB)] | SUB)a | SUB)F | U(l)s
A 10 3 1 1
F 5 1 3 —3
SUB)] | SUB)a | SUB)F | Ul)s
A5 or (ATF) 1 6 1 5
F(A%)T 1 3 3 -5
(A3F 1 1 3 15

Can work with orbital angular
momentum, but weird.
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NHAT HAPPENS?

If there are no solutions to anomaly matching conditions, theory must
exhibit spontaneous symmetry breaking.

This theory probably exhibits spontaneous symmetry breaking.
Difficulty of ’t Hooft anomaly matching is one piece of evidence.

Breaking pattern:

Different than QCD: SU(3); X SU(3)p — SUQ3)y,



A M1\ A " "

This theory also has a nice supersymmetric description.

Can compute the scalar potential:

AWy  dwW, 1 .. .
Vausy T Viugy = A M a I AN @ I 3A1M T

dBY° 3 dBY’

1] 1] |
e 1+ (oo gl ) S e s (- ) S

9%

a?l
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This theory also has a nice supersymmetric description.

Can compute the scalar potential:

dwy — dw, 1 1P | aw [P O A7 b
Vvsus vsu — - - ATM | Al — —A7)B :
1|7 1|7 g
e 1+ (oo gl ) S e s (- ) S
Y1 510 at
Sufficient condition for m? > 0
. 2
no symmetry breaking: 2 _ AQ_%Al > 0
2|1y 2 > 0
e — § 1 -




A M1\ A " "

This theory also has a nice supersymmetric description.

Can compute the scalar potential:

dwy — dw, 1 1P | aw [P O A7 b
Vvsus vsu — - - ATM | Al — —A7)B :
Yy —I_ ;éy dMaZ dMa@ 3 1 —I_ dBQBCS ( 2 3 1) 2 _|_ dBiyz
1| 1|7 |
+m7 Z‘BMQWL (mg A2—§A1 ) Z‘Bzﬁé‘z‘F (m§ §A1 ) Z\MQZF
Y1 510 at
Sufficient condition for m? > 0 ) -
_ B 69|C|" + 4|C|* A" > 0
no symmetry breaking: 24, - 24, > ¢ +—> W0Icl £ 41 > 0
2 1161[C|* + 216[C]?|M]* + 80[A|* > 0
m? — %Al . CI" + 216[C|7|A]" + >




Can draw qualitative phase
diagram in theory space.

Have some control at the
corners.

Must have a phase transition
In going to large SUSY
breaking.

mw/A

\ symmetry breaking
SO(3)v X U(1)g]?

no symmetry breaking
SU(3)4 X SU(3)# x U(1) 5]

Vg

m;j/A



Can draw qualitative phase
diagram in theory space.

Have some control at the
corners.

Must have a phase transition
In going to large SUSY
breaking.

mw/A

no symmetry breaking
[SU(3)4 x SU(3) x U(1)p]

symmetry breaking
SO(3)y x U(1)B]?

m;j/A

Vg



LIGHTNING ROUND
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Analyzed SU(5) model with 3 flavours.

1 flavour dynamics are well known.

What about 2 flavours?



‘EN1 NUMLE

Analyzed SU(5) model with 3 flavours. Analysis of the 2 Flavour SU(5)

Georgi—Glashow Model
1 flavour dynamics are well known.

by

Jonathan Ponnudurai

W h at a b O u t 2 flavo u rS? A thesis submitted to the Faculty of Graduate and

Postdoctoral Affairs in partial fulfillment of the

requirements for the degree of

Master of Science

in

Physics
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Non-SUSY model:
anomaly matching solutions

SUSY model: proof of spontaneous
symmetry breaking.

Symmetries UV Anomaly A3 15 A4_F§,2,_5

SU(2)20U(1)s || 5 25 -20

SU(2)2@U(1)g || -15/2 0 15/2 V(ph

U(1)3 -250 500 ~750

grav.? @ U(1)g || -10 20 -30 | A

SU(2)3 0 0 0 \
SU(2)2 1 0 1 B

Re(¢)

Im(¢)




What is the phase diagram of QCD?

i . -
B~
. Quark-Gluon Plasma Longstanding difficult
£ [ problem with only partial
8 Critical
= Point resu l.tS.
; | Quarkyonic
Hadronic Phase '\ “_. 7
p Matter ~ __.--= Focus on T'= 0 for now.
Liquid-Gas ‘\ :
1.0 =
Pl CFL-K? Crystalline CSC ~
Nuclear Superfluid  Meson supercurrent Baryon Chemical Potential us

Gluonic phase, Mixed phase

Conjectured QCD phase diagram with boundaries that define various states of QCD matter based on S x B patterns.



Steps:

Supersymmetrize QCD
2. Break SUSY with AMSB
3. Turn on baryon density

Find some new phases that do
not exist in the literature!

\ - K/

JIAGKAN

Prellmlnary

| HRG = 0 05A All cw equal

1.0
SU’(4) X U(1

I
\
\

o"

SU(3) x SU(S)

/’  SU(3) x SU(4) x U()..

A

-
"‘ b
"
-

o1 02
MB(A)

0.3

0.4

0.5



1L RAPHY?

AdS/CFT correspondence says certain 4
dimensional theories are dual to 5
dimensional theories.

Very supersymmetric theories fall in this time anti-de Sitter space -«

conformal

Catego ry boundary

What is gravitational dual of Anomaly
mediation?




VIMAL

Non-perturbative quantum field theories pose interesting and
Important open problems.

Supersymmetry + anomaly mediation gives useful new tool to
analyze these theories.

Found two theories that violate conjecture that this tool can be
used to analyze original theory.

Various ongoing directions of this research.






