CURRENT STATUS OF JUNO

LIVIA LUDHOVA

GSI DARMSTADT & JGU MAINZ

JUNE 4, 2025 PRISMA+ COLLOQUIUM @ JGU MAINZ

Mitglied der Helmholtz-Gemeinschaft

✓ W2 Professor at JGU Mainz and head of the neutrino group at GSI Darmstadt since September 2024.

- ✓ W2 Professor at RWTH Aachen and head of the neutrino group at IKP-2 FZ Jülich, Germany, November 2015 – September 2024.
- ✓ Postdoc and researcher @ INFN Milano, Italy, 2005 2015.
- ✓ Ph.D. in Physics in 2005, Fribourg University, Fribourg, Switzerland.
- ✓ Ph.D. (1999) & M.Sc. (1996) in Geology and M.Sc. in Physics (2001), Comenius University, Bratislava, Slovakia.

✓ **Geology:** evolution of metamorphic rocks in the Tatra Mts., Slovakia

✓ Exotic atoms:

- ο **DAΦNE/DEAR** (Kaonic hydrogen spectroscopy), INFN Frascati, Italy.
- ο **CREMA** (μp-Lamb shift), PSI, Switzerland.
 - * my PhD with Randolf Pohl as a postdoc (now Prof. at JGU)!

✓ Neutrino Physics:

- ✓ **Borexino** @ LNGS, Italy data taking 2007 2021.
 - \circ solar neutrinos and geoneutrinos.
- ✓ JUNO in Jiangmen, China topic of today!

ABOUT ME

Passion for Physics: at the JUNO site.

Passion for Geology: Mutnovka Volcano, Kamchatka, Russia.

ABOUT MY NEUTRINO GROUP

http://neutrino.gsi.de/

- Focused on experimental neutrino physics with liquid scintillator detectors.
- Dynamic and international group established in November 2015.
- Funded from Helmholtz recruitment initiative and DFG JUNO Research Unit.
- Typically about 10 persons: 2-3 postdocs, 7-8 PhDs, 1-2 Master/Bachelors.

WHAT ARE NEUTRINOS?

NEUTRINO SOURCES

Basic constituents of matter: Standard Model of Elementary Particles

There are 3 flavours for both neutrinos and antineutrinos.

Spanning throurgh many orders of magnitude both in energy and flux.

NEUTRINO INTERACTIONS

NEUTRINOS AS MESSENGERS

Taken from https://nbi.ku.dk/english/research/experimental-particle-physics/icecube/astroparticle-physics/

FASCINATING NEUTRINOS

Small interaction cross sections \rightarrow low rates in the detector!

Imagine.....

7 x 10¹⁰ solar neutrinos / cm² / s

and about 200 interactions / day / 100 tons of liquid scintillator

NEUTRINOS ARE SPECIAL

Only weak interactions

linked

✓ Difficult to detect

- o Large detectors
- Underground laboratories
- o Extreme radio-purity
- Bring unperturbed information about the source (Sun, Earth, SN)

Open questions in neutrino physics

- Mass Hierarchy: Normal vs Inverted
 main goal of JUNO
 - ✓ CP-violating phase
 - ✓ Octant of θ_{23} mixing angle
 - ✓ Absolute mass-scale
 - Origin of neutrino mass
 - (Dirac vs Majorana)
- $\checkmark\,$ Existence of sterile neutrino

 $|\Delta m_{31}^2| = m_3^2 - m_1^2$ has opposite signs in the two hierarchies!

NEUTRINO MIXING AND OSCILLATIONS

Solar

i = 1, 2, 3

Majorana

Mass eigenstates

PROPAGATION

Atmospheric

Courtesy M. Wurm

$$|\nu_{\alpha}
angle = \sum_{i=1}^{3} U_{\alpha i} |\nu_{i}
angle$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} e^{i\alpha_1/2} & 0 & 0 \\ 0 & e^{i\alpha_2/2} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Reactor

v production v detection v propagation as flavor-eigenstate: as coherent superposition e.g. β⁺-decay Superposition of mass of mass-eigenstates. eigenstates has changed because of phase factors. P_=100% $P = P_{\%} : v_{\phi}$ $\frac{P_{\mu}\%:v_{\mu}}{P_{\tau}\%:v_{\tau}}$ Weak interaction Different masses create a creates neutrino in Finite probability to detect phase difference over time. flavor-eigenstate. a different neutrino-flavor!

3 mixing angles θ_{ij} :

- $\theta_{23} \sim 45^{\circ}$ (which quadrant?)
- o $\theta_{I3} \sim 9^{\circ}$ (non-0 value confirmed in 2012)

$$\circ \theta_{12} \sim 33^{\circ}$$

• Majorana phases $\alpha 1$, $\alpha 2$ and CP-violating phase δ unknown.

Neutrino oscillations

- Non-0 rest mass (Nobel prize 2015).
- Survival probability of a certain flavour = $f(baseline L, E_v)$.
- Different combination (L, E_v) => sensitivity to different (θ_{ij} , Δm_{ij}^2).
- Appearance/disappearance experiments.
- Oscillations in matter -> effective (θ_{ij} , Δm_{ij}^2) parameters = f(e⁻ density N_e, E_v).

The strongest human-made source of neutrinos

A typical reactor emits every second about 10²⁰ electron flavour antineutrinos (E > 1.8 MeV = detectable with present day technology)

DETECTION OF REACTOR ANTI-NEUTRINOS

In liquid scintillator target:

 $\bar{\nu}_e + p \rightarrow e^+ + n_e$

- Inverse beta decay (IBD) reaction on a free proton.
- Charge current reaction sensitive to only electron flavor.

Energy threshold = 1.8 MeV σ @ few MeV: ~10⁻⁴² cm² (~100 x more than scattering) $E_{prompt} = E_{visible}$ $= T_{e+} + 2 \times 511 \text{ keV}$ $\sim E_{antinu} - 0.784 \text{ MeV}$

<u>Prompt</u> + <u>delayed</u> (~200 μs) space & time coincidence is an exceptional background suppressing tool!

Isotropic scintillation light is produced by charged particles depositing energy in liquid scintillator (LS).

Number of hit PMTs = energy estimator Hit PMTs time pattern = vertex reconstruction

Photocredit: Borexino Collaboration

Jiangmen Underground Neutrino Observatory The first multi-kton liquid scintillator detector ever built.

1311

JUNO

12

Neutrino Mass Ordering (NMO): 3σ in ~6 years with reactor neutrinos Many other goals: neutrino properties & astrophysics.

JUNO COLLABORATION

established in 2014 72 institutions

- 750 collaborators
- 17 countries and regions

C	Country	Institute	Country	Institute	Country	Institute
	Armen ia	Yerevan Physics Institute	China	IMP-CAS	Germany	U. Mainz
-	Belgiu m	Universite libre de Bruxelles	China	SYSU	Germany	U. Tuebingen
	Brazil	PUC	Chi na 💋	Tsinghua U.	Italy	INFN Catania
	Brazil	UEL	China	UCAS	Italy	INFN di Frascati
4	Chile	PCUC	China	USTC	Italy	INFN-Ferrara
	Chile	SAPHIR	China	U. of South China	Italy	INFN-Milano
	China	BISEE	China	Wu Yi U.	Italy 5	INFN-Milano Bicocca
	China	Beijing Normal U.	China	Wuhan U.	Italy	INFN-Padova
	China	CAGS	China	Xi'an JT U.	Italy	INFN-Perugia
	China	ChongQing University	China	Xiamen University	Italy	INFN-Roma 3
	China	CIAE	C hi na	Zhengzhou U.	Latvia	IECS
	China	DGUT	China	NUDT	Pakistan	PINSTECH (PAEC)
	China	ECUST	China	CUG-Beijing	Russia	INR Moscow
	China	Guangxi U.	China	ECUT-Nanchang City	Russia	JINR
	China	Harbin Institute of Technology	Croatia	UZ/RBI	Rus sia 🦾	MSU
_ L	China	IHEP	Czech	Charles U.	Slovakia	FMPICU
	China	Jilin U.	Finland	University of Jyvaskyla	Taiwan-China	National Chiao-Tung U.
	China	Jinan U.	France	IJCLab Orsay	Taiwan-China	National Taiwan U.
	China	Nanjing U.	France	LP2i Bordeaux	Taiwan-China	National United U.
	China	Nankai U. 📶 🗾	France	CPPM Marseille	Thailand	NARIT
	China	NCEPU	France -	IPHC Strasbourg	Thailand	PPRLCU
1	China	Pekin U.	France	Subate ch Nant es	Thailand	SUT
	China	Shandong U.	Germany	RWTH Aachen U.	USA	UMD-G
- 0	China	Shanghai JT U.	Germany	TUM	USA	UC Irvine
	China	IGG-Beijing	Germany	U. Hamburg		
	China	IGG-Wuhan	Germany	FZJ-IKP		

JUNO AS A REACTOR ANTINEUTRINO EXPERIMENT

Baseline difference for all cores should be < 500 m.

	Yangjian					Tais	shan	an			
Cores	YJ-1	YJ-2	YJ-3	YJ-4	YJ-5	YJ-6	TS-1	TS-2	DYB	ΗZ	TAO
Power (GW)	2.9	2.9	2.9	2.9	2.9	2.9	4.6	4.6	17.4	17.4	IAU
Baseline(km)	52.74	52.82	52.41	52.49	52.11	52.19	5 2.77	52.64	215	265	ο Το

Reactor antineutrino spectral shape uncertainty.

- To measure the reactor neutrino spectrum as a reference to JUNO
 - ✓ Better resolution to constrain fine structure and spectral shape.
- Improve nuclear databases, search for sterile neutrinos.
- Novel technology: Gd-loaded LS @ -50°C + SiPM
 - ✓ 30 m from 4.6 GW_{th} Taishan 1 core unoscillated spectrum
 - ✓ Energy resolution: ~1.5%/√E, 4500 p.e./MeV
 - ✓ 2.8 t (1ton fiducial volume)
 - Construction and installation basically completed, data taking soon.

JUNO CIVIL CONSTRUCTION FINISHED IN 12/2021

JUNO AMONG REACTOR NEUTRINO EXPERIMENTS AT DIFFERENT BASELINES

Electron survival probability
for reactor antineutrinos: $P_{\bar{e}\bar{e}} = 1 - P_{21} - P_{31} - P_{32}$ Slow
(solar) $P_{21} = \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \Delta_{21}$ Past
(solar) $P_{31} = \cos^2 \theta_{12} \sin^2 2\theta_{13} \sin^2 \Delta_{31}$ Fast
(atm.) $P_{32} = \sin^2 \theta_{12} \sin^2 2\theta_{13} \sin^2 \Delta_{32}$ Normal ordering: $\Delta m_{31}^2 > 0$ Normal ordering: $\Delta m_{31}^2 < 0$ $\Delta_{ij} = \frac{\Delta m_{ij}^2 L}{4E}$

• 52.5 km baseline used only by JUNO.

- Fast oscillation pattern of reactor antineutrinos at this baseline.
- Pattern dependent on NMO (sign of ∆m²_{31/2})
- Independent from δ_{CP} and θ_{23} .

REACTOR ANTINEUTRINO SPECTRUM @ JUNO

٠

- Method for the Neutrino Mass Ordering with reactors antineutrinos suggested by Petcov and Piai, PLB 553 (2002) 94.
- **Complementarity** to the method based on matter effects on long baseline oscillations of atmospheric and accelerator neutrinos that depend also on δ_{CP} and θ_{23} .
- High sensitivity to the oscillation parameters
 - solar mixing angle θ_{12}
 - solar mass splitting Δm^2_{21}
 - atmospheric mass splitting Δm^2_{31}

JUNO PHYSICS CHALLENGES

- □ Resolving signature wiggles of the fast oscillation in the energy spectrum:
 - excellent energy resolution ~3% @ 1 MeV,
 - better than 1% understanding of the intrinsically non-linear energy scale of the liquid scintillator (LS),
 - possible micro-structures in the reactor spectrum under control (PRL 114 (2015) 012502).
- Large antineutrino statistics O(100k) @ 52.5 km baseline: powerful reactors (26.6 GW_{th}) & large target mass (20 kton)

Backgrounds:

- cosmogenic background: rock overburden of 650 m,
- radio-purity of all materials: < 10⁻¹⁵ / 10⁻¹⁷ g of U/Th /g of LS for NMO/solar physics (JHEP 11 (2021) 102).
- **Time stability** over several years.

Stochastic terms in the energy resolution		S	ystematic effects in the energy scale / spectra:
(photon statistics):		•	Calibration (JHEP 03 (2021) 004)
•	Hiah liaht vield (LY ~10 ⁴ photons/MeV).		✓ $\alpha/\beta/\gamma$ sources, light pulses, UV-laser
•	LS transparency: $\lambda_{att} > 20 \text{ m}$ @ 430 nm.		✓ 5 complementary systems
	PMT acompetrical coverage: 78%	•	Double calorimetry concept
	Fivil geometrical coverage. 70%.		✓ large 20" and small 3" PMTs
•	PMT collection efficiency x quantum	•	TAO – Taishan Antineutrino Observatory with an excellent
	efficiency: ~30%.		energy resolution <2% (stat) @ 1MeV (arXiv:2005.08745, 2020)

\mathbf{O}

Experiment	Daya Bay	BOREXINO	KamLAND	JUNO	
LS mass	8x 20 ton	~300 ton	~1 kton	20 kton	
Coverage	~12%	~34%	~34%	78%	
Energy resolution	8.5% / √E MeV	∼5%/√E MeV	~6%/√E MeV	~3%/ √ E MeV	
Eff. Light yield	~ 160 p.e. / MeV	~ 500 p.e. / MeV	~ 250 p.e. / MeV	~1600 <u>p.e</u> ./MeV	

CALIBRATION SYSTEM

- requirements: 3% energy resolution at 1 MeV and 1% energy scale uncertainty
- Different tools deployed for detector calibration
- 1D: Automatic Calibration Unit (ACU)
- 2D: Cable Loop System (CLS) and Guide Tube Calibration System (GTCS)
- 3D: Remotely Operated Vehicle (ROV)
- Auxiliary systems: Calibration house, Ultrasonic Sensor System (USS), CCD and A Unit for Researching Online the LSc tRAnsparency (AURORA)

JUNO & REACTOR NEUTRINO OSCILLATION PHYSICS

NEUTRINO MASS ORDERING

3σ (reactors only) @ ~6 years * 26.6 GWth exposure Combined reactor + atmospheric neutrino analysis in progress: further improvement of the NMO sensitivity.

Chin. Phys. C 49 (2024) 033104.

OSCILLATION PARAMETERS

- Precision of $\sin^2\theta_{12}$, Δm_{21}^2 , $\Delta m_{31}^2 < 0.5\%$ in 6 years.
- Measurement of $\sin^2\theta_{12}(^{+9\%}/_{-8\%})$ and $\Delta m^2_{21}(^{+27\%}/_{-17\%})$ also with ⁸B solar neutrinos.
- Unique: solar neutrino oscillation parameters with neutrinos and antineutrinos in one detector.

Chin. Phys. C 46 (2022) 123001.

JUNO: A MULTI-PURPOSE OBSERVATORY

22

MODEL INDEPENDENT MEASUREMENT OF 8B SOLAR NEUTRINOS

<u>Interaction channels of ⁸B-v:</u>

ES:
$$v_{x} + e^{-} \rightarrow v_{x} + e^{-}$$

- No threshold
- All flavours & $\sigma(v_{\mu,\tau}) / \sigma(v_{e}) = 1/6$
- Single events - continuous spectrum
CC: $v_{e} + {}^{13}C \rightarrow e^{-} + {}^{13}N$
- $E_{thr} = 2.2 \text{ MeV}$
- Possible only with v_{e}
- Prompt: e⁻; Delayed: ${}^{13}N$ decay
NC: $v_{x} + {}^{13}C \rightarrow v_{x} + {}^{13}C^{*}$
- $E_{thr} = 3.685 \text{ MeV}$
- All flavors & equal σ
- Single events - monochromatic y

ES: Chinese Phys. C 45 (2021) 1 ES+NC+CC: Ap. J. 965 (2024) 122

Potential to search for possible discrepancies

Expected precision in 10 years:						
⁸ B flux: 5% JUNO & 3% JUNO + SNO						
sin²θ ₁₂ : +9% / -8%						
∆m²₂₁: +27% / -17%						

SENSITIVITY TO 7Be, pep, CNO SOLAR NEUTRINOS

ES: $v_x + e^- \rightarrow v_x + e^-$

- Several radio-purity scenarios: from the Borexino level up to the "IBD" one (minimum required for the NMO)
- JUNO has potential to improve the precision of the existing Borexino measurements
 - ⁷Be: in 1-2 years time < 2.7% (current Borexino precision) for all radiopurity scenarios
 - pep: in 1-2 years time < 17% (current Borexino precision), only in IBD scenario after more than 6 years
 - CNO: constraining pep rate is crucial, precision of 20% possible in 2 to 4 years (except for the IBD scenario)
 - constraint of ²¹⁰Bi radioactive background not needed (applied in Borexino analysis Nature 587 (2020) 577–582)
 - Independent measurement of ¹³N and ¹⁵O might be possible for the first time.

GEONEUTRINOS IN JUNO

Big advantage:

✓ Large volume and thus high statistics: **400 geoneutrinos / year.**

Main limitation:

- ✓ Large reactor neutrino background.
- Current (KamLAND and Borexino) precision on measured geoneutrino flux is ~16-18%.
- JUNO can reach this precision in a few years.
- JUNO will provide statistics sufficient to separate with a high statistical significance U and Th.
- **Geological study of the local crust** important in order to separate the mantle contribution and it is ongoing.

Expected precision of the total geoneutrino signal: ~8% in 10 years (Th/U mass ratio fixed to 3.9)

Precision of U and Th individual components in 10 years:
 ²³²Th ~35%
 ²³⁸U ~30%
 ²³²Th + ²³⁸U ~15%
 ²³²Th/²³⁸U
 ~55%

SUPERNOVAE (SN)

- **Pre-SN neutrinos:** *emitted in the last hours* before the collapse. Never detected. Allert of SN.
- **Core-collapse SN:** *emitted during the SN* explosion, burst of few tens of seconds in three phases (shock breakout, accretion, cooling). Observed from SN1987A.
- SN rate in our Galaxy: ~3 per century.

Pre-SN interaction channels SN interaction channels

J. Cos. Astro. Phys. 01 (2024) 057.

Dominant detection channel: IBD

Integrated signal for a <u>30Mo</u> progenitor:

- Pre-SN @0.2 kpc: 400 1200 IBDs in a few hours
- SN @10 kpc: ~ 5000 IBDs in few seconds

Alert efficiency: probability to identify Pre-SN/SN neutrinos burst Sensitivity: distance at which the alert efficiency is 50%

For an exploding star of **30M** JUNO is sensitive to: Pre-SN up to 1.6 kpc (0.9 kpc) in case of NO (IO) SN up to 370 kpc (360 kpc) in case of NO (IO)

> **Directionality** of **IBD** events \rightarrow Possible to **point** to the **source**, crucial to help telescopes to detect early electromagnetic radiation

DIFFUSE SUPERNOVAE BACKGROUND SIGNAL (DSNB)

- Integrated neutrino flux from the past SN in the visible Universe.
- ~10 core collapse SN/s in the visible Universe.
- Info about the star formation rate.
- Expected signal: few IBD events / year.
- Main background:
 - ✓ reactor anti-v → go above 10 MeV
 - ✓ NC atmospheric v pulse shape discrimination (eff $50\% \rightarrow 80\%$),

JUNO DSNB discovery potential: 3σ in 3 years with nominal models

J. Cos. Astro. Phys. 10 (2022) 033.

JUNO's upper limits on DSNB flux

28

ATMOSPHERIC NEUTRINOS

- Expected ~10/15 events per day before the cuts.
- Will be the first measurement with LS: can play a major role in GeV range, possibly pushing to MeV region.
- CC and NC interactions.

Motivation: boost the sensitivity to NMO:

- Atmospheric neutrinos provide an independent channel exploiting the Earth matter effect on oscillation of ~GeV neutrinos.
- *Requirement of the reconstruction of neutrino*
 - Direction (Phys. Rev. D 109.052005).
 - Energy and flavour (Eur. Phys. J. C 81 (2021) 887).

CC events

- ✓ Muon/electron flavour discrimination.
- ✓ v_e and v_μ energy spectra: 25% precision after 5 years
- ✓ θ_{23} with 6 degree precision.

JUNO NMO sensitivity with combined reactor and atmospheric neutrinos is ongoing.

CONSTRUCTION OF THE CENTRAL DETECTOR

Bottom structure

Platform for Acrylic assembly

Top structure

5 layers of Acrylic

20 layers of Acrylic

23 layers of acrylic

	LPMT (20	SPMT (3-inch)					
	Hamamatsu NNVT		HZC				
Quantity	5000	15012	25600				
Charge Collection	Dynode	MCP	Dynode				
Photon Detection Efficiency	28.5%	30.1%	25%				
Coverage	75%		3%				
Reference	Eur.Phys.J.C 82 (2022) 12, 1168		NIM.A 1005 (2021) 165347				

CD CLEANING AND LS FILLING SCHEME

Water for CD: U/Th<10⁻¹⁵ g/g, 226 Ra<0.1 mBq/m³ Water for VETO: U/Th<10⁻¹⁴ g/g

LIQUID SCINTILLATOR PLANTS ON SITE

Four purification plants for a radio-purity of 10⁻¹⁷ g/g (U/Th) and 20 m attenuation length @ 430 nm

SS pipes to underground

³⁸ ONLINE SCINTILLATOR INTERNAL RADIOACTIVITY INVESTIGATION SYSTEM (OSIRIS)

A 20-t detector to monitor radiopurity of LS

before and during filling to the central detector

- ✓ RADON CONTAMINATION
- ✓ OPTICAL PROPERTIES

Eur.Phys.J.C 81 (2021) 11, 973.

KEY CONTRIBUTION OF GERMAN GROUPS WITH LEADERSHIP BY PROF. M. WURM (JGU)

STATUS OF LIQUID SCINTILLATOR FILLLING

- LS level as yesterday, June 3, 2025:
 1.8 m below the equator.
- We filled 13,357 m³ of LS, more than 50%.
- We aim to complete the LS filling in a couple of months.

LIQUID SCINTILLATOR QUALITY

Attenuation length measured in situ.

- Based on AmBe neutron source calibration (2.2 MeV gamma ray).
- Attenuation length ~20 m
- Light yield ~1660/MeV.

Radon content based on ²¹⁴Bi -²¹⁴Po coincidences.

- 0.5 E BiPo214 Rate [mBq/m³] **BiPo214 Signal When LS Filling Paused** 0.45 **BiPo214 Signal During During LS Filling** 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0 04/09 04/10 04/11 08:00 04/12 04/13 04/14 04/15 08:00 08:00 08:00 08:00 08:00 08:00
 - Rn in fresh LS: <1mBq/m3
 - U/Th <10-15 g/g

VETO DETECTOR (TOP TRACKER)

Plastic scintillator from the OPERA

experiment

- ✓ About 50% coverage on the top of CD.
- ✓ Three layers to reduce accidental coincidence.
- Provide control muon samples to validate the track reconstruction and to study cosmogenic background.
- ✓ Installation is being finalized.

LARGE PMTS AND THEIR ELECTRONICS

- Good grounding and low noise.
- Mean dark noise ~20 kHz/PMT.
- PMT threshold: 0.2 PE/ch.
- Trigger: ~ 300 PMTs / 225 ns
 (~150 keV)

- Waveforms sampled at 1GHz with high resolution (12-14 bits) ADC
- High-reliability (no access after installation).
- High precision and large dynamic range.
- Stand high rates for short times (Supernovae).

Under Water Electronics

FIRST MUON EVENT IN THE WATER POOL

STAY TUNED, A LOT OF ADVENTURE AHEAD OF US!

A few days ago underground with Marco and Cristobal working on JUNO commissioning.

IMPROVEMENTS ON THE ENERGY RESOLUTION

Change	Light yield in detector center [PEs/MeV]	Energy resolution	Reference
Previous estimation	1345	3.0% @1MeV	JHEP03 (2021) 004
Photon Detection Efficiency (27% \rightarrow 30%)	+11% ↑		arXiv: 2205.08629
New Central Detector Geometries	+3% ↑	2.9% @ 1MeV	
New PMT Optical Model	+8% ↑		EPJC 82 329 (2022)

Positron energy resolution is modelled as:

Cherenkov radiation •

٠

•

- Cherenkov yield factor (refractive index & re-emission probability) is re-constrained with Daya Bay LS non-linearity
- **Detector uniformity and reconstruction** ٠

JUNO SENSITIVITY TO NEUTRINO MASS ORDERING

JUNO sensitivity on neutrino mass ordering: 3σ (reactors only) @ ~6 yrs * 26.6 GW_{th} exposure Estimation of combined sensitivity with reactor + atmospheric neutrino analysis under preparation 47

PROTON DECAY

• Possible decay channels:

 $p \rightarrow \pi^0 + e^+$ (GUT flavored)

 $p \rightarrow K^+ + \nu$ (SUSY flavored)

- current best limits set by Super-Kamiokande in $p \rightarrow \pi^0 + e^+$ and $p \rightarrow \pi^0 \mu^+$ (K. Abe *et al.*, Phys. Rev. D 95 (2017) 012004)
- JUNO has potentials in the other channel, by detecting K^+ in LS
- signals can be separated from background thanks to a triple coincidence signal
- JUNO will reach a sensitivity of about 8 x 10³³ years with 10 year exposure Chin. Phys. C 47 (2023) 113002.