Effective Field Theory for Nuclear Halo and Clustering

Institute of Particle Physics Central China Normal University Wuhan, China

Johannes Gutenberg University Mainz, Germany 2025.07.02

- Born in Nanjing
- B.Sc (Physics), Nanjing University (2002-2006)
- Ph.D, Ohio University (2006-2012)
- Postdoc, TRIUMF (2012-2015)

- Postdoc, ECT* (2015-2017)
- Associate Professor, Central China Normal University (2017-2023)
- Professor, Central China Normal University (2023 -)

- Born in Nanjing
- B.Sc (Physics), Nanjing University (2002-2006)
- Ph.D, Ohio University (2006-2012)
- Postdoc, TRIUMF (2012-2015)

- Postdoc, ECT* (2015-2017)
- Associate Professor, Central China Normal University (2017-2023)
- Professor, Central China Normal University (2023 -)

- Born in Nanjing
- B.Sc (Physics), Nanjing University (2002-2006)
- Ph.D, Ohio University (2006-2012)
- Postdoc, TRIUMF (2012-2015)

- Postdoc, ECT* (2015-2017)
- Associate Professor, Central China Normal University (2017-2023)
- Professor, Central China Normal University (2023 -)

- Born in Nanjing
- B.Sc (Physics), Nanjing University (2002-2006)
- Ph.D, Ohio University (2006-2012)
- Postdoc, TRIUMF (2012-2015)

- Postdoc, ECT* (2015-2017)
- Associate Professor, Central China Normal University (2017-2023)
- Professor, Central China Normal University (2023 -)

- Born in Nanjing
- B.Sc (Physics), Nanjing University (2002-2006)
- Ph.D, Ohio University (2006-2012)
- Postdoc, TRIUMF (2012-2015)

- Postdoc, ECT* (2015-2017)
- Associate Professor, Central China Normal University (2017-2023)
- Professor, Central China Normal University (2023 -)

Central China Normal University, Wuhan

Central China Normal University, Wuhan

Central China Normal University, Wuhan

Institute of Particle Physics

- Faculty members: 47
- Research Areas:
 - Particle physics
 - Nuclear physics
 - Detector technology
 - Complex systems
 - Computational physics
- Platforms:
 - Pixel Laboratory at CCNU (PLAC)
 - Nuclear Science Computer Center at CCNU (NSC3)
 - Central China Center for Nuclear Theory (C3NT)

Nuclear abundance and nucleosythesis

- primordial/big-bang nucleosynthesis
 - Alpher, Bethe, Gamow ($\alpha\beta\gamma$)

Phys. Rev. 73 (1948) 803

stellar nucleosynthesis

Burbidge, Burbidge, Fowler, Hoyle (B^2FH)

Rev. Mod. Phys. 29 (1957) 547

Nucleosynthesis & astrophysical processes

118 known elements

 ${\sim}3000$ known isotopes ${\sim}4000$ unknown isotopes

 $Z \le 5 \rightarrow$ big bang / cosmic ray fusion \rightarrow stellar burning s process \rightarrow AGB star r process \rightarrow supernovae & neutron-star merger p & rp process \rightarrow sun-like- and neutron-star binary

Introduction to halo nuclei

Definition

diffuse neutron/proton clouds extending far beyond the core

Cluster structure

tight core surrounded loosely by valence nucleon(s)

Introduction to halo nuclei

Characteristics

- Extremely large matter radii compared to $A^{1/3}$ scaling
- Weak binding/resonance of the last few nucleons ($S_n \lesssim 1$ MeV)
- Low angular momentum states (s or p waves) for valence nucleons
- Enhanced cross section in astrophysical reaction at finite temperature

Introduction to halo nuclei

Classification

- 1n halos: ¹¹Be, ¹⁵C, ¹⁹C, ³¹Ne, ³⁷Mg
- 2n halos: ⁶He, ¹¹Li, ¹⁴Be, ¹⁷B, ²²C
- 4n halos: ⁸He, ¹⁹B
- Ip halos: ⁸B, ¹⁷F
- 2p halos: ¹⁷Ne

- Hoyle state in $^{12}\mathrm{C}{:}~3\alpha~0^+$ resonance
- ${\small \bigcirc}\$ triple- α reaction is enhanced by Hoyle state
- it bridges the A = 5 and A = 8 gaps in primordial nucleosynthesis

Historical discovery

First Evidence (LBNL):

 Tanihata et al. measured anomalously large interaction cross sections in ^{6,8}He and ¹¹Li (PLB 1985; PRL 1985)

$$\sigma_I \approx \pi (R_I(p) + R_I(t))^2$$

• much larger than expected from $A^{1/3}$ scaling

TABLE I. Interaction cross sections (σ_I) in millibarns.

Beam	Be	Target C	Al
⁶ Li	651 ± 6	688 ± 10	1010 ± 11
⁷ Li	686 ± 4	736 ± 6	1071 ± 7
⁸ Li	727 ± 6	768 ± 9	1147 ± 14
⁹ Li	739 ± 5	796 ± 6	1135 ± 7
¹¹ Li		1040 ± 60	
⁷ Be	682 ± 6	738 ± 9	1050 ± 17
⁹ Be	755 ± 6	806 ± 9	1174 ± 11
¹⁰ Be	755 ± 7	813 ± 10	1153 ± 16

Theoretical Interpretation

Hansen & Jonson (1987) proposed "neutron halo" structure

EUROPHYSICS LETTERS

15 August 1987

Europhys. Lett., 4 (4), pp. 409-414 (1987)

The Neutron Halo of Extremely Neutron-Rich Nuclei.

P. G. HANSEN (*) (*) and B. JONSON (**)
(*) EP-Division, CERN, Geneva, Switzerland
(**) Department of Physics, Chalmers University of Technology, Göteborg, Sweden

Subsequent Evidence

- Narrow momentum distributions (Kobayashi et al., PRL 60, 2599, 1988)
- Enhanced electromagnetic dissociation cross sections (Kobayashi et al., PLB 232, 51, 1989)
- Charge radius isotope shift measurements (atomic spectroscopy)

Experimental probes to halo nuclei

- static methods
 - ISOTRAP: atomic mass
 - Iaser spectroscopy: charge radius
 - β -NMR: μ_M & Q_E

Pb target

- reaction methods
 - spectroscopy by breakup
 - nuclear breakup $p(^{11}\text{Li}, pn)^{10}\text{Li}$
 - Coulomb breakup ${}^{11}\text{Be}(\gamma^*, n){}^{10}\text{Be}$
 - spatial/momentum configuration
 - elastic scattering (p, p)
 - interaction cross section
 - neutron/proton removal

review: Tanihata et al., PPNP 68 (2013) 215

Emergence of halo effective field theory

- Three phases of halo theories
 - Back-of-the-envelope period (1985–1992)
 - "quick" estimates of halo properties by reproducing σ_R
 - gaussian spatial distribution \rightarrow reproduce $\sigma_I \rightarrow R_m$ too small!
 - Few-body models period (1992–2000)
 - cluster structure models (core + valence nucleons)
 - few-body reaction models (Glauber, DWBA, CDCC,...)
 - unresolved model dependence
 - limited applicable regimes
 - Microscopic models period (2000–present)
 - ab initio structure theory
 - o difficulties in computational power & extension to threshold physics
 - need to develop ab initio reaction theory (e.g. optical potential)

Halo Nuclei, Al-Khalili, Morgan & Claypool Publishers, 2017

- Halo effective field theory
 - systematically embed microscopic information into cluster model
 - provide guidance to build reaction theory

scale hierarchy in nuclear physics

Key elements of an EFT

- Separation of scales $Q \ll \Lambda$:
 - low-energy observables $\rightarrow Q$
 - short-range interactions $\rightarrow \Lambda$

Key elements of an EFT

- Separation of scales $Q \ll \Lambda$:
 - low-energy observables ightarrow Q
 - short-range interactions $\rightarrow \Lambda$
- Systematic expansion of Lagrangian in Q/Λ :
 - order-by-order construction of effective interactions:

$$V_{\text{eff}} = \sum_{n} \hat{V}^{(n)}; \qquad \hat{V}^{(n)} \sim (Q/\Lambda)^{n-1}$$

• prediction uncertainty is controlled by $\left(Q/\Lambda\right)^{(n+1)}$

- Separation of scales $Q \ll \Lambda$:
 - low-energy observables ightarrow Q
 - short-range interactions $\rightarrow \Lambda$
- Systematic expansion of Lagrangian in Q/Λ :
 - order-by-order construction of effective interactions:

$$V_{\text{eff}} = \sum_{n} \hat{V}^{(n)}; \qquad \hat{V}^{(n)} \sim (Q/\Lambda)^{n-1}$$

• prediction uncertainty is controlled by $\left(Q/\Lambda\right)^{(n+1)}$

Predict low-energy physics:

- low-energy observables (Q) insensitive details of short-range interactions (Λ)
- EFT unveils universal correlations

$NN\xspace$ interaction in atomic nuclei

NN interaction in atomic nuclei % NN

NN interaction in atomic nuclei % NN

EFT with contact interactions

Effective field theory with contact interactions originate from pionless EFT

chiral EFT $NN \mbox{ force}$

- short range: $V_s = C_0$
- intermediate/long range:

$$V_{1\pi} \sim \frac{1}{q^2 + m_\pi^2}$$

EFT with contact interactions

Effective field theory with contact interactions originate from pionless EFT

chiral EFT $NN \mbox{ force}$

- short range: $V_s = C_0$
- intermediate/long range:

$$V_{1\pi} \sim \frac{1}{q^2 + m_\pi^2}$$

${\bf \# EFT} \ NN$ force

 $\ \ {\rm OM} \ {\rm momentum} \ q^2 \ll m_\pi^2$

$$V_{1\pi} \xrightarrow{q^2 \ll m_\pi^2} C_0 + C_2 q^2 + \cdots$$

Universality in # EFT

- # EFT indicates universal correlations among few-body observables
- long-range (low-energy) physics is insensitive to details of short-range interactions

Halo physics near clustering threshold

 $\binom{n}{n}$

 $1/\Lambda$

1/Q

Halo physics near clustering threshold

 $\Lambda \sim \sqrt{m_N E_{\rm core}^*}$

 $Q \sim \sqrt{m_N S_N}$

halo physics is difficult for ab initio theories

- continuum problem in many-body calculations NCSMC, GSM-Bergren, Lattice-EFT, LIT, ···
- uncertainty control in chiral potentials threshold observable converges slower in χEFT

halo scale : $Q_{\text{halo}} \ll Q_{\chi \text{EFT}} \approx (2M_N B/A)^{1/2}$

uncertainty :
$$\Delta_{\text{halo}} \% \approx \frac{Q_{\chi \text{EFT}}}{Q_{\text{halo}}} \left(\frac{Q_{\chi \text{EFT}}}{\Lambda_{\chi \text{EFT}}}\right)^{(n+1)}$$

ab initio description of nuclear spectrum

microscopic description of nuclear spectrum is in general accurate

Pieper, Wiringa, Annu. Rev. Nucl. Part. Sci. 51 (2001) 53,
ab initio description of halo features

FIG. 2. NCSMC spectrum of ¹¹Be with respect to the $n + {}^{10}$ Be threshold. Dashed black lines indicate the energies of the 10 Be states. Light boxes indicate resonance widths. Experimental energies are taken from Refs. [1,51].

- ab initio calculation of ¹¹Be has been done by NCSMC
- predictions of threshold properties rely significantly on the nuclear interactions

Calci et al. Phys. Rev. Lett. 117 (2016) 242501

Halo physics near clustering threshold

Halo physics near clustering threshold

Halo Effective Field Theory Lagrangian

- Use EFT with contact interactions to describe clustering in halo nuclei
- For s-wave interactions in 1n halo, we introduce auxiliary dimer fields for bound/virtual states

$$\begin{aligned} \mathscr{L} &= \mathscr{L}_{1} + \mathscr{L}_{nc}^{s} \\ \mathscr{L}_{1} &= n^{\dagger} \left(i\partial_{0} + \frac{\nabla^{2}}{2m_{n}} \right) n + c^{\dagger} \left(i\partial_{0} + \frac{\nabla^{2}}{2m_{c}} \right) c \\ \mathcal{L}_{nc}^{s} &= \sigma^{\dagger} \left[w_{\sigma} \left(i\partial_{0} + \frac{\nabla^{2}}{2M_{\sigma}} \right) + \Delta_{\sigma} \right] \sigma - g_{\sigma} \left(\sigma_{s,\beta}^{\dagger} [nc]_{s,\beta} + \text{h.c.} \right) \end{aligned}$$

where:

- d is the dimer field for nc states
- Δ_d, Δ_σ are residual masses
- $M_{\sigma} = m_n + m_c$ is the total mass of 1n halo
- $[]_{s,\beta}$ denotes spin coupling

$$[nc]_{s,\beta} = \sum_{\delta} \left(\frac{1}{2} \delta \varsigma_c \beta - \delta \middle| s\beta \right) n_{\delta} c_{\beta-\delta}.$$

- scattering amplitude: $t_0(k) = \frac{2\pi}{\mu} \left(\frac{1}{a_0} \frac{r_0}{2}k^2 + ik\right)^{-1}$
 - in low-energy bound/virtual state: $a_0 \sim 1/Q; r_0 \sim 1/\Lambda$
 - expand t-matrix in r_0/a_0

- scattering amplitude: $t_0(k) = \frac{2\pi}{\mu} \left(\frac{1}{a_0} \frac{r_0}{2}k^2 + ik\right)^{-1}$
 - in low-energy bound/virtual state: $a_0 \sim 1/Q; r_0 \sim 1/\Lambda$
 - expand t-matrix in r_0/a_0
- Iterative summation at LO

- scattering amplitude: $t_0(k) = \frac{2\pi}{\mu} \left(\frac{1}{a_0} \frac{r_0}{2}k^2 + ik\right)^{-1}$
 - in low-energy bound/virtual state: $a_0 \sim 1/Q; r_0 \sim 1/\Lambda$
 - expand t-matrix in r_0/a_0
- Iterative summation at LO

tune coupling

$$a_0 = \left(\frac{2\pi\Delta_\sigma}{\mu_\sigma g_\sigma^2} + \Lambda\right)^{-1}; \quad w_\sigma = -\operatorname{sgn}(r_0); \quad r_0 = -w_\sigma \frac{2\pi}{\mu_\sigma^2 g_\sigma^2}$$

• scattering amplitude:
$$t_0(k) = \frac{2\pi}{\mu} \left(\frac{1}{a_0} - \frac{r_0}{2}k^2 + ik\right)^{-1}$$

- in low-energy bound/virtual state: $a_0 \sim 1/Q; r_0 \sim 1/\Lambda$
- expand t-matrix in r_0/a_0
- Iterative summation at LO

tune coupling

$$a_0 = \left(\frac{2\pi\Delta_{\sigma}}{\mu_{\sigma}g_{\sigma}^2} + \Lambda\right)^{-1}; \quad w_{\sigma} = -\operatorname{sgn}(r_0); \quad r_0 = -w_{\sigma}\frac{2\pi}{\mu_{\sigma}^2 g_{\sigma}^2}$$

pole expansion:
$$t_0(k) \approx \frac{2\pi}{\mu} \frac{Z_R}{\gamma_0 + ik}$$
ANC: $\psi_0(r) = \frac{C_{\sigma}}{\sqrt{4\pi r}} \exp(-\gamma_{0,\sigma} r)$
LO: $C_{\sigma,LO} = \sqrt{2\gamma_0}$ **NLO**: $C_{\sigma,NLO} = \sqrt{\frac{2\gamma_0}{1 - \gamma_0 r_0}}$
e renormalization constant $Z_R = \frac{C_{\sigma,NLO}^2}{C_{\sigma,LO}^2} = \frac{1}{1 - \gamma_0 r_0}$

Probe density distribution - reaction cross sections

• σ_R of heavy-ion collision is described by Glauber model

$$\sigma_R = \int [1 - T(\mathbf{b})] d\mathbf{b}$$

transmission function: $T(\mathbf{b}) \approx \exp\left[-\sum_{i,k} \sigma_{ik} \int \int \rho_{Pi}^z(\mathbf{s}) \rho_{Tk}^z(\mathbf{b} + \mathbf{s}) d\mathbf{s}\right]$

• Fit to σ_R 's energy dependence to extract ρ_P

Nucleon density and matter radius

ρ_m for halo nuclei exhibits an extended tail compared to *ρ_m* of the core
 matter radius:

•
$$R_m^2 = \int \rho_m(r) r^2 dr$$

- indicates total nucleon distribution
- normal nuclei: $R_m \approx 1.2 A^{1/3}$ fm
 - ¹¹Li nucleon density

Egelhof et al., EPJA 15 (2002) 27

Charge Radii Measurements:

- Laser spectroscopy of trapped ions/atoms
- Atomic levels for ${}^{A}_{Z}X$ in j state:

$$E_{j}(_{Z}^{A}\mathbf{X}) = E_{j,\mathbf{N}R} + E_{j,\mathbf{r}el} + \alpha^{3}E_{j,\mathbf{Q}ED} + C_{j}R_{c}^{2}(_{Z}^{A}\mathbf{X})$$

- atomic transition $j \to k$: $\delta \nu = E_j E_k$
- Isotope shift:

$$\nu_{A'A} = \delta E(^{A}_{Z} \mathsf{X}) - \delta E(^{A'}_{Z} \mathsf{X})$$
$$= \delta \nu_{MS} + \delta \nu_{FS}$$

-

- mass shift $\delta \nu_{MS}$: shifts in nuclear mass and QED correction
- field shift : $\delta u = (C - C)$

$$\delta\nu_{FS} = (C_j - C_k) \left[R_c^2 \binom{A'}{Z} \mathsf{X} \right) - R_c^2 \binom{A}{Z} \mathsf{X} \right]$$

Decouple core and halo neutron

1n halo coordinates:

- Valence neutron orbits at large distances from the core
- Changes in R_c or R_m between the halo and core nuclei are due to shifts in C.M.

Relations:

•
$$\rho_c = \sqrt{\frac{1}{A}R_m^2 - \frac{1}{A+1}R_{m,c}^2}$$

• $\rho_c = \sqrt{R_c^2 - R_{c,c}^2 - \frac{1}{Z}r_n^2}$
• $\rho_{c-n} = (A+1)\rho_c$

n-c coordinates in C.M frame

Electric form factor for 1n-halos

Electric form factor (Breit frame) \rightarrow radius ρ_c^2

• $f = \mu_{\sigma}/M_c = 1/(A+1)$

• photon-dimer term restores normalization at NLO: $G_c(0) = G_c^{LO}(0) = 1$

• determine ho_c by $G_c(q) = 1 - rac{
ho_c^2}{6}q^2 + \cdots$

$$\rho_{c} = \sqrt{\frac{f^{2}C_{\sigma}^{2}}{4\gamma_{0}^{3}}} = \frac{1}{A+1} \frac{C_{\sigma}/C_{\sigma,0}}{\sqrt{2\gamma_{0}}}$$

	2 H	11 Be	15 C	19 C
Experiment				
$S_{1n} \left[{\rm MeV} \right]$	2.224573(2)	0.50164(25)	1.2181(8)	0.58(9)
E_c^{*} [MeV]	140	3.36803(3)	6.0938(2)	1.62(2)
$ ho_{c-n}$ [fm]	3.936(12)	6.05(23)	4.15(50)	6.6(5)
	3.95014(156)	5.7(4)	7.2±4.0	6.8(7)
		5.77(16)	4.5(5)	5.8(3)
Halo EFT				
Q/Λ	0.33	0.39	0.45	0.6
r_0/a_0	0.32	0.32	0.43	0.33
$\sqrt{\mathcal{Z}_R}$	1.295	1.3	1.63	1.3
$ ho_{c-n}$ [fm]	3.954	6.85	4.93	5.72

Coulomb dissociation in $1n\ {\rm halos}$

- Coulomb dissociation
 - breakup by colliding a halo nucleus with a high-Z nucleus
 - ${\small \bigcirc}~$ the halo dynamics dominates when $E\sim S_{1n}$

Amplitude for Coulomb dissociation:

$$\mathcal{M}_{E1}^{(j=3/2)} = \sqrt{2}\mathcal{M}_{E1}^{(j=1/2)} = 4\sqrt{\gamma_0}\frac{C_{\sigma}}{C_{\sigma,LO}}fZe\frac{p}{\left(\gamma_0^2 + p^2\right)^2}$$

Differential E1 transition strength:

$$\frac{dB(E1)}{dE} = \frac{1}{(2\pi)^3} \left(|\mathcal{M}_{E1}^{(J=1/2)}|^2 + |\mathcal{M}_{E1}^{(J=3/2)}|^2 \right) \frac{d^3p}{dE}$$
$$= \frac{12}{\pi^2} \mu_\sigma (fZ)^2 e^2 \gamma_0 \frac{C_\sigma^2}{C_{\sigma,LO}^2} \frac{p^3}{\left(\gamma_0^2 + p^2\right)^4}$$

Differential E1 transition strength:

$$\frac{dB(E1)}{dE} = \frac{1}{(2\pi)^3} \left(|\mathcal{M}_{E1}^{(J=1/2)}|^2 + |\mathcal{M}_{E1}^{(J=3/2)}|^2 \right) \frac{d^3p}{dE}$$
$$= \frac{12}{\pi^2} \mu_\sigma (fZ)^2 e^2 \gamma_0 \frac{C_\sigma^2}{C_{\sigma,LO}^2} \frac{p^3}{\left(\gamma_0^2 + p^2\right)^4}$$

Re-express into universal scaling function

•
$$p^2/\gamma_0^2 \to E/S_{1n}$$

• $Q_{\text{eff}} = fZ = Z/(A+1)$

$$\frac{d\mathbf{B}(\mathbf{E1})}{dE} = \frac{Q_{\text{eff}}^2}{\mu_{\sigma} S_{1n}^2} \frac{C_{\sigma}^2}{C_{\sigma,LO}^2} \frac{3e^2}{\pi^2} \frac{(E/S_{1n})^{3/2}}{(1+E/S_{1n})^4},$$

Differential E1 transition strength:

$$\frac{dB(E1)}{dE} = \frac{1}{(2\pi)^3} \left(|\mathcal{M}_{E1}^{(J=1/2)}|^2 + |\mathcal{M}_{E1}^{(J=3/2)}|^2 \right) \frac{d^3p}{dE}$$
$$= \frac{12}{\pi^2} \mu_\sigma (fZ)^2 e^2 \gamma_0 \frac{C_\sigma^2}{C_{\sigma,LO}^2} \frac{p^3}{\left(\gamma_0^2 + p^2\right)^4}$$

Re-express into universal scaling function

•
$$p^2/\gamma_0^2 \rightarrow E/S_{1n}$$

• $Q_{\text{eff}} = fZ = Z/(A+1)$

$$\frac{d\mathbf{B}(\mathbf{E1})}{dE} = \frac{Q_{\text{eff}}^2}{\mu_{\sigma} S_{1n}^2} \frac{C_{\sigma}^2}{C_{\sigma,LO}^2} \frac{3e^2}{\pi^2} \frac{(E/S_{1n})^{3/2}}{(1+E/S_{1n})^4},$$

- Universal scaling function for dB(E1)/dE
- Only the prefactor $Q_{ ext{eff}}^2/(\mu_\sigma S_{1n}^2)$ is system dependent

E1 transition in deuteron

Divide by the prefactor

$$\frac{\mu_{\sigma}S_{1n}^2}{Q_{\text{eff}}^2}\frac{d\mathbf{B}(\mathbf{E1})}{dE} = \frac{C_{\sigma}^2}{C_{\sigma,LO}^2}\frac{3e^2}{\pi^2}\frac{(E/S_{1n})^{3/2}}{(1+E/S_{1n})^4}$$

• The rest of the function only depends on the ratio E/S_{1n}

• $C_{\sigma}^2/C_{\sigma,LO}^2 = 1/(1 - \gamma_0 r_0)$ introduces corrections to the universality

Coulomb dissociation in $^{11}\mathrm{Be}$ and $^{19}\mathrm{C}$

E1 strength to Coulomb dissociation cross section:

$$\frac{d\sigma}{dE} = \frac{16\pi^3}{9} N_{E1}(E, R) \frac{d\mathbf{B}(E1)}{dE}$$

• Rescale $d\sigma/dE \rightarrow$ universal function

Coulomb dissociation energy spectrum in $^{11}\mathrm{Be}$ and $^{19}\mathrm{C}$

Coulomb dissociation in 11 Be and 19 C

E1 strength to Coulomb dissociation cross section:

$$(1 - \gamma_0 r_0) \frac{\mu_\sigma S_{1n}^2}{Q_{\text{eff}}^2} \frac{d\sigma}{dE} = \frac{16\pi^3}{9} N_{E1}(E, R) (1 - \gamma_0 r_0) \frac{\mu_\sigma S_{1n}^2}{Q_{\text{eff}}^2} \frac{d\mathbf{B}(\mathbf{E1})}{dE}$$

• Rescale $d\sigma/dE \rightarrow$ universal function

Coulomb dissociation in 11 Be and 19 C

E1 strength to Coulomb dissociation cross section:

• Rescale $d\sigma/dE \rightarrow$ universal function

Halo EFT with Coulomb

- In halo/clustering systems with Coulomb interactions, a new scale $k_c = Q_c e^2 \mu$ enters
 - $k_c \gtrsim Q$: Coulomb interaction is nonperturbative

Coulomb Green's function (non-perturbative)

$$(\boldsymbol{r}|G_C(E)|\boldsymbol{r}') = \int \frac{d^3p}{(2\pi)^3} \frac{\psi_{\boldsymbol{p}}(\boldsymbol{r})\psi_{\boldsymbol{p}}^*(\boldsymbol{r}')}{E - \boldsymbol{p}^2/(2\mu_{nc}) + i\epsilon}$$

$$\psi_{\mathbf{p}}(\mathbf{r}) = \sum_{l=0}^{\infty} (2l+1)i^l \exp{(i\sigma_l)} \frac{F_l(\eta,\rho)}{\rho} P_l(\hat{\mathbf{p}} \cdot \hat{\mathbf{r}})$$

p-p scattering [Kong, Ravndal, PLB '99; NPA '10] p- α and α - α scattering [Higa, Hammer, van Kolck, NPA '08; Higa, FBS '11] ¹⁷F^{*} [Ryberg, Forssén, Hammer, Platter, PRC '14; AnnPhys '16]

• $k_c \ll Q$: Coulomb interaction is perturbative ³H and ³He [König, Grießhammer, Hammer, van Kolck, JPG '16]

Radiative Nucleon Captures

Radiative Nucleon Captures

 $S(E) = Ee^{2\pi\eta(E)}\sigma(E)$ $S(0) = 21.3 \pm 0.7 \text{ eV} \cdot \text{b}$

Two-Neutron Halos

- n-core bound
 e.g., ¹²Be, ²⁰C, ⁶²Ca
- n-core unbound (Borromean system)
 e.g., ⁶He, ¹¹Li, ¹⁴Be, ²²C, ⁶²Ca

Two-body unbound ----Three-body bound

core

hàlo

n

Symbol for house of Borromeo

Pallas and the Centaur

Painting by Sandro Botticelli (Uffizi Gallery in Florence, Italy)

3-body borromean rings

4-body borromean rings

Symbol for house of Medici

$2n\ {\rm halos}\ {\rm in}\ {\rm Faddeev}\ {\rm formalism}$

$2n\ {\rm halos}\ {\rm in}\ {\rm Faddeev}\ {\rm formalism}$

three-body wave functions

Three-body renormalization

running of three-body coupling

• tune $H(\Lambda) = \Lambda^2 h/2mg^2$: reproduce one observable in a 2n-halo

Hammer, CJ, Phillips, JPG 44 (2017) 103002

Three-body renormalization

running of three-body coupling

• tune $H(\Lambda) = \Lambda^2 h/2mg^2$: reproduce one observable in a 2n-halo

• $H(\Lambda)$ periodic for $\Lambda o \lambda \Lambda$ [A=1 Bedaque *et al.* '00]

Hammer, CJ, Phillips, JPG 44 (2017) 103002

Three-body renormalization

running of three-body coupling

- tune $H(\Lambda) = \Lambda^2 h/2mg^2$: reproduce one observable in a 2n-halo
- $H(\Lambda)$ periodic for $\Lambda o \lambda \Lambda$ [A=1 Bedaque *et al.* '00]
- $H(\Lambda)$ appears as RG limit cycle [Mohr et al., AnnPhys '06]
- discrete scale invariance \rightarrow Efimov physics

Hammer, CJ, Phillips, JPG 44 (2017) 103002

Efimov physics

a universal spectrum of three-body bound states

$$B_3 = -\frac{1}{ma_0^2} + \left[e^{-2\pi n} f(\xi)\right]^{1/s_0} \frac{\kappa_*^2}{m}$$

Braaten, Hammer, Phys. Rept. '06

- atomic physics: vary a_0 through Feshbach resonance
- nuclear physics: fixed a₀

Efimov physics

a universal spectrum of three-body bound states

$$B_3 = -\frac{1}{ma_0^2} + \left[e^{-2\pi n} f(\xi)\right]^{1/s_0} \frac{\kappa_*^2}{m}$$

Braaten, Hammer, Phys. Rept. '06

- atomic physics: vary a₀ through Feshbach resonance
- nuclear physics: fixed a₀

- unitary limit $(a \to \infty)$: $B_3 = e^{-2\pi n/s_0} \frac{\kappa_*^2}{m}$
- discrete scale invariance: $\kappa_* \to \kappa_*, \quad a_0 \to e^{\pi n/s_0} a_0$
- exploring Efimov physics in halo nuclei is an important subject

Efimov universality in 2n s-wave halo

• contour constraints on ground-state energy S_{2n} if the excited-state energy $B_3^* = \max\{0, E_{nn}, S_{1n}\}$

Canham, Hammer, EPJA '08; Frederico et al. PPNP '12;

Hammer, CJ, Phillips, JPG 44 (2017) 103002
6 He: 2n Halo with p-wave nc interactions

nc interaction in a p-wave bound/resonance state

$$= \frac{2\pi}{\mu} \frac{\vec{p} \cdot \vec{q}}{-1/a_1 + r_1 k^2/2 - ik^3}$$

• $a_1 < 0$: shallow resonance: ⁵He (3/2⁻)

• $a_1 > 0$: shallow bound state: ¹¹Be (1/2⁻), ⁸Li (2⁺), ⁸Li^{*} (1⁺)

p-wave power counting

- resum ik^3 : $1/a_1 \sim Q^3$, $r_1 \sim Q$ [Bertulani, Hammer, van Kolck NPA '02]
- perturbative ik^3 : $1/a_1 \sim Q^2 \Lambda$, $r_1 \sim \Lambda$ [Bedaque, Hammer, van Kolck PLB '03]

Unconventional momentum-dependent $n\alpha$ interaction

• If $a_0 \sim r_0 \sim Q^{-1}$ in s-wave interaction, we need to tune both a_0 and r_0 at LO

$$V_0(p,p') = -\frac{2\pi}{\mu} \frac{\lambda}{\sqrt{p'^2 + 2\mu\Delta}\sqrt{p^2 + 2\mu\Delta}}$$

Peng, Lyu, König, Long (2021), PRC 105, 054002 (2022); Beane, Farrell, FBS 63, 45 (2022); van Kolck, Symmetry 14, 1884 (2022)

Solution For $n\alpha$ p-wave interaction, both a_1 and r_1 are at LO

$$V_1(p,p') = -\frac{2\pi}{\mu} \frac{\lambda pp'}{\sqrt{p'^2 + 2\mu\Delta}\sqrt{p^2 + 2\mu\Delta}}$$

on-shell t-matrix:

$$T^{(0)}(k,k;k) = -\frac{2\pi}{\mu} \frac{k^2}{-\frac{1}{a_1} + \frac{1}{2}r_1k^2 - ik^3} \quad V(E): k^2 \to pp'$$

 \rightarrow resonance + spurious pole

off-shell t-matrix:

$$T_{1}(p',p;k) = -\frac{2\pi}{\mu} \frac{p'}{\sqrt{p'^{2} + \gamma^{2}}} \frac{ik - \gamma}{k^{2} + i(\gamma + \frac{r_{1}}{2})k + \frac{1}{a_{1}\gamma}} \frac{p}{\sqrt{p^{2} + \gamma^{2}}}$$
$$\gamma + \frac{r_{1}}{2} + a_{1}^{-1}\gamma^{-2} = 0 \qquad \text{spurious pole vanishes}$$

Li, Lyu, <u>CJ</u>, Long, arXiv:2303.17292 (accepted at PRC)

Unconventional $n\alpha$ interaction in ⁶He

• Implementing unconventional p-wave potential in $nn\alpha$ system

Li, Lyu, CJ, Long, arXiv:2303.17292 (accepted at PRC)

Unconventional $n\alpha$ interaction in ⁶He

- Implementing unconventional p-wave potential in $nn\alpha$ system
- Running of $H(\Lambda)$ and $B(\Lambda)$
- Faster cutoff convergence of Faddeev components with unconventional potential

Li, Lyu, CJ, Long, arXiv:2303.17292 (accepted at PRC)

Universal Correlations Among Radii & S_{2n} in ⁶He

Universal Correlations Among Radii & S_{2n} in ⁶He

α -clustering in nuclei

ho ${}^9{ m Be}$ lpha-lpha-n Borromean structure

- Formation of ⁹Be strongly influences r-process nucleosynthesis in neutron-rich environment
- α -clustering drives ⁹Be's fusion mechanism:
 - sequential: $\alpha + \alpha \rightleftharpoons {}^{8}\mathsf{Be}(n,\gamma)^{9}\mathrm{Be}$ direct: $\alpha(\alpha n,\gamma)^{9}\mathsf{Be}$
- reaction rate of ⁹Be formation is sensitive to fusion mechanism

Garrido, et al., EPJA 47 (2011) 102

⁹Be photodisintegration

- direct measurement of ⁹Be formation: difficult
- indirect measurement: photodisintegration (inverse process)
 - 1/2+ resonance: difficult to separate two- and three-body breakup
 - 1/2+ resonance is close to ⁸Be resonance
 - requires accurate theoretical analysis

⁹Be photodisintegration in Halo EFT at NLO

- construct α - α and n- α interaction from halo EFT
- calculate $\alpha \alpha n$ quantumm three-body problem:
 - ightarrow hyperspherical harmonics expansion
- calculate photoabsorption cross section
 - \rightarrow Lorentz integral transform continuum \rightarrow bound-state

Capitani, Filandri, CJ, Orlandini, Leidemann arXiv:2506.05040

⁹Be photodisintegration in Halo EFT

Capitani, Filandri, CJ, Orlandini, Leidemann arXiv:2506.05040

9 Be photodisintegration in Halo EFT

- EFT calculation of photo-disintegration cross section
- focus on E1 transition (using Siegert theorem)
- $3/2^- \to 1/2^+; 3/2^+; 5/2^+$

Capitani, Filandri, CJ, Orlandini, Leidemann arXiv:2506.05040

- Effective field theory comes with limited powers determined by Q and Λ, different EFTs are efficient at different energy regimes
- Development of Halo EFT provides tools to tackle low-energy few-body structure and reaction physics
- Halo EFT
 - ullet describes near-threshold physics in a controlled expansion of Q/Λ
 - rejuvenates cluster models with a systematic uncertainty estimates
 - Combine with *ab initio* calculations and experiments to extract correlations in threshold physics
 - helps to understand nucleosynthesis in astrophysical processes