11 December 2024 PRISMA+ colloquium, Mainz

Sub-GeV Dark Matter and X-rays

Marco Cirelli (CNRS LPTHE Jussieu Paris)

Marco Cirelli (CNRS LPTHE Jussieu Paris)

2000

Bachelor+Master degree in Physics, Milano

2000 2003

PhD in Physics, Pisa

Bachelor+Master degree in Physics, Milano

2000 2003 2003-06 Bachelor+Master degree in Physics, Milano

PhD in Physics, Pisa

Postdoc, Yale

2000 2003 2003-06 2006-07 Bachelor+Master degree in Physics, Milano

PhD in Physics, Pisa

Postdoc, Yale

Postdoc, Saclay, France

2000 2003 2003-06 2006-07 2007 Bachelor+Master degree in Physics, Milano

- PhD in Physics, Pisa
 - Postdoc, Yale
- Postdoc, Saclay, France
 - Permanent (junior) researcher position CNRS, Saclay

- 2000 2003 2003-06 2006-07 2007 2009-12
- Bachelor+Master degree in Physics, Milano
- PhD in Physics, Pisa
 - Postdoc, Yale
- Postdoc, Saclay, France
 - Permanent (junior) researcher position CNRS, Saclay
 - CERN Fellow

- 2000 2003 2003-06 2006-07 2007 2009-12 2012-18
- Bachelor+Master degree in Physics, Milano
- PhD in Physics, Pisa
 - Postdoc, Yale
- Postdoc, Saclay, France
 - Permanent (junior) researcher position CNRS, Saclay
 - **CERN** Fellow
 - (ERC Starting grant)

- 2000 2003 2003-06 2006-07 2007 2009-12 2012-18 2015
- Bachelor+Master degree in Physics, Milano
- PhD in Physics, Pisa
 - Postdoc, Yale
- Postdoc, Saclay, France
 - Permanent (junior) researcher position CNRS, Saclay
 - **CERN** Fellow
 - (ERC Starting grant)
 - CNRS researcher at LPTHE, Sorbonne U

- 2000 2003 2003-06 2006-07 2007 2009-12 2012-18 2015 2017
- Bachelor+Master degree in Physics, Milano
- PhD in Physics, Pisa
 - Postdoc, Yale
- Postdoc, Saclay, France
 - Permanent (junior) researcher position CNRS, Saclay
 - **CERN** Fellow
 - (ERC Starting grant)
- CNRS researcher at LPTHE, Sorbonne U
- Promotion to CNRS senior researcher

- 2000 2003 2003-06 2006-07 2007 2009-12 2012-18 2015 2017 2024
- Bachelor+Master degree in Physics, Milano
- PhD in Physics, Pisa
 - Postdoc, Yale
- Postdoc, Saclay, France
 - Permanent (junior) researcher position CNRS, Saclay
 - **CERN** Fellow
 - (ERC Starting grant)
- CNRS researcher at LPTHE, Sorbonne U
- Promotion to CNRS senior researcher
 - Mainz PRISMA+ colloquium

2000 2003 2003-06 2006-07 2007 2009-12 2012-18 2015 2017 2024

2039

- Bachelor+Master degree in Physics, Milano
- PhD in Physics, Pisa
 - Postdoc, Yale
- Postdoc, Saclay, France
 - Permanent (junior) researcher position CNRS, Saclay
 - **CERN** Fellow
 - (ERC Starting grant)
- CNRS researcher at LPTHE, Sorbonne U
- Promotion to CNRS senior researcher
- Mainz PRISMA+ colloquium
 - Retirement

2000 Bachelor+Master degree in Physics, Milano Particle theory hep-ph model building 2003 PhD in Physics, Pisa Extra dimensions 2003-06 Postdoc, Yale Postdoc, Saclay, France 2006-07 2007 Permanent (junior) researcher position CNRS, Saclay 2009-12 **CERN** Fellow 2012-18 (ERC Starting grant) 2015 **CNRS** researcher at LPTHE, Sorbonne U 2017 Promotion to CNRS senior researcher 2024 Mainz PRISMA+ colloquium 2039

Retirement

2000 Bachelor+Master degree in Physics, Milano Particle theory hep-ph model building 2003 PhD in Physics, Pisa Extra dimensions Neutrinos, neutrinos in SNe 2003-06 Postdoc, Yale Dark Matter model building Postdoc, Saclay, France 2006-07 2007 Permanent (junior) researcher position CNRS, Saclay 2009-12 **CERN** Fellow 2012-18 (ERC Starting grant) 2015 **CNRS** researcher at LPTHE, Sorbonne U 2017 Promotion to CNRS senior researcher 2024 Mainz PRISMA+ colloquium 2039

Retirement

2000	Bachelor+Master degree in Physics, Milano		
2003	PhD in Physics, Pisa	Particle theory hep-ph model building Extra dimensions	
2003-06	Postdoc,Yale	Neutrinos, neutrinos in SNe Dark Matter model building	
2006-07	Postdoc, Saclay, France	Dark Matter phenomenology	
2007	Permanent (junior) researcher position CNRS, Saclay		
2009-12	CERN Fellow		
2012-18	(ERC Starting grant)		
2015	CNRS researcher at LPTHE, Sorbonne U		
2017	Promotion to CNRS senior researcher		
2024	Mainz PRISMA+ colloquium		
2039	Retirement		

Ketirement

2000	Bachelor+Master degree in Physics, Milano		
2003	PhD in Physics, Pisa	Particle theory hep-ph model building Extra dimensions	
2003-06	Postdoc,Yale	Neutrinos, neutrinos in SNe Dark Matter model building	
2006-07	Postdoc, Saclay, France	Dark Matter phenomenology	
2007	Permanent (junior) researcher position CNRS, Saclay		
2009-12	CERN Fellow	DM indirect detection (Charged cosmic rays)	
2012-18	(ERC Starting grant)		
2015	CNRS researcher at LPTHE, Sorbonne U	(Photons, γ-rays, secondaries)	
2017	Promotion to CNRS senior researcher		
2024	Mainz PRISMA+ colloquium		

Retirement

2039

2000	Bachelor+Master degree in Physics, Milano	
2003	PhD in Physics, Pisa	Particle theory hep-ph model building Extra dimensions
2003-06	Postdoc,Yale	Neutrinos, neutrinos in SNe Dark Matter model building
2006-07	Postdoc, Saclay, France	Dark Matter phenomenology
2007	Permanent (junior) researcher position CNRS, Saclay	
2009-12	CERN Fellow	DM indirect detection (Charged cosmic rays)
2012-18	(ERC Starting grant)	
2015	CNRS researcher at LPTHE, Sorbonne U	(Photons, γ-rays, secondaries)
2017	Promotion to CNRS senior researcher	
2024	Mainz PRISMA+ colloquium	
2039	Retirement	History of physics and

Thistory or priv why didn't we solve the DM problem yet 11 December 2024 PRISMA+ colloquium, Mainz

Sub-GeV Dark Matter and X-rays

Marco Cirelli (CNRS LPTHE Jussieu Paris)

11 December 2024 PRISMA+ colloquium, Mainz

Sub-GeV Dark Matter and X-rays

Marco Cirelli (CNRS LPTHE Jussieu Paris)

based on : Cirelli, Fornengo, Kavanagh, Pinetti 2007.11493 Cirelli, Fornengo, Koechler, Pinetti, Roach 2303.08854 De La Torre Luque, Balaji, Koechler 2311.04979 + work in progress

galactic rotation curves

weak lensing (e.g. in clusters)

'precision cosmology' (CMB, LSS)

DM exists

it's a new, unknown corpuscle

no SM particle can fulfil dilutes as 1/a³ with universe expansion

DM exists
it's a new, unknown corpuscle
makes up 26% of total energy 84% of total matter

no SM particle can fulfil dilutes as 1/a³ with universe expansion

Planck 2015, 1502.01589

 $\Omega_{\rm DM}h^2 = 0.1188 \pm 0.0010$ (notice error!)

DM exists
it's a new, unknown corpuscle no SM particle can fulfil
makes up 26% of total energy 84% of total matter $\Omega_{DM}h^2 = 0$ neutral particle 'dark'...

dilutes as 1/a³ with universe expansion

 $\Omega_{\rm DM} h^2 = 0.1188 \pm 0.0010$ (notice error!)

DM exists
it's a new, unknown corpuscle no SM particle can fulfil dilutes as 1/a³ with universe expansion
makes up 26% of total energy 84% of total matter 26% of total matter
makes up 26% of total matter 26% of total energy 84% of total matter
neutral particle 'dark'...
cold or not too warm p/m <1 at CMB formation

DM exists no SM particle dilutes as 1/a³ with it's a new, unknown corpuscle can fulfil universe expansion makes up 26% of total energy 84% of total matter $\Omega_{\rm DM} h^2 = 0.1188 \pm 0.0010$ (notice error!) neutral particle 'dark'... Cold or not too warm p/m <<1 at CMB formation very feebly interacting -with itself -with ordinary matter ('collisionless')

DM exists no SM particle dilutes as 1/a³ with it's a new, unknown corpuscle can fulfil universe expansion makes up 26% of total energy 84% of total matter $\Omega_{\rm DM} h^2 = 0.1188 \pm 0.0010$ (notice error!) la neutral particle 'dark'... Cold or not too warm p/m <<1 at CMB formation very feebly interacting -with itself -with ordinary matter ('collisionless') stable or very long lived

 $\tau_{\rm DM} \gg 10^{17} {\rm sec}$

DM exists dilutes as 1/a³ with no SM particle it's a new, unknown corpuscle can fulfil universe expansion makes up 26% of total energy 84% of total matter $\Omega_{\rm DM} h^2 = 0.1188 \pm 0.0010$ (notice error!) la neutral particle 'dark'... Cold or not too warm p/m <<1 at CMB formation very feebly interacting -with itself -with ordinary matter ('collisionless') stable or very long lived $\tau_{\rm DM} \gg 10^{17} {\rm sec}$

possibly a relic from the EU

DM exists dilutes as 1/a³ with no SM particle it's a new, unknown corpuscle can fulfil universe expansion makes up 26% of total energy 84% of total matter $\Omega_{\rm DM} h^2 = 0.1188 \pm 0.0010$ (notice error!) la neutral particle 'dark'... Cold or not too warm p/m <<1 at CMB formation very feebly interacting -with itself -with ordinary matter ('collisionless') stable or very long lived $\tau_{\rm DM} \gg 10^{17} {\rm sec}$ possibly a relic from the EU searched for by

SM

SM

≥SM

SM

mass??? ínteractions???
A matter of perspective: plausible mass ranges

90 orders of magnitude!

A matter of perspective: plausible mass ranges

WIMPs

new physics at the TeV scale thermal freeze-out

WIMPs

new physics at the TeV scale thermal freeze-out

WIMPs

Collider Searches

Indirect Detection

Direct Detection

DM as a thermal relic from the Early Universe

(0.1)

Boltzmann equation in the Early Universe:

$$\Omega_X \approx \frac{6 \ 10^{-27} \mathrm{cm}^3 \mathrm{s}^{-1}}{\langle \sigma_{\mathrm{ann}} v \rangle}$$

Relic $\Omega_{\rm DM} \simeq 0.23$ for $\langle \sigma_{\rm ann} v \rangle = 3 \cdot 10^{-26} {\rm cm}^3/{\rm sec}$

Weak cross section:

$$\langle \sigma_{\mathrm{ann}} v \rangle \approx \frac{\alpha_w^2}{M^2} \approx \frac{\alpha_w^2}{1 \,\mathrm{TeV}^2} \Rightarrow \Omega_X \sim \mathcal{O}(\mathrm{fev})$$

new physics at the TeV scale thermal freeze-out

WIMPs

Collider Searches

Indirect Detection

Direct Detection

A matter of perspective: plausible mass ranges

90 orders of magnitude!

A matter of perspective: plausible mass ranges

90 orders of magnitude!

Sub-GeV DIM • 'MeV (scalar) DM'

Boehm & Fayet hep-ph/0305261

In conclusion, scalar Dark Matter particles can be significantly lighter than a few GeV's (thus evading the generalisation of the Lee-Weinberg limit for weakly-interacting neutral fermions) if they are coupled to a new (light) gauge boson or to new heavy fermions F (through non chiral couplings and poten-

Sub-GeV DM

WIMPless Dark Matter

Feng & Kumar 0803.4196

a.k.a. hidden sector DM \sim secluded DM

Sub-GeV DIM WIMPless Dark Matter Feng & Kumar 0803.4196

a.k.a. hidden sector DM \sim secluded DM

 $\langle \sigma_{\rm ann} v \rangle \approx \frac{\alpha_w^2}{M^2} \approx \frac{\alpha_w^2}{{
m TeV^2}}$ $\langle \sigma_{\rm ann} v \rangle \approx \frac{\alpha_x^2}{m^2}$

Sub-GeV DM WIMPless Dark Matter Feng & Kumar 0803.4196

a.k.a. hidden sector DM \sim secluded DM

if g_x is small, *m* 'naturally' small (but nothing points to a precise value)

Production mechanism: just thermal freeze-out of these annihilations

Sub-GeV DM

• 'SIMP miracle':

scalar DM with relic abundance set by 3 -> 2 processes

points to

$$m_{\rm DM} \sim \alpha_{\rm eff} \left(T_{\rm eq}^2 M_{\rm Pl} \right)^{1/3} \sim 100 \; {\rm MeV}$$

Hochberg et al 1402.5143

'naturally realized' in a dark-QCD-like setup $\alpha_{\rm eff} = \mathcal{O}(1)$ i.e. $g_x \sim 4\pi$

Sub-GeV DM

'simplified (light) DM models'

Knapen, Lin, Zurek 1709.07882

Sub-GeV DM

'simplified (light) DM models'

scalar DM and hadrophilic scalar mediator

$$\mathcal{L} \supset -\frac{1}{2}m_{\chi}^2\chi^2 - \frac{1}{2}m_{\phi}^2\phi^2 - \frac{1}{2}y_{\chi}m_{\chi}\phi\chi^2 - y_n\phi\overline{n}n,$$

Sub-GeV DM

'simplified (light) DM models'

scalar DM and hadrophilic scalar mediator

$$\mathcal{L} \supset -\frac{1}{2}m_{\chi}^2\chi^2 - \frac{1}{2}m_{\phi}^2\phi^2 - \frac{1}{2}y_{\chi}m_{\chi}\phi\chi^2 - y_n\phi\overline{n}n$$

10^{-3} $B \to K \phi$ 10^{-6} n-Xe $K \to \pi \phi$ 5th force $\sim 10^{-9}$ SN1987a HB stars RG stars 10^{-12} *φīt* 10^{-15} keV MeV GeV eV m_{ϕ}

constraints on the DM

constraints on the mediator

Sub-GeV DIM

'simplified (light) DM models'

Knapen, Lin, Zurek 1709.07882

scalar DM and hadrophilic scalar mediator

scalar DM and leptophilic scalar mediator

GeV

 10^{3}

Sub-GeV DM

'simplified (light) DM models'

scalar DM and hadrophilic scalar mediator

 $\mathcal{L} \supset -\frac{1}{2}m_{\chi}^2\chi^2 - \frac{1}{2}m_{\phi}^2\phi^2 - \frac{1}{2}y_{\chi}m_{\chi}\phi\chi^2 - y_e\phi\overline{e}e.$ $\mathcal{L} \supset -\frac{1}{2}m_{\chi}^2\chi^2 - \frac{1}{2}m_{\phi}^2\phi^2 - \frac{1}{2}y_{\chi}m_{\chi}\phi\chi^2 - y_n\phi\overline{n}n,$ 10^{-3} 10^{-} Fifth force $B \to K \phi$ 10^{-6} 10^{-6} $K \to \pi \; \phi$ beam dump BBN th forc 10- $\sim 10^{-9}$ SN1987a y_e 10-12 HB stars G stars 10^{-12} 10^{-1} φīt 10^{-15} 10^{-18} GeV eV keV MeV keV eV MeV m_{ϕ} m_{ϕ} $m_{\phi} = 10^{-3} m_{\chi}$ $m_{\phi} = 10^{-3} \, \mu_{\chi e}$ 10^{-36} 10^{-36} SENSE 10^{-39} 10⁻³⁹ SuperCDMS G2 $\begin{bmatrix} 10^{-42} \\ 10^{-43} \\ 10^{-48} \end{bmatrix}_{10^{-48}}^{5}$ $\int_{\mathcal{L}} \frac{\log 1}{\log 10^{-42}}$ 10^{-48} 100 kg-yr- 10^{-43} 10^{-51} $\frac{\Omega_{\chi}}{\Omega_{\rm DM}} = 1$ $\frac{\Omega_{\chi}}{\Omega_{\rm DM}} = 1$ 10^{-54} 10^{-3} 10^{-2} 10^{0} 10^{-1} 10^{1} 10^{2} 10^{3} 10^{-2} 10^{-3} 10^{-1} 10^{0} 10^{1} 10^{2} m_{χ} [MeV] m_{χ} [MeV]

Knapen, Lin, Zurek 1709.07882

Sub-GeV DM

'simplified (light) DM models'

scalar DM and hadrophilic scalar mediator

 10^{-4}

 10^{-3}

 $\frac{\overline{\Omega_{\chi}}}{\Omega_{\rm DM}} = 1$

 10^{-2}

 10^{-1}

 10^{0}

 m_{χ} [MeV]

 10^{1}

 10^{2}

 10^{3}

Knapen, Lin, Zurek 1709.07882

fermionic DM and vector mediator (e.g. dark photon)

$\mathcal{L} \supset = -\frac{1}{2}m_{A'}^2 A'_{\mu} A'^{\mu} - \frac{1}{4}F'^{\mu\nu}F'_{\mu\nu} - \frac{\epsilon}{2}F^{\mu\nu}F'_{\mu\nu} - y_{\chi}A'_{\mu}\bar{\chi}\gamma^{\mu}\chi$

Sub-GeV DIM?

- WIMPless Dark Matter
- 'SIMP miracle'
- Asymmetric DM
- 'MeV (scalar) DM' (Integral 511 KeV excess)
- 'simplified (light) DM models'

Sub-GeV DIM?

- WIMPless Dark Matter
- 'SIMP miracle'
- Asymmetric DM
- 'MeV (scalar) DM' (Integral 511 KeV excess)
- 'simplified (light) DM models'

Why not!

Direct Detection of sub-GeV DM

M. Cirelli, A. Strumia, J. Zupan 2406.01705

- electron recoil signal
- Migdal effect
- new experimental strategies

Collider searches of sub-GeV DM

Missing E_T signature is challenging for LHC experiments

- fixed target / beam dump experiments
- search for associated states,
 i.e. particles of a new 'dark sector'


```
e.g. LDMX coll. 1808.05219
```

B. Batell, M. Pospelov and A. Ritz, Exploring Portals to a Hidden Sector Through Fixed Targets, Phys. Rev. D 80 (2009) 095024, [0906.5614].

LDMX collaboration, T. kesson et al., Light Dark Matter eXperiment (LDMX), 1808.05219. L. Doria, P. Achenbach, M. Christmann, A. Denig, P. Glker and H. Merkel, Search for light dark matter with the MESA accelerator, in 13th Conference on the Intersections of Particle and Nuclear Physics, 9, 2018. 1809.07168.

M. Battaglieri et al., US Cosmic Visions: New Ideas in Dark Matter 2017: Community Report, in U.S. Cosmic Visions: New Ideas in Dark Matter, 7, 2017. 1707.04591.

Indirect Detection: charged CRs \bar{p} and e^+ from DM annihilations in halo

Indirect Detection: charged CRs \bar{p} and e^+ from DM annihilations in halo

Indirect Detection: charged CRs \bar{p} and e^+ from DM annihilations in halo

Problem:

sub-GeV charged CRs do not penetrate the heliosphere, experiments cannot collect

Indirect Detection: charged CRs \bar{p} and e^+ from DM annihilations in halo

Problem:

sub-GeV charged CRs do not penetrate the heliosphere, experiments cannot collect... with one exception!

Data: leptons low energy

Cummings+ (Voyager-1 coll.), The Astrophysical Journal, 831:18, 2016
Indirect Detection: charged CRs

Boudaud, Lavalle, Salati 1612.07698

Electron+positron measurements by Voyager I

Propagation A = strong reacceleration Propagation B = weak/no reacceleration

Indirect Detection: charged CRs

Boudaud, Lavalle, Salati 1612.07698

Electron+positron measurements by Voyager I

Indirect detection: photons

adapted from 1611.02232

Past/current experiments: Integral, Comptel, Fermi (2002→) (1991-2000) (2009→)

Planned/proposed experiments: e-Astrogam?, Compair?, Amego?, COSI?

Amego Compair	satellite satellite	2020s? 2020s?	HEP detectors HEP detectors	γ -rays γ -rays	$0.2 - 10 { m GeV}$ $0.2 - 500 { m MeV}$
Ska	S.Africa+Australia	2020s?	radio telescope	radio	50 MHz - 30 GHz
INO-ICAL	India	2020s?	calorimeter	neutrinos	$1 - 100 { m GeV}$
E-ASTROGAM	satellite	2030s?	HEP detectors	γ -rays	$0.3 { m MeV} - 3 { m GeV}$

Cirelli, Strumia, Zupan 2406.01705

Indirect detection: photons

adapted from 1611.02232

Past/current experiments: Integral, Comptel, Fermi (2002→) (1991-2000) (2009→)

Planned/proposed experiments: e-Astrogam?, Compair?, Amego?, COSI?

Amego Compair	satellite satellite	2020s? 2020s?	HEP detectors HEP detectors	γ -rays γ -rays	$0.2 - 10 { m GeV}$ $0.2 - 500 { m MeV}$
Ska	S.Africa+Australia	2020s?	radio telescope	radio	50 MHz - 30 GHz
INO-ICAL	India	2020s?	calorimeter	neutrinos	$1 - 100 { m GeV}$
E-ASTROGAM	satellite	2030s?	HEP detectors	γ -rays	$0.3 { m MeV} - 3 { m GeV}$

Cirelli, Strumia, Zupan 2406.01705

Some recent studies

Essig, Kuflik, McDermott, Volansky et al., 1309.4091

Laha, Muñoz, Slatyer, 2004.00627**v1**

NB: 'prompt' emission only

10⁻²²

10⁻²³

 10^{-24}

10⁻²⁵

p-wave,

 $x_{\rm kd} = 10^{-1}$

 $x_{\rm kd} = 10^{-4}$

10

 10^{-30}

Essig, Kuflik, McDermott, Volansky et al., 1309.4091

Laha, Muñoz, Slatyer, 2004.00627v1

 $\langle \sigma v \rangle_0 (\nu_{\rm DM}/\nu_0)^2 \ [\rm cm^3/sec]$ 10⁻²⁶ 10^{-27} HEAO-1 *p*-wave s-way $x_{\rm kd} = 10^{-6}$ -INTEGRAL 10-28 -COMPTEL 10⁻²⁹ - EGRET FERMI 10 10² 10^{3} 10^{4} m_{χ} [MeV] $\langle \sigma v
angle_{e+e^-} (v_\chi/v_0)^eta \; [{
m cm}^3 \, {
m s}^{-1}]$ INTEGRAL 10^{-24} $x_{\rm kd} = 10$ (this work)Thermal Relic 10^{-26} Voyager CMB 10^{-28}

s-wave

1000

100

 m_{χ} [MeV]

 $\chi \chi \rightarrow e^+ e^-$

NB: 'prompt' emission only

Indirect detection: photons

How to do better? ICS & X-rays!

Cirelli, Fornengo, Kavanagh, Pinetti 2007.11493

Annihilation channels, focus on the MW (assume standard NFW profile) DM DM $\rightarrow e^+e^-$ DM DM $\rightarrow \mu^+\mu^-$ DM DM $\rightarrow \pi^+\pi^-$

Annihilation channels DM DM $\rightarrow e^+e^-$ DM DM $\rightarrow \mu^+\mu^-$ DM DM $\rightarrow \pi^+\pi^-$

Annihilation channels DM DM $\rightarrow e^+e^-$ DM DM $\rightarrow \mu^+\mu^-$ DM DM $\rightarrow \pi^+\pi^-$

Annihilation channels DM DM $\rightarrow e^+e^-$ DM DM $\rightarrow \mu^+\mu^-$ DM DM $\rightarrow \pi^+\pi^-$

Annihilation channels DM DM $\rightarrow e^+e^-$ DM DM $\rightarrow \mu^+\mu^-$ DM DM $\rightarrow \pi^+\pi^-$

'Prompt' emission: Final State Radiation (FSR)

Annihilation channels DM DM $\rightarrow e^+e^-$ DM DM $\rightarrow \mu^+\mu^-$ DM DM $\rightarrow \pi^+\pi^-$

'Prompt' emission:
Final State Radiation (FSR)
Radiative μ decay

Usually irrelevant, but <u>not</u> for μ decaying 'at rest'!

Annihilation channels DM DM $\rightarrow e^+e^-$ DM DM $\rightarrow \mu^+\mu^-$ DM DM $\rightarrow \pi^+\pi^-$

'Prompt' emission:
Final State Radiation (FSR)
Radiative µ decay

Secondary emission: ICS: inevitably associated to annihil to charged states

- upscatter of CMB, infrared and starlight photons on energetic e^{\pm} - probes regions outside of Galactic Center

- upscatter of CMB, infrared and starlight photons on energetic e^{\pm} - probes regions outside of Galactic Center

- upscatter of CMB, infrared and starlight photons on energetic e^{\pm} - probes regions outside of Galactic Center

Annihilation channels DM DM $\rightarrow e^+e^-$ DM DM $\rightarrow \mu^+\mu^-$ DM DM $\rightarrow \pi^+\pi^-$

Key message: ICS allows to probe sub-GeV DM with X-ray data

Analysis

Integral-SPI 2011 data

Bouchet et al., Integral coll. 1107.0200

latitude binned data, central MW

Analysis

Integral-SPI 2011 data

Bouchet et al., Integral coll. 1107.0200

latitude binned data, central MW

remove Gal Plane

latitude b [degrees]

Integral-SPI 2011 data

Bouchet et al., Integral coll. 1107.0200

latitude binned data, central MW

remove Gal Plane 5 energy bands

0.005

0.000

-50

0

latitude b [degrees]

50

Analysis

bands $i \in \{b bins\}$

Integral-SPI 2011 data

Bouchet et al., Integral coll. 1107.0200

latitude binned data, central MW

remove Gal Plane 5 energy bands

Test Statistics: exclude if DM exceeds data by more than ~2 σ global. More precisely: $\chi^2_{>} = \sum_{n=1}^{\infty}$

 $\frac{(\text{Max}[(\Phi_{\text{DM}\gamma,i}(\langle \sigma v \rangle) - \overline{\phi_i}), 0])^2}{\sigma_i^2}$

Bounds on all 3 channels

Cirelli, Fornengo, Kavanagh, Pinetti 2007.11493

Essig+ 1309.4091

Bounds on all 3 channels ICS allows to improve Essig+ 2013 at large $m_{\rm DM}$

Essig+ 1309.4091

Boudaud+ 1612.07698

Bounds on all 3 channels ICS allows to improve Essig+ 2013 at large $m_{\rm DM}$ Voyager1 bounds stronger/weaker dep. on data

Essig+ 1309.4091

Boudaud+ 1612.07698

Slatyer+ 1506.03811 Lopez-H+ 1303.5094 Diamanti+ 1308.2578 Liu+ 2008.01084

Bounds on all 3 channels ICS allows to improve Essig+ 2013 at large $m_{\rm DM}$ Voyager I bounds stronger/weaker dep. on data CMB bounds depend on s-/p-wave annihilation

Cirelli, Fornengo, Koechler, Pinetti, Roach 2303.08854

Bounds on all 3 channels ICS allows to vastly improve at large $m_{\rm DM}$ Deeper than the s-wave CMB bounds

Cirelli, Fornengo, Koechler, Pinetti, Roach 2303.08854

Bounds on all 3 channels ICS allows to vastly improve at large $m_{\rm DM}$ Dominant bounds above 50 MeV

Cirelli, Fornengo, Koechler, Pinetti, Roach 2303.08854

Bounds on all 3 channels ICS allows to vastly improve at large $m_{\rm DM}$ Deeper than the s-wave CMB bounds

De La Torre Luque, Balaji, Koechler 2311.04979

Updated with a refined propagation (incl reacceleration)

Cirelli, Fornengo, Koechler, Pinetti, Roach 2303.08854

Sub-GeV DM is interesting and emerging: Why not?!

Sub-GeV DM is interesting and emerging: Why not?!

ID is (more) challenging than WIMPs

Sub-GeV DM is interesting and emerging: Why not?!

ID is (more) challenging than WIMPs

ICS allows to test it with X-ray data

Sub-GeV DM is interesting and emerging: Why not?!

ID is (more) challenging than WIMPs

ICS allows to test it with X-ray data

Impose stringent constraints

Sub-GeV DM is interesting and emerging: Why not?!

ID is (more) challenging than WIMPs

ICS allows to test it with X-ray data

Impose stringent constraints

(0.1)

Boltzmann equation in the Early Universe:

$$\Omega_X \approx \frac{6 \ 10^{-27} \mathrm{cm}^3 \mathrm{s}^{-1}}{\langle \sigma_{\mathrm{ann}} v \rangle}$$

Relic $\Omega_{\rm DM} \simeq 0.23$ for $\langle \sigma_{\rm ann} v \rangle = 3 \cdot 10^{-26} {\rm cm}^3/{\rm sec}$

$$\langle \sigma_{\rm ann} v \rangle \approx \frac{\alpha_w^2}{M^2} \approx \frac{\alpha_w^2}{1 \,{\rm TeV}^2} \ \Rightarrow \Omega_X \sim \mathcal{O}({\rm fev})$$

0.1)

Boltzmann equation in the Early Universe:

$$\Omega_X \approx \frac{6 \ 10^{-27} \mathrm{cm}^3 \mathrm{s}^{-1}}{\langle \sigma_{\mathrm{ann}} v \rangle}$$

Relic $\Omega_{\rm DM} \simeq 0.23$ for $\langle \sigma_{\rm ann} v \rangle = 3 \cdot 10^{-26} {\rm cm}^3/{\rm sec}$

$$\langle \sigma_{\rm ann} v \rangle \approx \frac{\alpha_w^2}{M^2} \approx \frac{\alpha_w^2}{1 \,{\rm TeV}^2} \ \Rightarrow \Omega_X \sim \mathcal{O}({\rm few})$$

0.1)

Boltzmann equation in the Early Universe:

$$\Omega_X \approx \frac{6 \ 10^{-27} \mathrm{cm}^3 \mathrm{s}^{-1}}{\langle \sigma_{\mathrm{ann}} v \rangle}$$

Relic $\Omega_{\rm DM} \simeq 0.23$ for $\langle \sigma_{\rm ann} v \rangle = 3 \cdot 10^{-26} {\rm cm}^3/{\rm sec}$

$$\langle \sigma_{\rm ann} v \rangle \approx \frac{\alpha_w^2}{M^2} \approx \frac{\alpha_w^2}{1 \,{\rm TeV}^2} \ \Rightarrow \Omega_X \sim \mathcal{O}({\rm few})$$

(0.1)

Boltzmann equation in the Early Universe:

$$\Omega_X \approx \frac{6 \ 10^{-27} \mathrm{cm}^3 \mathrm{s}^{-1}}{\langle \sigma_{\mathrm{ann}} v \rangle}$$

Relic $\Omega_{\rm DM} \simeq 0.23$ for $\langle \sigma_{\rm ann} v \rangle = 3 \cdot 10^{-26} {\rm cm}^3/{\rm sec}$

$$\langle \sigma_{\rm ann} v \rangle \approx \frac{\alpha_w^2}{M^2} \approx \frac{\alpha_w^2}{1 \,{\rm TeV}^2} \ \Rightarrow \Omega_X \sim \mathcal{O}({\rm fev})$$

Candidates

new physics at the TeV scale thermal freeze-out

Understand Direct Detection Detection

even without a larger framework, WIMPs are still appealing
 the three search strategies are complementary

Data: leptons low energy

Cummings+ (Voyager-1 coll.), The Astrophysical Journal, 831:18, 2016

NuSTAR 2015-2020 data

Krivonos et al.2011.11469 Mori et al., 1510.04631 Hong et al., 1605.03882 Perez et al., 1609.00667 Roach et al., 1908.09037

Results

Suzaku 2009 data

Yoshino et al., 0903.2981

Results

XMM-Newton 1999-2018 data

Dessert et al., 1812.06976 Foster et al., 2102.02207

https://github.com/bsafdi/XMM_BSO_DATA Kudos to Safdi, Rodd etc!

Results

XMM-Newton 1999-2018 data

Dessert et al., 1812.06976 Foster et al., 2102.02207

https://github.com/bsafdi/XMM_BSO_DATA Kudos to Safdi, Rodd etc!

Results decay

Suzaku 2009 data

Yoshino et al., 0903.2981

Results decay

NuSTAR 2015-2020 data

Krivonos et al.2011.11469 Mori et al., 1510.04631 Hong et al., 1605.03882 Perez et al., 1609.00667 Roach et al., 1908.09037

Results decay

Integral-SPI 2011 data

Bouchet et al., Integral coll. 1107.0200

Results decay

Cirelli, Fornengo, Koechler, Pinetti, Roach 2303.08854

Cirelli, Fornengo, Koechler, Pinetti, Roach 2303.08854

