

High-precision measurement of the W boson mass with the CMS experiment

CMS-PAS-SMP-23-002

Lorenzo Bianchini Università & INFN Pisa

European Research Council Established by the European Commission

27.11.2024

Seminar, Johannes Gutenberg-Universitat Mainz, 27/11/2024

About me

- 2009: M.Sc. in Physics (Pisa U. & SNS)
 - Member of the CMS Collaboration since 2008
- **2012**: PhD in Physics (Ecole Polytechnique, Palaiseau)

• $H \rightarrow \tau \tau$

- 2013-2017: PosDoc (ETH Zurich)
 - ttH production, $H \rightarrow bb$
- 2017-2021: Researcher (INFN Pisa)
 - m_W with CMS
- **2021-present**: Assoc. Prof. (Physics Dept., Pisa U.)
 - PI of ERC CoG "ASYMOW"

https://erc-asymow.github.io/

E. Fermi (1934): a theory of β-decay

FERMI BETA DECAY THEORY, 1934

 $G_F = 1.166 \times 10^{-5} \text{ GeV}^{-2}$

- **E. Fermi** (1934): a theory of β-decay
- **R. Glashow** (1961): a model of partial symmetries (γ, W^+, W^-, Z^0)

- **E. Fermi** (1934): a theory of β-decay
- **R. Glashow** (1961): a model of partial symmetries (γ, W^+, W^-, Z^0)
- S. Weinberg (1967): a model of leptons

$$\int \frac{m_W^2}{\sqrt{2}G_F \sin^2 \theta_W} \gtrsim (40 \text{ GeV})^2$$
$$m_Z^2 = \frac{\pi \alpha_{EM}}{\sqrt{2}G_F \sin^2 \theta_W \cos^2 \theta_W} \gtrsim (80 \text{ GeV})^2$$

neutron

FERMI BETA DECAY THEORY, 1934

- **E. Fermi** (1934): a theory of β-decay
- **R. Glashow** (1961): a model of partial symmetries (γ, W^+, W^-, Z^0)
- S. Weinberg (1967): a model of leptons

$$\int \frac{m_W^2}{\sqrt{2}G_F \sin^2 \theta_W} \gtrsim (40 \text{ GeV})^2$$
$$\frac{m_Z^2}{m_Z^2} = \frac{\pi \alpha_{EM}}{\sqrt{2}G_F \sin^2 \theta_W \cos^2 \theta_W} \gtrsim (80 \text{ GeV})^2$$

■ **GARGAMELLE** (1973): $\sin^2 \theta_W \in [0.3, 0.4]$

$$G_F = 1.166 \times 10^{-5} \text{ GeV}^{-1}$$

electron

proton

- **E. Fermi** (1934): a theory of β-decay
- **R. Glashow** (1961): a model of partial symmetries (γ, W^+, W^-, Z^0)
- S. Weinberg (1967): a model of leptons

$$\int m_W^2 = \frac{\pi \,\alpha_{EM}}{\sqrt{2}G_F \,\sin^2 \theta_W} \gtrsim (40 \text{ GeV})^2$$
$$m_Z^2 = \frac{\pi \,\alpha_{EM}}{\sqrt{2}G_F \,\sin^2 \theta_W \cos^2 \theta_W} \gtrsim (80 \text{ GeV})^2$$

• **GARGAMELLE** (1973): $\sin^2 \theta_W \in [0.3, 0.4]$

$$m_W \in [60,80] \text{ GeV}$$

 $m_Z \in [75,92] \text{ GeV}$

 $G_F = 1.166 \times 10^{-5} \text{ GeV}^{-2}$

$$m_W = 80.2 \pm 1.5 \text{ GeV}$$

 $m_Z = 91.5 \pm 1.8 \text{ GeV}$

proton

neutron

FERMI BETA DECAY

electron

antineutrino

The SM prediction for m_W

$$\boldsymbol{m}_{\boldsymbol{W}}^{2} = \frac{\boldsymbol{m}_{\boldsymbol{Z}}^{2}}{2} \left(1 + \sqrt{1 - \frac{4\pi \,\alpha_{\boldsymbol{E}\boldsymbol{M}}}{\sqrt{2}G_{F}\boldsymbol{m}_{\boldsymbol{Z}}^{2}}} \right)$$

See e.g. JHEP 05 (2015) 154 <u>W. Hollik's</u> talk

The SM prediction for m_W

$$m_{W}^{2} = \frac{m_{Z}^{2}}{2} \left(1 + \sqrt{1 - \frac{4\pi \,\alpha_{EM}}{\sqrt{2}G_{F}m_{Z}^{2}}} \right) \implies \frac{m_{Z}^{2}}{2} \left(1 + \sqrt{1 - \frac{4\pi \,\alpha_{EM}}{\sqrt{2}G_{F}m_{Z}^{2}}} (1 + \Delta r) \right)$$

$$\mu_{W} = \frac{\mu_{W}}{\mu_{W}} = \frac{\mu_{W}}{\mu_{W}} = \frac{\mu_{W}}{\mu_{W}} = \frac{\mu_{W}}{\mu_{W}} = \frac{\mu_{W}}{\mu_{W}} + \frac{\mu_{W}}{\mu_{W}} = \frac{\mu_{W}}{\mu_{W}} + \frac{\mu_$$

See e.g. JHEP 05 (2015) 154 <u>W. Hollik's</u> talk

The SM prediction for m_W

$$m_{W}^{2} = \frac{m_{Z}^{2}}{2} \left(1 + \sqrt{1 - \frac{4\pi \,\alpha_{EM}}{\sqrt{2}G_{F}m_{Z}^{2}}} \right) \implies \frac{m_{Z}^{2}}{2} \left(1 + \sqrt{1 - \frac{4\pi \,\alpha_{EM}}{\sqrt{2}G_{F}m_{Z}^{2}}} (1 + \Delta r) \right)$$

$$m_{Z} = 911880 \pm 2.0 \text{ MeV}$$

$$m_{H} = 125.20 \pm 0.11 \text{ GeV}$$

$$m_{H} = 172.57 \pm 0.29 \text{ GeV}$$
Full 2 loops + QCD/EWK
@ 3,4-loops
Full 2 loops + QCD/EWK

$$\Delta \mathbf{r} = -\frac{3G_F m_t^2}{8\sqrt{2}\pi^2 \tan^2 \theta_W} + \frac{11G_F m_W^2}{24\sqrt{2}\pi^2} \ln \frac{m_H^2}{m_W^2} + \cdots$$

See e.g. JHEP 05 (2015) 154 <u>W. Hollik's</u> talk

The SM prediction for m_W

$$m_{W}^{2} = \frac{m_{Z}^{2}}{2} \left(1 + \sqrt{1 - \frac{4\pi \alpha_{EM}}{\sqrt{2}G_{F}m_{Z}^{2}}} \right) \implies \frac{m_{Z}^{2}}{2} \left(1 + \sqrt{1 - \frac{4\pi \alpha_{EM}}{\sqrt{2}G_{F}m_{Z}^{2}}} (1 + \Delta r) \right)$$

$$m_{Z} = 911880 \pm 2.0 \text{ MeV}$$

$$m_{H} = 125.20 \pm 0.11 \text{ GeV}$$

$$m_{L} = 172.57 \pm 0.29 \text{ GeV}$$
Full 2 loops + QCD/EWK
@ 3,4-loops
Full 2 loops + QCD/EWK
T > \frac{1}{2} Higgs multiplets?
Extra SU(2) doublets ?
Extra SU(2) doublets ?
Extra U(1)'?

The W mass puzzle (before Sept. 17th)

$$\begin{array}{l} \text{MC simulation} \\ pp \rightarrow W^{\pm} + X \\ \downarrow, \ell^{\pm} + \nu_{\ell} \end{array} \otimes \end{array}$$

1) Build **templates of** $\frac{d\sigma}{dp_T^{\ell}}$ for different values of m_W

Monte Carlo simulation

see e.g. EPJC 77 (2017) 280

Monte Carlo simulation

Resummation Intrinsic **Fixed-order** quark p_T W^+ QED **FSR EWK virtual PDFs** corrections y^W , polarization $\Rightarrow \langle p_T^\ell \rangle$

see e.g. EPJC 77 (2017) 280

see e.g. EPJC 77 (2017) 280

Parton Density Functions

- Dominant systematics in the past
 - <u>Point of concern today</u>: spread of different **PDF fits** not always covered by their uncertainties

Parton Density Functions

- Dominant systematics in the past
 - <u>Point of concern today</u>: spread of different **PDF fits** not always covered by their uncertainties

p_T^W modeling

• <u>Conventional wisdom</u>: tune p_T^W model on precisely measured p_T^Z data

$$\left(\frac{1}{\sigma_W}\frac{d\sigma}{dp_T^W}\right)_{\text{predicted}} = \frac{\left(\frac{1}{\sigma_W}\frac{d\sigma}{dp_T^W}\right)_{\text{MODEL}}}{\left(\frac{1}{\sigma_Z}\frac{d\sigma}{dp_T^Z}\right)_{\text{MODEL}}} \times \left(\frac{1}{\sigma_Z}\frac{d\sigma}{dp_T^Z}\right)_{\text{measured}}$$

• <u>Conventional wisdom</u>: tune p_T^W model on precisely measured p_T^Z data

- Rationale: RATIO better known than spectrum
 - But: cancellation of μ_R/μ_F relies on **correlation scheme**

Conventional wisdom: tune p_T^W model on precisely measured p_T^Z data

- Rationale: RATIO better known than spectrum
 - But: cancellation of μ_R/μ_F relies on **correlation scheme**
- Ideal case: a single MODEL prediction with properly defined uncertainties

The CMS paradigm

Z only for validation (i.e. <u>no tuning</u>)

State-of-the-art calculations

Constrain model uncertainties *in situ*

Large samples, high-granularity

- Large samples \rightarrow <u>high pile-up</u> LHC data \rightarrow focus on **muon momentum** alone
- Analysis done in finely grained 3D-space: $(p_T^{\mu} \times \eta^{\mu} \times q^{\mu}) \rightarrow 2880$ bins
 - 26 < p_T^μ < 56 GeV, $-2.4 < \eta^\mu < 2.4$, $q^\mu = \pm 1$

The CMS detector

- Data from a subset (~10%) of Run2
 (L = 16.8 fb⁻¹)
 - 1st half of 2016 data discarded due to a Read-out problem in Si-strip tracker
 - Average pile-up: $\langle \mu \rangle = 25$

The CMS tracker

- Fully silicon-based
 - Up to 17 points per track (9 \div 50 μ m resolutions)
- Up to 2 radiation lengths

Muons in CMS

- Two-stage reconstruction
 - Muon detector \rightarrow trigger and ID
 - **Tracker** \rightarrow momentum at vtx

Muons in CMS

- Two-stage reconstruction
 - Muon detector \rightarrow trigger and ID
 - **Tracker** \rightarrow momentum at vtx
- Detector efficiency calibrated on $Z
 ightarrow \mu \mu$
 - Uncertainties propagated through O(3,000) nuisance parameters

Impact on $m_W \rightarrow \sim 3 \text{ MeV}$

Magnetic field

- B-field inside tracker mapped in 2006
 - 1. at the surface,
 - 2. with **empty coil**
 - 3. with Hall probes calibrated to 3×10^{-4}
 - 4. $\frac{\Delta B}{B} = -8 \times 10^{-4}$ between map and *in* situ NMR survey

A priori knowledge of B-field not better than 10^{-3}

Magnetic field

- B-field inside tracker mapped in 2006
 - 1. at the surface,
 - 2. with empty coil
 - 3. with Hall probes calibrated to 3×10^{-4}
 - 4. $\frac{\Delta B}{B} = -8 \times 10^{-4}$ between map and *in* situ NMR survey

JINST 5:T03021,2010

A priori knowledge of B-field not better than 10^{-3}

... in excess of the $10^{-4}\ target$

➔ need for *in situ* calibration
Muon momentum scale

Observation: up to 1% bias in scale in ideal simulation (not expected/understood)

Muon momentum scale

1. Fixes to standard CMS reconstruction

- ✓ **Tuning** of parameters in GEANT4 simulation
- ✓ Track re-fit with improved treatment of <u>B-field</u> and <u>material</u>

24.10.2024

1.

Fixes to standard CMS reconstruction

Muon momentum scale

- ✓ **Tuning** of parameters in GEANT4 simulation
- ✓ Track re-fit with improved treatment of <u>B-field</u> and <u>material</u>

- 2. Calibration on $J/\Psi \rightarrow \mu\mu ~(\frac{\Delta m_{J/\Psi}}{m_{I/\Psi}} \sim 10^{-6})$
 - ✓ Global alignment of tracker (+ *B*-field + material)
 - ✓ Fit residual scale bias with parametric model:

$$\left(\frac{p_T^{\text{corr}}}{p_T}\right)_{\pm} = 1 + A_{i\eta} - \frac{\varepsilon_{i\eta}}{p_T} \pm M_{i\eta}p_T$$

L. Bianchini

Parametrized scale corrections

Consistent with *a priori* expectation for *B*-field and material

Validation: Z-closure

- J/Ψ-based calibrations are applied to all reconstructed muons
 - Residual $A'_{i\eta}$, $M'_{i\eta}$ are derived using $Z \rightarrow \mu \mu \rightarrow$ should be = 0 for perfect calibration

Validation: Z-closure

- J/Ψ-based calibrations are applied to all reconstructed muons
 - Residual $A'_{i\eta}$, $M'_{i\eta}$ are derived using $Z \rightarrow \mu \mu \rightarrow$ should be = 0 for perfect calibration

Uncertainties & closure test

Uncertainties on momentum scale:

• (2.1 ×)
$$\sigma_{
m stat}$$
 from J/ Ψ

- σ_{stat} from Z closure
- Δm_Z^{LEP}

Impact on m_W \rightarrow 4.8 MeV

Uncertainties & closure test

- Uncertainties on momentum scale:
 - (2.1 ×) σ_{stat} from J/ Ψ • σ_{stat} from Z – closure

$$\rightarrow 4.8 \text{ MeV}$$

• Validation by fitting $(m^{\mu\mu}, \eta^{\mu-\text{fwd}})$ spectrum:

$$m_Z - m_Z^{\text{PDG}} = -2.2 \pm 4.8 \text{ MeV}$$

= -2.2 + 1.0 (stat) + 4.7 (syst) Me

(not yet an independent measurement of m_Z)

• Δm_7^{LEP}

W and Z modeling: p_T^V

- **Resummation** (\rightarrow SCETLIB @N³LL)
 - "Theory Nuisance Parameters" approach based on **TMD-factorization theorem**

 $f^{\text{pred}}(\alpha) = f_0 + \alpha f_1 + \alpha^2 f_2 + \alpha^3 f_3(\theta_3) + \mathcal{O}(\alpha_s^4)$

- → 7 params. for *boundary conditions*3 params. for *anomalous dimensions*
- Uncertainties from variation of last known term (→ N³⁺⁰LL scheme)

 EPJ+ 136 (2021) 214
 F. Tackman's slides

 JHEP07(2022)129
 G. Marinelli's slides

 arXiv:2411.16004
 Statement

W and Z modeling: p_T^V

- Non-perturbative (→ SCETLIB)
 - $\Lambda_{\rm QCD}/p_T^V$ power corrections to the C.S. kernel
 - $\sim |y|$ -dependent Gaussian smearing in b_T
- Matching to F.O. (→ DYTURBO @NNLO)
 - Variations μ_R/μ_F scale and transition-point
- *b*/*c* quark-masses (→ MSHT20)
 - variation of heavy quark thresholds

Impact on $m_W \rightarrow \sim 2$ MeV

W and Z modeling: A_i

- Angular coefficients (→ MINNLO_{PS} @NLO)
 - Envelope of 7-point scale variations in bins of $p_T^{\it V}$
 - Full difference

MINNLO_{PS} vs. **MINNLO_{PS} + PYTHIA** (due to PYTHIA parton shower/intrinsic k_T)

Impact on $m_W \rightarrow \sim 3.3 \text{ MeV}$

PDFs

<u>REMINDER</u>: large *in situ* constraint of PDFs expected thanks to **eigenvectors profiling**

- We chose CT18Z as nominal PDF set because:
 - good **pre-fit agreement** on y^Z , η^ℓ with relatively **large** uncertainty
 - it covers alternate PDF sets, i.e.

 $|m_W^{\text{alt.PDF}} - m_W^{\text{nom. PDF}}| \le \sigma_{\text{nom. PDF}}$

Impact on $m_W \rightarrow \sim 4.4 \text{ MeV}$

PDF set	Scale factor	impact in <i>n</i>	W (IVIEV)	
		Original $\sigma_{ m PDF}$	Scaled $\sigma_{\rm PDF}$	
CT18Z	—	4.4	1	
CT18	_	4.6		
PDF4LHC21	_	4.1		
MSHT20	1.5	4.3	5.1	
MSHT20aN3LO	1.5	4.2	4.9	
NNPDF3.1	3.0	3.2	5.3	
ΝΝΙΡΓΙΕΛ Ο	50	7 /	60	

EWK uncertainties

- **FSR (**→ PHOTOS++ @LL+MEC)
 - uncertainty from switching on/off the MEC and from full difference with HORACE
- **ISR** (→ PYTHIA8 @LL)
 - uncertainty from switching on/off
- Virtual EWK (→ not included in nominal MC)
 - External calculations from:
 - RENESANCE (for W)
 - POWHEG-BOX-V2 (for Z)
 - NLO/LO ratio taken as a systematic

Impact on $m_W \rightarrow 1.9$ MeV

Model validation: $(p_T^{\mu\mu}, y^{\mu\mu})$ spectrum

Model validation: W-like

Proof-of-principle: mimic a $(p_T^{\mu}, \eta^{\mu}, q^{\mu})$ -only fit using $Z \to \mu \mu$ events in a *W*-like setup:

Model validation: W-like

Proof-of-principle: mimic a $(p_T^{\mu}, \eta^{\mu}, q^{\mu})$ -only fit using $Z \to \mu \mu$ events in a *W*-like setup:

600

53

• Proof-of-principle: mimic a $(p_T^{\mu}, \eta^{\mu}, q^{\mu})$ -only fit using $Z \rightarrow \mu \mu$ events in a *W*-like setup:

Model validation: W-like

W-like: results

- Total uncertainty on m_Z is 13.5 MeV
 - Muon scale (5.6), A_i (4.9), muon eff. (3.8)

Moving to the W

O(5,000) nuisance parameters with Gaussian constraints

24.10.2024

Non-prompt background

- Mostly muons from *B*/*C* hadron decay
- Extended "ABCD" method based on **isolation** : m_T
 - Validated on MC simulation and data sidebands

Functional form of p_T spectrum:

 $f_i(p_T) \propto e^{-(a_i p_T^3 + b_i p_T^2 + c_i p_T)}$

24.10.2024

Unblinding the W fit

- Total uncertainty on m_W is 9.9 MeV
 - m_W kept blinded until all check completed

Source of uncertainty	Nominal			
	in m_Z	in $m_{\rm W}$		
Muon momentum scale	5.6	4.8		
Muon reco. efficiency	3.8	3.0		
W and Z angular coeffs.	4.9	3.3		
Higher-order EW	2.2	2.0		
$p_{\rm T}^{\rm V}$ modeling	1.7	2.0		
PDF	2.4	4.4		
Nonprompt background	_	3.2		
Integrated luminosity	0.3	0.1		
MC sample size	2.5	1.5		
Data sample size	6.9	2.4		
Total uncertainty	13.5	9.9		

Results

 $m_W^{\text{CMS}} = 80360.2 \pm 9.9 \text{ MeV}$

CMS

Test of model dependence

• Impact of loosening model-dependence by assigning additional priors on helicity cross sections $\sigma_i \equiv \sigma_{\rm UL} \times A_i$

- Stability of best-fit m_W tested for increasingly looser priors
 - \rightarrow no evidence of tension or trends

Charge asymmetry

• $m_{W^+} - m_{W^-} = 57 \pm 30$ MeV (p-value = 6%)

• Correlation with **avg. mass** ~ 0.02

Source of uncertainty	Global impact (MeV)						
Source of uncertainty	in $m_{Z^+} - m_{Z^-}$	in $m_{\rm Z}$	in $m_{W^+} - m_{W^-}$	in m_W			
Muon momentum scale	21.2	5.3	20.0	4.4			
Muon reco. efficiency	6.5	3.0	5.8	2.3			
W and Z angular coeffs.	13.9	4.5	13.7	3.0			
Higher-order EW	0.2	2.2	1.5	1.9			
$p_{\rm T}^{\rm V}$ modeling	0.4	1.0	2.7	0.8			
PDF	0.7	1.9	4.2	2.8			
Nonprompt background	_	_	4.8	1.7			
Integrated luminosity	< 0.1	0.2	0.1	0.1			
MC sample size	6.4	3.6	8.4	3.8			
Data sample size	18.1	10.1	13.4	6.0			
Total uncertainty	32.5	13.5	30.3	9.9			

 \blacksquare Likely, a combination of alignment/theory NP's consistently pulled by ${\sim}1\sigma$

- no significant shift in **avg.** m_W even for generous shifts of pre-fit NP

Comparison with ATLAS

arXiv:2403.15085

Unc. [MeV] Total	Stat.	Syst.	PDF	A_i	Backg.	EW	е	μ	<i>u</i> _T	Lumi	Γ_W	PS
$p_{\rm T}^{\ell}$ 16.2	11.1) 11.8	4.9	3.5	1.7	5.6) 5.9	5.4	0.9	1.1	0.1	1.5

		Impact (MeV)			
	Source of uncertainty	Nominal		Glo	obal
		in $m_{\rm Z}$	in m_W	in $m_{\rm Z}$	in m_W
	Muon momentum scale	5.6	4.8	5.3	4.4
	Muon reco. efficiency	3.8	3.0	3.0	2.3
	W and Z angular coeffs.	4.9	3.3	4.5	3.0
For "global" impacts	Higher-order EW	2.2	2.0	2.2	(1.9)
roi giobai inipacts	$p_{\rm T}^{\rm V}$ modeling	1.7	2.0	1.0	0.8
see arXiv:2307.04007	PDF	2.4	4.4	1.9	(2.8)
	Nonprompt background	_	3.2	_	1.7
	Integrated luminosity	0.3	0.1	0.2	0.1
	MC sample size	2.5	1.5	3.6	3.8
	Data sample size	6.9	2.4	10.1	6.0
	Total uncertainty	13.5	9.9	13.5	9.9

CMS-PAS-SMP-23-002

The EWK fit and direct CMS (m_t, m_W)

L. Bianchini

- First measurement of m_W by CMS
 - Most precise measurement at the LHC
 - Approaching the precision of CDF
- Good agreement with the SM prediction and with the PDG average
- The first in a line of new precision EWK measurements by CMS

Thanks for your attention

Nature Reviews Physics 6 (2024) 180

	1110 (1000)	00.000	SM	
\sim 300 lylev	0A2 (1992)	80,360 ± 370		
	CDF 0 (1991)	79,928 ± 390	_	
	ALEPH (2001)	80,477 ± 50		
	DELPHI (2001)	80,399 ± 67		
	L3 (2001)	80,389 ± 70		
	OPAL (2001)	80,491 ± 65		
	LEP avg. (2002)	80,450 ± 40		
	DØ I (2002)	80,483 ± 84		
	CDF I (2001)	80,433 ± 79		
	Tev. avg. (2004)	80,456 ± 59		
	Tev. + LEP avg. (2002)	80,452 ± 33		
5	ALEPH (2003)	80,385 ± 58		
26	DELPHI (2003)	80,402 ± 75		
	L3 (2003)	80,367 ± 78		
11	OPAL (2003)	80,495 ± 67		
Q	LEP avg. (2004)	80,412 ± 42		
	Tev. + LEP avg. (2004)	80,426 ± 34		
	ALEPH (2006)	80,440 ± 51		
	DELPHI (2008)	80,336 ± 67	- _	
	L3 (2006)	80,270 ± 55	•— I	
S .	OPAL (2006)	80,415 ± 52		
IS.	LEP avg. (2013)	80,376 ± 33		
0	DØ II (2009)	80,402 ± 43		
n	DØ II (2012)	80,369 ± 26		
	DØ II avg.	80,376 ± 23		
	CDF II (2007)	80,413 ± 48		
	CDF II (2.2 fb-1)	80.401 ± 19		
	CDF II (2022)	80,433 ± 9.4	•	
	ATLAS (2018)	80,370 ± 19	•	
	LHCb (2022)	80,354 ± 32		
10	Tev. avg. (2022)	80,427 ± 9	•	
~10 MeV	Tev. + LEP avg. (2022)	80,424 ± 9	+	+2 new results in 2024
	20000 20000	80,000 80,000	80.400	
	19,800 /9,800 w	80,000 80,200 (boson mass (MaV by per c ²)	80,400	
		poson mass (mex by ber c.)		

The CMS tracker

- Fully silicon-based
- Up to 17 points per track (9 \div 50 μ m resolutions)
- Up to 2 radiation lengths
 - p_T^{μ} resolution from multiple scattering: $\mathbf{1} \div \mathbf{3}\%$

Muon momentum scale: workflow

- 1. Tuning of parameters in CMS simulation.
- **2. Track re-fit** with improved B-field/material treatment in track propagation.
- **3.** Module-level correction of <u>alignment</u>, <u>B-field</u>, and <u>material</u> by minimizing $J/\Psi \rightarrow \mu\mu$ track residuals.
 - \rightarrow Scale in ideal MC is **now unity** within a few 10^{-5}
 - → Residual mis-modeling can be **parametrized** as:

$$\left(\frac{\delta p_T}{p_T}\right)_{\pm} = \mathbf{A}_{i\eta} - \frac{\boldsymbol{\varepsilon}_{i\eta}}{p_T} \pm \mathbf{M}_{i\eta} p_T$$

4. $(A_{i\eta}, \varepsilon_{i\eta}, M_{i\eta})$ from likelihood fits to J/Ψ mass binned in $(p_T^+, \eta^+, p_T^-, \eta^-)$

Muon momentum scale

Muon momentum scale

4. Removal of residual data/MC scale bias using J/ Ψ events in a finegrained 4D space $(p_T^+, \eta^+, p_T^-, \eta^-)$

- Fit a scale shift *∑* in each 4D bin
- Finally, do a χ^2 fit of $(A_\eta, \varepsilon_\eta, M_\eta)$ from all bins

$$\sum_{ijkl} \frac{\left(\Sigma_{ijkl}^{2} - \left(\boldsymbol{A}_{j} - \frac{\boldsymbol{\varepsilon}_{j}}{p_{T,i}} + \boldsymbol{M}_{j}p_{T,i}\right)\left(\boldsymbol{A}_{l} - \frac{\boldsymbol{\varepsilon}_{l}}{p_{T,k}} + \boldsymbol{M}_{l}p_{T,k}\right)\right)^{2}}{\operatorname{Var}[\Sigma_{ijkl}^{2}]}$$

Impact on m_W

Source of uncertainty	Nuisance parameters	Uncertainty in m_W (MeV)
J/ ψ calibration stat. (scaled $\times 2.1$)	144	3.7
Z closure stat.	48	1.0
Z closure (LEP measurement)	1	1.7
Resolution stat. (scaled $\times 10$)	72	1.4
Pixel multiplicity	49	0.7
Total	314	4.8
PDF

Fitting simultaneously eta_mu and yZ

PDE cot	Nomi	nal fit	Without PI	$DF + \alpha_s$ unc.	Without theory unc.		
r Dr set	χ^2/ndf	<i>p</i> -val. (%)	χ^2/ndf	<i>p</i> -val. (%)	χ^2/ndf	<i>p</i> -val. (%)	
CT18Z	100.7/116	84	125.3/116	26	103.8/116	78	
CT18	100.7/116	84	153.2/116	1.0	105.7/116	74	
PDF4LHC21	97.7/116	89	105.5/116	75	104.1/116	78	
MSHT20	97.0/116	90	107.4/116	70	98.8/116	87	
MSHT20aN3LO	99.0/116	87	122.8/116	31	101.9/116	82	
NNPDF3.1	99.1/116	87	105.5/116	75	115.0/116	51	
NNPDF4.0	99.7/116	86	104.3/116	77	116.7/116	46	

Further checks

_

-0

Configuration	$m^+_W - m^W~({ m MeV})$	Δm_W (MeV)
nominal	57 ± 30	0
Alignment ${\sim}1$ sigma up	38 ± 30	< 0.1
LHE A_i as nominal	48 ± 30	-0.5
A_3 one sigma down	49 ± 30	0.4
Alignment and A_i shifted as above	21 ± 30	0.1
Alignment \sim 3 sigma up	-5 ± 30	0.6

Configuration	$\Delta m_{\rm W}$ in MeV	Auxiliary parameter
$26 < p_{\rm T} < 52 { m GeV}$	-0.75 ± 10.03	
$30 < p_{ m T} < 56{ m GeV}$	-1.11 ± 11.05	—
$30 < p_{\rm T} < 52 { m GeV}$	-2.15 ± 11.17	—
W floating	-0.47 ± 9.98	$\mu_{ m W} = 0.979 \pm 0.026$
Alt. veto efficiency	0.05 ± 9.88	_
Hybrid smoothing	-1.58 ± 9.88	—
Charge difference	0.34 ± 9.89	$m_{ m W}^{ m diff.} = 56.96 \pm 30.30{ m MeV}$
η sign difference	-0.01 ± 9.88	$m_W^{ m diff.}=5.8\pm12.4{ m MeV}$
$ \eta $ range difference	$\textbf{-0.61} \pm \textbf{9.90}$	$m_{\mathrm{W}}^{\mathrm{diff.}} = 15.3 \pm 14.7\mathrm{MeV}$

Fit model

- m_W extracted from binned maximum-likelihood fit
 - Systematic uncertainties → nuisance parameters (NP) with Gaussian constraints
- RDataFrame → multi-dimensional Boost Histogram's
 - Nominal × systematic variations
- Likelihood calculation and minimization based on Tensorflow library

W-like m_7

3127

2

177

22

4

4

343

2784

338

14

1

60

176

1

10

4

 $m_{
m W}$

3658

531

387

3

353

176

32

10

8

Systematic uncertainties

Nonprompt background

Muon momentum scale

Muon efficiency

Muon eff. veto

Muon eff. syst.

Muon eff. stat.

Prompt background

Angular coefficients

W MINNLO_{PS} $\mu_{\rm F}$, $\mu_{\rm R}$

Z MINNLO_{PS} $\mu_{\rm F}, \mu_{\rm R}$

Theory nuisance parameters

PYTHIA shower $k_{\rm T}$

Nonperturbative

c, b quark mass

Perturbative

L1 prefire

Luminosity

PDF (CT18Z)

 $p_{\rm T}^{\rm V}$ modeling

TNP

F. Tackman's slides

L. Bianchini

Charge asymmetry

- $m_{W^+}-m_{W^-}=57\pm 30$ MeV
 - *p*-value = 6%

Source of uncertainty	Global impact (MeV)						
Source of uncertainty	in $m_{Z^+} - m_{Z^-}$	in $m_{\rm Z}$	in $m_{W^+} - m_{W^-}$	in $m_{\rm W}$			
Muon momentum scale	21.2	5.3	20.0	4.4			
Muon reco. efficiency	6.5	3.0	5.8	2.3			
W and Z angular coeffs.	13.9	4.5	(13.7)	3.0			
Higher-order EW	0.2	2.2	1.5	1.9			
$p_{\rm T}^{\rm V}$ modeling	0.4	1.0	2.7	0.8			
PDF	0.7	1.9	4.2	2.8			
Nonprompt background	-	-	4.8	1.7			
Integrated luminosity	< 0.1	0.2	0.1	0.1			
MC sample size	6.4	3.6	8.4	3.8			
Data sample size	18.1	10.1	13.4	6.0			
Total uncertainty	32.5	13.5	30.3	9.9			

- $\hfill Likely,$ a combination of alignment/theory nuisances consistently pulled by ${\sim}1\sigma$
 - no significant shift in m_W even for generous shifts of pre-fit NP

Test of model dependence

PDF dependence

Comparison w/ ATLAS & CDF-II

• To enable one-to-one comparison with ATLAS, use "global" impacts

Unc. [MeV] Total	Stat.	Syst.	PDF	A_i	Backg.	EW	е	μ	<i>u</i> _T	Lumi	Γ_W	PS
p_{T}^{ℓ}	16.2	11.1	11.8	4.9	3.5	1.7	5.6	5.9	5.4	0.9	1.1	0.1	1.5

	Impact (MeV)						
Source of uncertainty	Nor	ninal	Global				
	in $m_{\rm Z}$	in m_W	in $m_{\rm Z}$	in m_W			
Muon momentum scale	5.6	4.8	5.3	4.4			
Muon reco. efficiency	3.8	3.0	3.0	2.3			
W and Z angular coeffs.	4.9	3.3	4.5	3.0			
Higher-order EW	2.2	2.0	2.2	1.9			
$p_{\rm T}^{\rm V}$ modeling	1.7	2.0	1.0	0.8			
PDF	2.4	4.4	1.9	2.8			
Nonprompt background	_	3.2	_	1.7			
Integrated luminosity	0.3	0.1	0.2	0.1			
MC sample size	2.5	1.5	3.6	3.8			
Data sample size	6.9	2.4	10.1	6.0			
Total uncertainty	13.5	9.9	13.5	9.9			

Source	Uncertainty (MeV)
Lepton energy scale	3.0
Lepton energy resolution	1.2
Recoil energy scale	1.2
Recoil energy resolution	1.8
Lepton efficiency	0.4
Lepton removal	1.2
Backgrounds	3.3
$p_{\rm T}^Z$ model	1.8
$p_{\rm T}^W/p_{\rm T}^Z$ model	1.3
Parton distributions	3.9
QED radiation	2.7
W boson statistics	6.4
Total	9.4

arXiv:2307.04007

arXiv:2403.15085 CMS-PAS-SMP-23-002 Science 376 (2022) 6589 Recoil

