Supernova-scope for the Direct Search of Supernova Axions

Koichi Hamaguchi (University of Tokyo) @PRISMA Colloquium, JGU Mainz, April 17, 2024

Based on [arXiv:2008.03924] JCAP 11 (2020) 059 Shao-Feng Ge (TDLI), Koichi Hamaguchi (Tokyo), Koichi Ichimura (Tohoku), Koji Ishidoshiro (Tohoku), Yoshiki Kanazawa (Tokyo), Yasuhiro Kishimoto (Tohoku), Natsumi Nagata (Tokyo), Jiaming Zheng (TDLI).

X-ray detector

Koichi Hamaguchi

Research Interests

Koichi Hamaguchi

Research Interests

Recent Topics

- Compact Stars × BSM Physics (since 2018)
- Axion × wormhole (since 2021)
- GUT models and proton decays (since 2020)
- Leptogenesis (since Ph.D.)
- SUSY models and signatures at LHC
- etc.

• Ph.D. University of Tokyo, 2002 Postdoc and Junior Staff, DESY, 2002–2006 • Faculty Member, University of Tokyo, since 2006

• Extensions in the lepton sector (such as $U(1)_{\mu-\tau}$ model and g-2 motivated models)

Koichi Hamaguchi

Research Interests

Recent Topics

• Compact Stars × BSM Physics (since 2018)

• Ph.D. University of Tokyo, 2002 • Postdoc and Junior Staff, DESY, 2002-2006 • Faculty Member, University of Tokyo, since 2006

Koichi Hamaguchi

Research Interests

Recent Topics

- Compact Stars × BSM Physics (since 2018)
 - - arXiv 2309.02633, 2308.16066, 2204.02413, 2204.02238, 1905.02991, 1904.04667.
 - w/ Motoko Fujiwara, Natsumi Nagata, Maura E. Ramirez-Quezada, Keisuke Yanagi, Jiaming Zheng

Tokyo \rightarrow TUM

Tokyo

• Ph.D. University of Tokyo, 2002 Postdoc and Junior Staff, DESY, 2002–2006 • Faculty Member, University of Tokyo, since 2006

Physics beyond the Standard Model (BSM), Cosmology and Astroparticle Physics

Tokyo \rightarrow Mainz

Tokyo → TDLI

Koichi Hamaguchi

Research Interests

Recent Topics

- Compact Stars × BSM Physics (since 2018)
 - - arXiv 2309.02633, 2308.16066, 2204.02413, 2204.02238, 1905.02991, 1904.04667.
 - Neutron Star × Axion
 - arXiv <u>1806.07151</u>. w/ Natsumi Nagata, Keisuke Yanagi, Jiaming Zheng

• Ph.D. University of Tokyo, 2002 Postdoc and Junior Staff, DESY, 2002–2006 • Faculty Member, University of Tokyo, since 2006

Physics beyond the Standard Model (BSM), Cosmology and Astroparticle Physics

• w/ Motoko Fujiwara, Natsumi Nagata, Maura E. Ramirez-Quezada, Keisuke Yanagi, Jiaming Zheng

Koichi Hamaguchi

Research Interests

Recent Topics

• Compact Stars × BSM Physics (since 2018)

- arXiv 2309.02633, 2308.16066, 2204.02413, 2204.02238, 1905.02991, 1904.04667.
- Neutron Star × Axion
 - arXiv <u>1806.07151</u>. w/ Natsumi Nagata, Keisuke Yanagi, Jiaming Zheng

Supernova × Axion

Today's Talk

• Ph.D. University of Tokyo, 2002 Postdoc and Junior Staff, DESY, 2002–2006 • Faculty Member, University of Tokyo, since 2006

Physics beyond the Standard Model (BSM), Cosmology and Astroparticle Physics

• w/ Motoko Fujiwara, Natsumi Nagata, Maura E. Ramirez-Quezada, Keisuke Yanagi, Jiaming Zheng

• arXiv 2008.03924. w/ S.Ge, T.Kanazawa, K.Ichimura, K.Ishidoshiro, Y.Kishimoto, N.Nagata, J.Zheng

Toady's Main message

https://images.datacentral.org.au/malin/AAT/050a

What if the next nearby SN occurs?

Supernova 1987A (February 23, 1987)

http://www-sk.icrr.u-tokyo.ac.jp/sk/physics/supernova-e.html

pioneered the new field of neutrino astronomy. (Nobel Prize 2002)

We could learn a lot about neutrino, supernova, and maybe...

Toady's Main message

- If a nearby (< a few 100 pc) supernova (SN) occurs, a huge number of axions (in addition to neutrinos) may arrive at the Earth.
- Those SN axions may be detected by an axion Supernova-scope with the help of pre-SN neutrino alert.

Similar idea in: G.G.Raffelt, J.Redondo, N.Viaux Maira (2011), I.G.Irastorza, J.Redondo (2018).

 SN-scopes based on the next-generation axion helioscopes (such as IAXO) have potential to detect O(1-100) SN axions.

[arXiv:2008.03924] JCAP **11** (2020) 059.

SN

X-ray detector

axion

X-ray optics

S.Ge, K.Hamaguchi, K.Ichimura, K.Ishidoshiro, Y.Kanazawa, Y.Kishimoto, N.Nagata, J.Zheng.

Plan

- Introduction: Standard Model and Axion
- Supernova Axion detection
 - SN candidates
 - Supernova-scope
 - Pre-SN neutrino
 - Observation time fraction
 - Event number
- Summary

Plan

Introduction: Standard Model and Axion

- Supernova Axion detection
 - SN candidates
 - Supernova-scope
 - Pre-SN neutrino
 - Observation time fraction
 - Event number
- Summary

elementary particles

elementary particles

elementary particles

Figs. from higgstan.com

elementary particles

Figs. from higgstan.com

elementary particles

elementary particles

Standard Model

U С U quarks up quark charm quark d S down quark strange quark μ e 6 eptons electron muon Ve Vµ electron neutrino muon neutrino

Standard Model

$$\begin{aligned} \mathscr{L} &= -\sum \frac{1}{4} F^{a}_{\mu\nu} F^{a\mu\nu} & ..\\ &+ \sum i \bar{\psi} \gamma^{\mu} D_{\mu} \psi & ..\\ &+ |D_{\mu} \phi|^{2} - V(\phi) & ..\\ &+ \sum y \phi \bar{\psi} \psi + \text{h.c.} & .. \end{aligned}$$

It can explain the outcome of countless experiments in particle physics with remarkable accuracy.

The most successful theory of particle physics to date.

- ... gauge fields
- .. matter fields + gauge interactions
- . Higgs fields
- . Yukawa interactions

Standard Model

$$\begin{aligned} \mathscr{L} &= -\sum \frac{1}{4} F^a_{\mu\nu} F^{a\mu\nu} & ..\\ &+ \sum i \bar{\psi} \gamma^\mu D_\mu \psi & ..\\ &+ |D_\mu \phi|^2 - V(\phi) & ..\\ &+ \sum y \phi \bar{\psi} \psi + \text{h.c.} & .. \end{aligned}$$

- Dark Matter,
- Matter-Antimatter asymmetry of the Universe,
- Inflation,
- Neutrino masses,
- Strong CP problem,
- •etc.

- ... gauge fields
- ... matter fields + gauge interactions
- . Higgs fields
- . Yukawa interactions
- But there are puzzles and problems that the Standard Model cannot explain, such as

Strong CP problem

$$\left\{ \mathscr{L}_{SM} \ni \frac{\alpha_s}{8\pi} \theta \, G^a_{\mu\nu} \, \widetilde{G}^{a\mu\nu} - \sum_q m_q \bar{q} \, \theta_q \, i\gamma_5 q \right.$$
Experimental constraint (neutron EDM): $|\bar{\theta}| \lesssim 10^{-10} \left(\bar{\theta} = \theta + \sum_q \theta_q \right)$

The most serious fine-tuning problem in the Standard Model.

It cannot be explained even by the anthropic discussion.

cf. The cosmological constant (CC) problem.

But humans can exist even if $\bar{\theta}$ is much larger.

- (The CC is small because, otherwise, humans would not exist to observe it.)

Strong CP problem

Experimental constraint (neutron

• It can be solved by the "Peccei-Quinn mechanism", [Peccei, Quinn,'77] predicting a very light particle, Axion. [Weinberg,'78, Wilczek,'78]

$$\mathscr{L}_{\text{axion}} \ni \frac{\alpha_s}{8\pi} \frac{a}{f_a} G^a_{\mu\nu} \widetilde{G}^{a\mu\nu}$$

• Moreover, Axion can be the Dark Matter.

$$\mathscr{L}_{SM} \ni \frac{\alpha_s}{8\pi} \theta G^a_{\mu\nu} \widetilde{G}^{a\mu\nu} - \sum_q m_q \overline{q} \theta_q i \gamma_5 q$$
Experimental constraint (neutron EDM): $|\overline{\theta}| \lesssim 10^{-10}$
 $\left(\overline{\theta} = \theta + \sum_q \theta_q\right)$

$$\Omega_a h^2 = 0.18 \,\theta_i^2 \left(\frac{f_a}{10^{12} \,\text{GeV}}\right)^{1.19}.$$
[Turner,'86]

Introduction: Axion QCD

• Axion's coupling is determined by the decay constant f_a .

$$\mathscr{L}_{\text{int}} = \frac{\alpha_s}{8\pi} \frac{a}{f_a} \underbrace{G^{a\mu\nu} \widetilde{G}^a_{\mu\nu}}_{\text{gluon}} + \frac{1}{4} \frac{C_{a\gamma\gamma}}{f_a} a \underbrace{F_{\mu\nu}}_{\text{photon}}$$

$$C_{a\gamma\gamma} = \frac{\alpha}{2\pi} \left(\frac{E}{N} - \frac{2}{3} \frac{4m_d + m_u}{m_u + m_d} \right), \quad \begin{cases} C_q = 0 \quad (\text{KSVZ}) \\ C_{u,c,t} = \cos^2 \beta/3, \quad C_d \end{cases}$$

• Axion's mass is also determined by f_a .

$$m_a = \frac{\sqrt{m_u m_d}}{m_u + m_d} \frac{f_\pi m_\pi}{f_a} \simeq 5.8 \times \left(\frac{10^9 \text{ GeV}}{f_a}\right) \text{ meV}.$$

 $d_{d,s,b} = \sin^2 \beta / 3$ (DSVZ)

• Roughly speaking, all parameters are determined by f_a up to O(1) model dependent parameters.

Introduction: Axion QCD Constraints

- Neutron Star Cooling $f_a \gtrsim \mathcal{O}(10^8)$ GeV

But there are various uncertainties.

There are also hints for stellar cooling. preferred values: $f_a \sim 8 \times 10^7$ GeV, $\tan \beta \sim 0.28$ (DFSZ). (SN1987A not included). [M. M. Giannotti, I. G. Irastorza, J. Redondo, A. Ringwald, and K. Saikawa 2017]

It would be nice to have a more direct method for detecting axions produced by stellar objects.

• SN1987A: $f_a \gtrsim O(10^8)$ GeV (KSVZ) [P.Carenza et.al., 2019 + others]

[KH, N.Nagata, K.Yanagi, J.Zheng, 2018 + others]

Plan

- Introduction: Standard Model and Axion
- Supernova Axion detection
 - SN candidates
 - Supernova-scope
 - Pre-SN neutrino
 - Observation time fraction
 - Event number

Summary

Nearby SN progenitor candidates

Antares (~ 170 pc)

https://www.civillink.net/esozai/

Betelgeuse $(\sim 200 \text{ pc})$

Nearby SN progenitor candidates

pc)	Mass (M_{\odot})	RA (J2000)	Dec $(J2000)$
	11.43 ± 1.15 [79]	13:25:11.58	-11:09:40.8
	$20.0 \ [80]$	16:37:09.54	-10:34:01.5
	10.1 ± 1.0 [81]	14:41:55.76	$-47{:}23{:}17.5$
	11 - 14.3 [82]	16:29:24.46	-26:25:55.2
	11.7(8) [81]	21:44:11.16	+09:52:30.0
]	$11.6^{+5.0}_{-3.9}$ [84]	05:55:10.31	$+07{:}24{:}25.4$

Plan

- Introduction: Standard Model and Axion
- Supernova Axion detection
 - SN candidates
 - Supernova-scope
 - Pre-SN neutrino
 - Observation time fraction
 - Event number

Summary

nearby SN

nearby SN

nearby SN

http://www-sk.icrr.u-tokyo.ac.jp/sk/physics/supernova-e.html

•SN1987A

neutrino burst within $\Delta t \simeq 10$ sec.

Future: various neutrino detectors

Supernova-scope If the

If the axion exists,...

$$\mathscr{L}_{a\gamma\gamma} = \frac{1}{4} \frac{C_{a\gamma\gamma}}{f_a} a F_{\mu\nu} \widetilde{F}^{\mu\nu}$$

$$a \longrightarrow \gamma$$

$$B$$

$$B$$

$$Magnet coll$$

• Essentially the same as the Axion Helioscopes for the solar axion.

Axion Helioscopes

	(Proposed) site	$B(\mathbf{T})$	L (m)	$A (m^2)$
	CERN	9	9.3	$2.9 imes 10^{-3}$
	DESY	~ 2	10	0.77
[]	DESY	~ 2.5	20	2.3
	DESY	~ 3.5	22	3.9
	INR	3.5	12	0.28

Fig. from IAXO homepage
- Essentially the same as the Axion Helioscopes for the solar axion.
- But the axion energy is different.

X-ray focusing optics doesn't work for γ -rays. ×

X

X-ray detector cannot measure the γ -ray energy, and hence the background rejection is difficult (see backup slide).

solar axion

SN axion

Idea: install a γ -ray detector at the opposite end to the X-ray detector. S.Ge, K.Hamaguchi, K.Ichimura, K.Ishidoshiro, Y.Kanazawa, Y.Kishimoto, N.Nagata, J.Zheng. Magnet coil axion \sim

γ -ray detector

[arXiv:2008.03924] JCAP **11** (2020) 059.

Normal operation time: It works as an axion helioscope.

S.Ge, K.Hamaguchi, K.Ichimura, K.Ishidoshiro, Y.Kanazawa, Y.Kishimoto, N.Nagata, J.Zheng. [arXiv:2008.03924] JCAP **11** (2020) 059.

Idea: install a γ -ray detector at the opposite end to the X-ray detector.

Idea: install a γ -ray detector at the opposite end to the X-ray detector. Normal operation time: It works as an axion helioscope.

1102 19-

S.Ge, K.Hamaguchi, K.Ichimura, K.Ishidoshiro, Y.Kanazawa, Y.Kishimoto, N.Nagata, J.Zheng. [arXiv:2008.03924] JCAP **11** (2020) 059.

1012818P NE1-2

noixe "

Normal operation time: It works as an axion helioscope.

When a Supernova occurs,....

S.Ge, K.Hamaguchi, K.Ichimura, K.Ishidoshiro, Y.Kanazawa, Y.Kishimoto, N.Nagata, J.Zheng. [arXiv:2008.03924] JCAP **11** (2020) 059.

Idea: install a γ -ray detector at the opposite end to the X-ray detector.

1012818P NET-P

NOIXE

Idea: install a γ -ray detector at the opposite end to the X-ray detector. Normal operation time: It works as an axion helioscope.

When a Supernova occurs,....

S.Ge, K.Hamaguchi, K.Ichimura, K.Ishidoshiro, Y.Kanazawa, Y.Kishimoto, N.Nagata, J.Zheng. [arXiv:2008.03924] JCAP **11** (2020) 059.

X-ray optics

Supernova-scope

Idea: install a γ -ray detector at the opposite end to the X-ray detector. Normal operation time: It works as an axion helioscope.

When a Supernova occurs,....

S.Ge, K.Hamaguchi, K.Ichimura, K.Ishidoshiro, Y.Kanazawa, Y.Kishimoto, N.Nagata, J.Zheng. [arXiv:2008.03924] JCAP **11** (2020) 059.

Axion Supernova-scope

Plan

- Introduction: Standard Model and Axion
- Supernova Axion detection
 - SN candidates
 - Supernova-scope
 - Pre-SN neutrino
 - Observation time fraction
 - Event number

Summary

The SN-scope has to be pointed to the exploding SN. But SN-axions come within $\Delta t \sim 10$ sec. (cf. neutrino burst)

How do we know the timing of the SN in advance?

Figure from K.Ishidoshiro's talk in 2019. https://www.lowbg.org/ugnd/workshop/sympo_all/201903_Sendai/

For a review of pre-SN neutrinos, see, e.g., C.Kato, K.Ishidoshiro, T.Yoshida [2006.02519].

Time

Figure from K.Ishidoshiro's talk in 2019. https://www.lowbg.org/ugnd/workshop/sympo_all/201903_Sendai/

For a review of pre-SN neutrinos, see, e.g., C.Kato, K.Ishidoshiro, T.Yoshida [2006.02519].

The cumulative numbers of expected pre-SN ν events for Fe-Core progenitor, d = 200 pc.C. Kato et.al., [1506.02358].

P. Antonioli et.al., [astro-ph/0406214]. SNEWS collaboration [2011.00035]

- The pre-SN neutrinos can be detected (warning alert triggered) O(hours)-O(days) prior to the SN explosion (d < a few 100 pc).

 - \rightarrow We discard them.

* SN progenitors with $M < 10 M_{\odot}$ \rightarrow Pre-SN ν flux is too small to be detected even for d < 200 pc. C. Kato et.al., [1506.02358].

- The pre-SN neutrinos can be detected (warning alert triggered) O(hours)-O(days) prior to the SN explosion (d < a few 100 pc).
- It is in principle possible to estimate the location of the SN candidate on the sky.

t = -1.0 hour

JUNO (68% C.L.) JUNO + Li (68% C.L.) $\bar{\nu}_e + p \rightarrow e^+ + n$ 330 300 for Betelgeuse, t = -1.0 hour. M.Mukhopadhyay et.al., [2004.02045]

Once a pre-SN neutrino alert is received,

Once a pre-SN neutrino alert is received,

Once a pre-SN neutrino alert is received,

Plan

- Introduction: Standard Model and Axion
- Supernova Axion detection
 - SN candidates
 - Supernova-scope
 - Pre-SN neutrino
 - Observation time fraction
 - Event number

Summary

Fig. from IAXO homepage

$-\theta_{\max} \le \theta \le + \theta_{\max}$

maximum elevation:

 25° (IAXO) Η 20° (TASTE) max

a

but if you are unlucky,...

Earth's rotation (24 hours)

Observational time fraction > 50% for all the progenitors except α Lupi.

The time fraction can be increased by

- increasing the maximum elevation $\theta_{\rm max}$ and/or

S.Ge, K.Hamaguchi, K.Ichimura, K.Ishidoshiro, Y.Kanazawa, Y.Kishimoto, N.Nagata, J.Zheng. [arXiv:2008.03924] JCAP **11** (2020) 059.

two SN-scopes at different observation points (e.g., Hamburg and Tokyo)

Plan

- Introduction: Standard Model and Axion
- Supernova Axion detection
 - SN candidates
 - Supernova-scope
 - Pre-SN neutrino
 - Observation time fraction

Event number

Summary

-72-

Production

For the axion luminosity, we follow [P.Carenza et.al., 1906.11844], which includes various corrections to the one-pion exchange approximation. At the post-bounce time 1sec,

Thus, the total number of axions from SN is

$$N_a^{\rm SN} = \dot{N}_a \Delta t = \frac{L_a}{\langle E_a \rangle} \Delta t \simeq 3 \times 10^{57} \left(\frac{3 \times 10^8 \text{ GeV}}{f_a}\right)^2 \left(\frac{C_{N,\text{eff}}}{0.37}\right)^2 \left(\frac{\Delta t}{10 \text{ s}}\right) \left(\frac{T}{30 \text{ MeV}}\right)^2 \left(\frac{10 \text{ s}}{10 \text{ s}}\right) \left(\frac{T}{10 \text{ s}}\right)^2 \left(\frac{10 \text{ s}}{10 \text{ s}}\right)^2 \left(\frac{10 \text{ s}}{$$

cf. more recent studies, P.Carenza+, 2010.02943, 2108.13726]

$$\frac{A}{4\pi d^2} = 8$$

Experiment	(Propos
CAST [34–39]	CERN
BabyIAXO $[41]$	DESY
IAXO baseline $[40, 41]$	DESY
IAXO $+$ [41]	DESY
TASTE $[42]$	INR

$$N_{\rm event} = N_a^{\rm SN}$$

Detection

$$P = \frac{1}{4} \left(\frac{C_{a\gamma\gamma}}{f_a} BL \right)^2 \left(\frac{\sin(qL/2)}{qL/2} \right)^2$$

$$= 3.6 \times 10^{-20} \left(\frac{C_{a\gamma\gamma}}{\alpha/\pi} \right)^2 \left(\frac{3 \times 10^8 \text{ GeV}}{f_a} \right)^2$$
where $q = m_a^2/2E_a$.

Experiment	(Propos
CAST [34–39]	CERN
BabyIAXO $[41]$	DESY
IAXO baseline $[40, 41]$	DESY
IAXO $+$ [41]	DESY
TASTE $[42]$	INR

After all,...

$$N_{\text{event}} \simeq 1.0 \times \underbrace{\left(\frac{3 \times 10^8 \text{ GeV}}{f_a}\right)^4 \left(\frac{C_{N,\text{eff}}}{0.37}\right)^2 \left(\frac{C_{a\gamma\gamma}}{\alpha/\pi}\right)^2}_{\text{axion model}} \times \underbrace{\left(\frac{150 \text{ pc}}{d}\right)^2 \left(\frac{\Delta t}{10 \text{ s}}\right) \left(\frac{T}{30 \text{ MeV}}\right)^{5/2}}_{\text{SN}}}_{\text{SN}}$$

$$\times \underbrace{\left(\frac{A}{2.3 \text{ m}^2}\right) \left(\frac{B}{2.5 \text{ T}}\right)^2 \left(\frac{L}{20 \text{ m}}\right)^2}_{\text{detector}} \times \underbrace{\left(\frac{\sin\left(qL/2\right)}{qL/2}\right)^2}_{\text{detector}}.$$

* We expect roughly O(1)~10 uncertainty, especially from SN part.

S.Ge, K.Hamaguchi, K.Ichimura, K.Ishidoshiro, Y.Kanazawa, Y.Kishimoto, N.Nagata, J.Zheng. [arXiv:2008.03924] JCAP **11** (2020) 059.

$N_{\rm event} = 1 \sim 100$ for Betelgeuse ($d \simeq 220$ pc) and Spica ($d \simeq 77$ pc)

 Axion coupling: KSVZ model $(C_{N,\text{eff}} = 0.37 \text{ and } C_{\alpha\gamma\gamma} = \alpha/\pi)$

• Axion mass: free parameter (ALPs-like)

- Better sensitivity than helioscopes for large mass, because of higher axion energy $(E_a^{\rm SN} \sim 70 {\rm MeV} \gg E_a^{\rm sun} \sim {\rm a few keV}).$
- •For small mass region, both solar axion and SN-axion may be discovered.

Summary

- If a nearby (< a few 100 pc) supernova (SN) occurs, a huge number of axions (in addition to neutrinos) may arrive at the Earth.
- Those SN axions may be detected by an axion Supernova-scope with the help of pre-SN neutrino alert.

Similar idea in: G.G.Raffelt, J.Redondo, N.Viaux Maira (2011), I.G.Irastorza, J.Redondo (2018).

 SN-scopes based on the next-generation axion helioscopes (such as IAXO) have potential to detect O(1-100) SN axions.

[arXiv:2008.03924] JCAP 11 (2020) 059.

A nearby SN is so rare —— it would be a once in a lifetime opportunity for directly detecting SN axions!

- S.Ge, K.Hamaguchi, K.Ichimura, K.Ishidoshiro, Y.Kanazawa, Y.Kishimoto, N.Nagata, J.Zheng.

 10^{-8}

Motivation: axion

Conventional Models

• **KSVZ** axion model [Kim,'79, Shifman, Vainshtein, Zakharov,'80]

$$\mathcal{L} = |\partial \phi|^2 + (\lambda \phi \bar{Q}Q + h.c.) - V(|\phi|)$$

• Q, \overline{Q} : heavy vector-like quarks

• **DFSZ** axion model [Dine, Fischler, Srednicki,'81, Zhitnitski,'80]

$$\mathcal{L} = |\partial \phi|^2 + (\mu \phi H_u H_d + h.c.) - V(|\phi|, H_u, H_d)$$

• 2 Higgs doublet H_u, H_d

cf. Flaxion model

[Ema, Hamaguchi, Moroi, Nakayama,'16, Calibbi, Goertz, Redigolo, Ziegler, Zupan,'16]

$$\mathcal{L} = y_{ij}^d \left(\frac{\phi}{M}\right)^{n_{ij}^d} \overline{Q}_i H d_{Rj} + y_{ij}^u \left(\frac{\phi}{M}\right)^{n_{ij}^u} \overline{Q}_i \widetilde{H} u_{Rj}$$
$$+ y_{ij}^l \left(\frac{\phi}{M}\right)^{n_{ij}^l} \overline{L}_i H l_{Rj} + y_{i\alpha}^\nu \left(\frac{\phi}{M}\right)^{n_{i\alpha}^\nu} \overline{L}_i \widetilde{H} N_{R\alpha}$$
$$+ \frac{1}{2} y_{\alpha\beta}^N \left(\frac{\phi}{M}\right)^{n_{\alpha\beta}^N} M \overline{N_{R\alpha}^c} N_{R\beta} + \text{h.c.}$$
Motivation: axion

Conventional Models

• KSVZ axion model [Kim,'79, Shifman, Vainshtein, Zakharov,'80]

$$\mathcal{L} = |\partial\phi|^2 + (\lambda\phi\bar{Q}Q + h.c.) - V(|\phi|)$$

- Q, \overline{Q} : heavy vector-like quarks
- **DFSZ** axion model [Dine, Fischler, Srednicki,'81, Zhitnitski,'80]

$$\mathcal{L} = \frac{|\partial\phi|^2}{|\partial\phi|^2} + (\mu\phi H_u H_d + h.c.) - \frac{V(|\phi|, H_u, H_d)}{|\phi|^2}$$

• 2 Higgs doublet H_u, H_d

cf. Flaxion model

[Ema, Hamaguchi, Moroi, Nakayama,'16, Calibbi, Goertz, Redigolo, Ziegler, Zupan,'16]

$$\mathcal{L} = y_{ij}^{d} \left(\frac{\phi}{M}\right)^{n_{ij}^{d}} \overline{Q}_{i} H d_{Rj} + y_{ij}^{u} \left(\frac{\phi}{M}\right)^{n_{ij}^{u}} \overline{Q}_{i} \widetilde{H} u_{Rj}$$
$$+ y_{ij}^{l} \left(\frac{\phi}{M}\right)^{n_{ij}^{l}} \overline{L}_{i} H l_{Rj} + y_{i\alpha}^{\nu} \left(\frac{\phi}{M}\right)^{n_{i\alpha}^{\nu}} \overline{L}_{i} \widetilde{H} N_{R\alpha}$$
$$+ \frac{1}{2} y_{\alpha\beta}^{N} \left(\frac{\phi}{M}\right)^{n_{\alpha\beta}^{N}} M \overline{N_{R\alpha}^{c}} N_{R\beta} + \text{h.c.}$$

C. Kato et.al., [1506.02358]. The cumulative numbers of expected neutrino events for Fe-Core, d = 200 pc.

		Kato et al.							
Table 1 The detector parameters assumed in this paper. ^a									
or	Mass	Target number	Energy threshold						
	[kt]	Ν	[MeV]						
K	32	2.14×10^{33}	5.3						
ND	1	$8.47{ imes}10^{31}$	1.8						
Κ	540	3.61×10^{34}	8.3						
	20	1.69×10^{33}	1.8						

is 1 vr	$^{-1}$. for four r	ore-SN neutri	no models with 15 M	ai (mverteu) mass o	ruering, where a l	aise alari
	Detector	Model	$N_s^{\rm DC}(t=0.01)$	Detection range [pc]	Alarm time [hr]	t_w [hr]
	SK-Gd		46.7-49.9 (10.9-11.7)	380-480 (180-230)	0.1-0.6 (-0.02)	10
			50.8-54.3 (12.2-13.0)	350-460 (170-220)	0.2 - 4.5 (-0.02)	$\frac{12}{24}$
		Kato	54.3-58.0 (13.3-14.3)	320-430 (160-210)	0.2-10 (-0.01)	48
			21.4-22.8 (12.4-13.2)	260-330 (190-250)	0.1-1 (-0.1)	10
			26.3 - 28.0 (15.0 - 16.0)	260 - 340 (190 - 260)	0.4-6 (-0.2)	$\frac{12}{24}$
		Yoshida	28.4 - 30.2 (16.1 - 17.2)	240 - 320 (180 - 240)	0.2 - 6.5 (-0.2)	48
			45.3-48.3 (12.8-13.7)	380-490 (200-260)	4-6.5 (0.02-1.7)	10
			47.3 - 50.4 (13.4 - 14.3)	340 - 460 (180 - 240)	3-6.5~(-1.6)	$\frac{12}{24}$
		Odrzywolek	49.1-52.4 (14.0-14.9)	310 - 420 (170 - 220)	3-7 (-0.7)	$\overline{48}$
			43.5 - 46.3 (12.9 - 13.9)	370-480 (200-260)	3.5-6 (0.02-0.9)	19
			45.8 - 48.9 (13.8 - 14.7)	340 - 450 (180 - 250)	3-6.5~(-0.5)	$\frac{12}{24}$
		Patton	46.8 - 49.8 (14.1 - 15.0)	310 - 410 (170 - 220)	2.5 - 5.5 (-0.1)	48
	KamLAND 9].		7.6(1.6)	340-410 (150-190)	0.2-1 (NA)	$\frac{12}{24}$
			9.3(2.1)	350-440 (170-210)	5.5 - 20 (-0.02)	
		Kato	10.9(2.6)	360-460 (180-220)	17-26 (-0.1)	48
			4.5 (2.4)	260-310 (190-230)	0.5-16 (-0.1)	19
			6.5 (3.5)	$290 – 370 \ (210 – 270)$	8 - 18 (0.1 - 1.8)	$\frac{12}{24}$
		Yoshida	7.7~(4.1)	310 - 390 (220 - 280)	$15-22 \ (0.3-7.5)$	$\overline{48}$
			9.7(2.8)	380-460 (200-240)	5.5-8 (0.04-1.7)	19
			11.0(3.1)	380 - 480 (200 - 250)	7-13 (0.08-2)	$\frac{12}{24}$
		Odrzywolek	12.4 (3.5)	390 - 490 (200 - 260)	$11 - 38 \ (0.1 - 2.5)$	48
			10.1 (2.9)	390 - 470 (200 - 250)	5.5 - 8.5 (0.07 - 1.9)	12
C.Kato, K.Ishidoshiro, T.Yoshida [2006.02519			11.4 (3.5)	390 - 490 (210 - 260)	$7-11 \ (0.1-2.5)$	$\frac{12}{24}$
		Patton	12.2 (3.6)	380-490 (210-260)	7.5 - 13 (0.1 - 3)	48
	JUNO		$232 \ (48.7)$	950 (430)	54(24)	$\begin{array}{c} 12\\24\\48\end{array}$
			$286\ (65.2)$	950~(440)	64 (28)	
		Kato	341 (81.8)	960~(470)	62 (34)	
			142 (75.7)	740 (540)	52(30)	19
			205~(109)	$810\ (590)$	64(38)	$\frac{12}{24}$
		Yoshida	$247\ (131)$	810~(590)	62~(46)	48
			303 (86.2)	1090 (580)	78 (14)	19
			344 (97.8)	$1050 \ (560)$	76~(28)	$\frac{12}{24}$
		Odrzywolek	391 (111)	1030 (540)	74 (48)	48
			315 (90.6)	1110(590)	30(17)	12
			$360 \ (106)$	1070~(580)	$34\ (19)$	$\frac{12}{24}$
		Patton	385~(115)	1020 (550)	38~(20)	48

 Table 2
 Detection ranges and alarm times for normal (inverted) mass ordering, where a false alarm rate

Figure 12. Normalized number spectra at different times for 8.4 M_{\odot} (left panels), 12 M_{\odot} (middle panels) and 15 M_{\odot} (right panels). Red, blue, green and orange curves correspond, respectively, to $\bar{\nu}_e$ and ν_e from the pair annihilation and $\bar{\nu}_{\mu}/\bar{\nu}_{\tau}$ and ν_{μ}/ν_{τ} from the pair annihilation. All neutrinos have the identical spectrum after normalization for the plasmon decay as shown with black. For better visibility, all the lines but the black one in the left panels are multiplied by the factors indicated. Note that larger t's correspond to earlier times.

C. Kato et.al., [1506.02358].

Event number vs. stellar constraints

S.Ge, K.Hamaguchi, K.Ichimura, K.Ishidoshiro, Y.Kanazawa, Y.Kishimoto, N.Nagata, J.Zheng. [arXiv:2008.03924] JCAP **11** (2020) 059.

• $\mathcal{O}(10)$ events for Spica.

Event number

IAXO upgrade

• O(1000) muon events in 10 sec.

S.Ge, K.Hamaguchi, K.Ichimura, K.Ishidoshiro, Y.Kanazawa, Y.Kishimoto, N.Nagata, J.Zheng. [arXiv:2008.03924] JCAP **11** (2020) 059.

What about the inverse Primakoff signal?

figure from Hyper-K homepage

What about the **inverse Primakoff** signal?

SN-axion N_{event} at Hyper-K (187kt water)

$$N_{\text{event}} = \dot{N}_a \Delta t \times \frac{\sigma_{\text{el}}}{4\pi d^2} \times N_{\text{O}}$$

$$\simeq 1 \times \left(\frac{3 \times 10^8 \text{ GeV}}{f_a}\right)^4 \left(\frac{C_{N,\text{eff}}}{0.37}\right)^2 \left(\frac{g_{a\gamma\gamma}f_a}{\alpha/\pi}\right)^4 \left(\frac{C_{N,\text{eff}}}{\sigma/\pi}\right)^2 \left(\frac{g_{a\gamma\gamma}f_a}{\alpha/\pi}\right)^4 \left(\frac{C_{N,\text{eff}}}{\sigma/\pi}\right)^4 \left(\frac{G_{N,\text{eff}}}{\sigma/\pi}\right)^4 \left(\frac{$$

- No need to point to the progenitor.
- Difficulty to distinguish it from the huge number of neutrino burst events.

figure from Hyper-K homepage

