The Role of Atomic Tritium in Future Neutrino Mass Experiments

_arisa Thorne Johannes Gutenberg University Mainz PRISMA+ Colloquium — 4 Dec 2024

- Neutrino mass: why and how?
- Tritium-based experiments
- The molecular problem
- The atomic solution (& challenges)
 - Special focus: Project 8
- Summary

Larisa Thorne (Johannes Gutenberg University Mainz)

OUTLINE

PRIMER ON NEUTRINOS

• Neutrino oscillation:

Flavor eigenstates $|\nu_l \rangle \longrightarrow \begin{bmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{bmatrix} = \begin{bmatrix} U_{e1} \\ U_{\mu 1} \\ U_{\tau 1} \end{bmatrix}$

- Neutrino sector has many other interesting
 - Mass ordering: normal vs. inverted
 - Type: Majorana vs. Dirac
 - Absolute mass scale

PMNS mixing matrix

$$\begin{bmatrix} U_{e2} & U_{e3} \\ U_{\mu 2} & U_{\mu 3} \\ U_{\tau 2} & U_{\tau 3} \end{bmatrix} \begin{bmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{bmatrix}$$
Probability upon
detection:
 $P_{ii'} \propto \frac{(m_i^2 - m_i^2)}{E}$
Mass eigenstates
 $|\nu_i >$

NEUTRINO MASS: WHY?

Larisa Thorne (Johannes Gutenberg University Mainz)

ie , 2016 S

Source: Formaggio et al, 2021

PRISMA+ Colloquium 2024-12-04

- 4 approaches to absolute neutrino mass measurement:
 - I. Cosmic Microwave Background
 - 2. Supernova time-of-flight
 - 3. Search for neutrinoless double beta decay
 - 4. Kinematic methods
 - Via electromagnetic collimation

- Via frequency-based measurement project
- Via calorimetric measurement

NEUTRINO MASS: HOW?

3

PRISMA+ Colloqui

10 10⁻⁷² WI MI WI MI WI MI WI MI WI MI

ECHO

- 4 approaches to absolute neutrino mass measurement:
 - I. Cosmic Microwave Background
 - 2. Supernova time-of-flight
 - 3. Search for neutrinoless double beta decay
 - 4. Kinematic methods
 - Via electromagnetic collimation

- Via frequency-based measurement
- Via calorimetric measurement

TRITIUM-BASED EXPERIMENTS

 $^{3}H \rightarrow ^{3}He^{+} + e^{-} + \bar{\nu_{e}}$

Select tritium because its beta decay is super-allowe appropriate half-life (~12.3yr), endpoint energy fair $(\sim | 8.6 \text{keV})$

Via Fermi's Golden Rule:

$$\frac{d^2 N}{dEdt} = \frac{G_F |V_{ud}|^2}{2\pi^3} |M_{nucl}|^2 F(Z, E) p_e(E + m)$$

$$\cdot \sum_f G_f P_f \epsilon_f \sqrt{\epsilon_f^2 - m_\beta^2} \Theta(\epsilon_f - m_\beta)$$

$$m_{\beta,eff}^2 = \sum_{i=1}^3 |U_{e,i}|^2 m_i^2$$

$$\approx m_\beta^2$$

- Technique: measurement of beta particle energy
- Neutrino mass: $m_{\beta} \leq 0.45 \text{ eV} @ 90 \% \text{ C.L.}$ (KATRIN 2024)
- Advantages:

 $m_{\beta}^2 = \sum_{i=1}^{3} |U_{e,i}|^2 m_i^2$

- Cross checks to other experiments (Q values, isotopes)
- Challenges:
 - Statistics
 - Systematics (molecular final states, backgrounds)

PRISMA+ Colloquium 2024-12-04

17

result, Nature 2022 sub-eV Source: KATRIN

KATRIN, IN A NUTSHELL (KArlsruhe TRItium Neutrino experiment)

- Goal: precision absolute effective neutrino mass measurement
- Design sensitivity: 0.2eV, at 90% C.L.
- IOx more sensitive than predecessors (Mainz, • Troitsk)

$$m_{\beta,eff}^2 = \sum_{i=1}^3 |U_{e,i}|^2 m_i^2$$
$$\approx m_\beta^2$$

Larisa Thorne (Johannes Gutenberg University Mainz)

Source <u>KATRIN Nature 202</u>2

RECENT KATRIN RESULTS

Paper on arXiv (<u>https://arxiv.org/abs/2406.13516</u>):

- KNMI-5: 259 days' measurement (36 million electrons)
- Results:
 - Best fit: $m_{\nu}^2 = (-0.14^{+0.13}_{-0.15}) \text{ eV}^2/\text{c}^4 (90\% \text{ C.L.})$
 - New upper limit: $m_{\nu} < 0.45 \text{ eV/c}^2$ (90% C.L.)

18710

THE MOLECULAR PROBLEM

Larisa Thorne (Johannes Gutenberg University Mainz)

Bodine

Adapted from

Molecular final state distribution, at 30K.

THE ATOMIC SOLUTION

Larisa Thorne (Johannes Gutenberg University Mainz)

Bodine Adapted from L.

THE ATOMIC SOLUTION

Larisa Thorne (Johannes Gutenberg University Mainz)

Bodine

oted from

Adap

Many options to synthesize atomic T ("dissociation"):

- Heating
- RF discharge

ATOMIC CHALLENGES

I. Endpoint broadening effects

ATOMIC CHALLENGES

I. Endpoint broadening effects

ATOM CHALLENGES: COOLING

Options:

- Laser-cooling \rightarrow large laser energies
- Superfluid He walls \rightarrow high absorption energy for T
- Surface scattering \rightarrow high T recombination

ATOM CHALLENGES: PURITY

Options:

Tritium recycling loops

Cold walls will absorb impurities

Larisa Thorne (Johannes Gutenberg University Mainz)

JGU PROJECT B

202 paper Source: KATRIN hardware

Who is up to the challenge?

Larisa Thorne (Johannes Gutenberg University Mainz)

PRISMA+ Colloquium 2024-12-04

- Technique: measure cyclotron radiation from trapped tritium beta decay electrons ("CRES": cyclotron radiation emission spectroscopy)
- <u>Design sensitivity</u>: 0.04eV at 9000 C.L.

Larisa Thorne (Johannes Gutenberg University Mainz)

THE PROJECT 8 EXPERIMENT

https://www.project8.org

- Technique: measure cyclotron radiation from trapped tritium beta decay electrons ("CRES": cyclotron radiation emission spectroscopy)
- <u>Design sensitivity</u>: 0.04eV at 9000°C.L.

Larisa Thorne (Johannes Gutenberg University Mainz)

THE PROJECT 8 EXPERIMENT

1.4mT

PREPARING ATOMIC TRITIUM

- Atom temperature: ~1mK
- Atom purity: $\frac{n_{T_2}}{n_T} < 10^{-4}$
- **Density**: $n_T \sim 10^{17} \text{per m}^3$

Hydrogen Atom Beam Source (HABS):

DISSOCIATION

- Required atom flux from dissociation: 1019 atoms/s
- Dissociation methods under review: thermal, plasma
- Characterization:
 - Atom flux, via dissociation fraction:
 - → Dissociation is dependent on gas flow, temperature, etc. \rightarrow optimize
 - Mass spectrometry and recombination heating
 - Spatial distribution

TEMPERATURE MEASUREMENT

- Measurement of capillary temperature (proxy for atom temperature) to a precision of ~few K
- Collaboration with TLK: "KAMATE"

Measurement Method: NIR Spectrometer

Larisa Thorne (Johannes Gutenberg University Mainz)

$$\varphi \overline{) \bullet C}(\lambda) \bullet \frac{2 h c^2}{\lambda^5} \frac{1}{\exp\left(\frac{hc}{\lambda k_B T}\right) - 1}$$

Mucogllava edit: B.

FIRST STAGE COOLING: SURFACE-COOLING

12

10

2

2024-10-16_Aya_data_set

0.0

Count

- Challenge: recombination
- Surface cooling at recombination minimum (~150K):
 - COMSOL simulations to calculate required LN2 cooling power
 - First prototype ready to test
 - Modeling gas dynamics with Molflow, Sparta
- For cooling to ~10K: additional "nozzle" on downstream end

SUMMARY

- Absolute neutrino mass scale continues to be constrained:
 - Current best limits set by the KATRIN experiment ($m_{\beta} \leq$ 0.45eV/c² at 90% C.L.)
- R&D for atomic tritium crucial to gaining sensitivity •
 - Many options for addressing challenges •
 - Synergies between many working experiments •

Larisa Thorne (Johannes Gutenberg University Mainz)

PRISMA+ Colloquium 2024-12-04

Supplemental slides

ABSTRACT

Nearly 70 years since the neutrino was discovered, and 25 years since discovery of neutrino oscillations established its non-zero mass, the absolute neutrino-mass scale remains unknown.

Tritium beta decay endpoint measurements currently offer the best upper limit on the neutrino mass. A nextgeneration experiment with greater sensitivity must overcome one of the major systematics for this kind of measurement: the molecular nature of the beta source. Past and current tritium beta decay experiments use a molecular tritium source in which one of the tritium atoms undergoes decay. A fraction of the decay energy excites the molecule into rotational, vibrational, or electronic excited states; this causes broadening in the molecule's final state distribution (FSD), and has a smearing effect on the beta decay spectrum. In order to achieve a reduced systematic uncertainty due to this FSD smearing, next-generation experiments must switch to an atomic tritium source.

I will present an overview of the necessary steps to develop such an atomic tritium source, through the lens of the Project 8 experiment. This multi-institution development program includes dissociation and accommodation cooling down to 10K; further cooling to 10mK via magnetic evaporative cooling; and atom trapping using magnet arrays. In addition to this overview, I will focus on the multitude of tritium-compatible diagnostic tools being developed at JGU Mainz to measure atom flux, atom beam shape, and temperature.

