Why Are We Here? **Matter-Antimatter Asymmetry Of The Universe**

Seyda Ipek **Carleton University**

Precision Physics, Fundamental Interactions and Structure of Matter

Canada's Capital University

A Brief History Of Our Universe

image from Hubble Space Telescope

Elementary particles are described by the Standard Model (SM) of particle physics

 $SU(3)_c \times SU(2)_L \times U(1)_Y \rightarrow SU(3)_c \times U(1)_{EM}$

Antimatter is very normal!

Fermilab used to make a lot of antimatter!

Batavia, IL USA

Large Hadron Collider at CERN

(France-Switzerland border)

Collides protons with protons

both matter and antimatter is produced!

Matter and Antimatter annihilate when they meet!

We wouldn't

be here if there

was antimatter

around us!

But here we are...

Thanks to a matter—antimatter asymmetry!

Big Bang Nucleosynthesis

Universe is ~ a min old (10 MeV)

Protons and neutrons start binding to form light nuclei

> Fun fact: Pretty much all of the deuterium in the universe comes from this era

 $^{3}\text{He} + D \rightarrow ^{4}\text{He} + p$

 $D + D \rightarrow {}^{3}\text{He} + n$

 $p + n \rightarrow D + \gamma$

Helium-4 is the most abundant element

Small amounts of Li-7 and Be-8

Primordial light element abundances

How do we make sure there are more quarks than antiquarks in the early Universe?

Nothing interesting happens in thermal equilibrium

Zero baryon asymmetry Some baryon asymmetry all lars of Creation, Property and P

Being out of equilibrium

The Standard Model is a "chiral" theory

Cronin, Fitch, Turlay got the Nobel Prize!

$$K_L \rightarrow 2\pi$$
 AND $K_L \rightarrow 3\pi$

A historical review: Cronin, Eur. Phys. J. H 36 (2012) pp.487-508

Entirely because there is a complex phase in the CKM matrix

Great! BUT not enough 😬

handwavey: $\eta \sim J \prod_{i} \left(\frac{m_i}{M_W} \right)^2$

more detailed calculations: 10^{-20}

$$\eta_{\rm SM CP} \sim 10^{-20}$$

Gavela, Hernandez, Orloff, Pene, CERN 93/7081

How about the neutrino sector? Maybe PMNS CP violation?

Look out for DUNE and HyperK!

Standard Model can NOT explain the matter-antimatter asymmetry of the universe! We need some new physics... particle CP number violation violation out of equilibrium

... that interacts with the Standard Model!

Editors: Gilly Elor,¹ Julia Harz,² Seyda Ipek,³ Bibhushan Shakya.⁴

Authors: Nikita Blinov,⁵ Raymond T. Co,⁶ Yanou Cui,⁷ Arnab Dasgupta,⁸ Hooman Davoudiasl,⁹ Fatemeh Elahi,¹ Gilly Elor,¹ Kåre Fridell,² Akshay Ghalsasi,⁸ Keisuke Harigaya,¹⁰ Julia Harz,² Chandan Hati,² Peisi Huang,¹¹ Seyda Ipek,³ Azadeh Maleknejad,¹⁰ Robert McGehee,¹² David E. Morrissey,¹³ Kai Schmitz,¹⁰ Bibhushan Shakya,⁴ Michael Shamma,¹³ Brian Shuve,¹⁴ David Tucker-Smith,¹⁵ Jorinde van de Vis,⁴ Graham White.¹⁶

How to think about particle number violation?

PMNS CP phase? Maybe! Hernandez, et al, arxiv:2305.14427

Out of equilibrium: cosmological phase transitions???

At this workshop: Anish Ghoshal, Oleksii Matsedonskyi, Carlos Wagner, Marcela Carena, Andrew Long, Miguel Vanvlasselaer, ...

How about strong interactions?

SI, T. Tait, PRL (2019), 122, 112001 D. Croon, J. Howard, **SI**, T. Tait, *arXiv*:1911.01432

QCD is asymptotically free at high energies, but becomes strongly interacting at low energy

Was QCD the same in the early universe? Who knows what happened before BBN!

Was QCD the same in the early universe? Who knows what happened before BBN!

Confinement scale changes with new particles if they interact via strong interactions!

confinement ~ 400 MeV mass of $\sim \Lambda^{SM}$

up/down quarks

$$< \Lambda_{\rm QCD}^{\rm SM}$$

pion masses: $m_{\pi 0}^2 = \frac{2\kappa_0(m_u + m_d)}{f_{\pi 0}^2}$

QCD quantities:

 $\kappa_0 \simeq (225 \text{ MeV})^3$ $f_{\pi 0} \simeq 94 \text{ MeV}$

confinement ~ 400 GeV

all quarks are lighter than Λ_{QCD}^{new}

pions are heavier: $m_{\pi}^{2} \simeq m_{\pi 0}^{2} \left(\frac{v_{h}}{v_{h}} \right) \xi$ $\kappa \simeq \kappa_{0} \xi^{3} \qquad \text{with} \quad \xi \equiv \frac{\Lambda_{\text{QCD}}^{\text{new}}}{\Lambda_{\text{QCD}}^{\text{new}}}$

$$\mathscr{L} \supset \left(\frac{1}{g_s^2} + \frac{S}{M_*}\right) G^{\mu\nu} G_{\mu\nu}$$

$$V_{\text{scalar}} = -\mu^2 |H|^2 + \lambda_h |H|^4$$

$$+ a_2 S^2 + a_3 S^3 + a_4 S^4$$

$$- b_1 S |H|^2 + b_2 S^2 |H|^2$$
New QCD
Baryogenesis!

Higgs gets a tadpole term from the meson mass-term

$$V_{\text{tad}}(v_h) \simeq \kappa \frac{y_t}{\sqrt{2}} v_h \simeq -0.0158 \text{ GeV}^3 \left(\frac{\Lambda_{\text{QCD}}}{\Lambda_{\text{QCD}}}\right)^3 v_h$$

Thermal corrections to the Higgs potential from mesons

$$V_{\text{meson}}(v_h, T) = \sum_{i=25...35} \frac{T^4}{2\pi^2} J_B\left(\frac{m_i^2}{T^2}\right)$$
$$J_B(m^2) = \int_0^\infty dx x^2 \log\left(1 - e^{-\sqrt{x^2 + m^2}}\right)$$

The gluon condensate contributes to the singlet potential

$$\frac{S}{M_*} \langle GG \rangle \longrightarrow V_{\rm GC}(v_s) \simeq \frac{v_s}{4M_*} \Lambda_{\rm QCD}^4$$

High temperature

 $T > T_{\rm EW} > T_c$

 $b_1 = 0.7 \text{ GeV}, b_2 = 10^{-3}$ $a_2 = 108 \text{ GeV}^2, a_3 = 0.15 \text{ GeV}, a_4 = 5 \times 10^{-5}$

Below EW scale

Below QCD confinement

 $T_c > T_d > T$

Universe has the right Higgs vev and $\Lambda_{\rm QCD}$

The barrier disappears

The universe can roll over instead of tunneling

 $b_1 = 0.7 \text{ GeV}, b_2 = 10^{-3}$ $a_2 = 108 \text{ GeV}^2, a_3 = 0.15 \text{ GeV}, a_4 = 5 \times 10^{-5}$

SM-like vacuum before BBN!

CP violation

QCD has CP violation! $\mathscr{L} \supset \overline{\theta} G^{\mu\nu} \widetilde{G}_{\mu\nu}$

$$m_a^2(T) f_a^2 \simeq \begin{bmatrix} m_\pi^2 f_\pi^2 \zeta \left(\frac{\Lambda_{\rm QCD}}{T}\right)^n & T > T_c \\ m_\pi^2 f_\pi^2 & T < T_c \end{bmatrix}$$

has small mass at high T

T-dependence given by number of light flavors, etc

How about B violation?

Number of baryons: $n_B = \int_{-T}^{T} dt \frac{\mathbf{I}_B}{T} \mu$ $\sim m_{\pi}^2 f_{\pi}^2$ Baryon-to-entropy ratio $\eta = \frac{n_B}{s} \simeq \frac{5625}{2\pi^2 g_*(T_{\text{reh}})} \alpha_w^5 \sin \bar{\theta} \frac{\left[\Delta \left[m_a^2(T)f_a^2\right]\right]}{f_\pi^2 m_{\eta'}^2} \left(\frac{T_{\text{sph}}}{T_{\text{reh}}}\right)$ ~ 45 $4.4 \times 10^{-9} \sin \bar{\theta} \left(\frac{v_h}{v_h^0}\right) \left(\frac{\Lambda_{\rm QCD}^{\rm SM}}{\Lambda_{\rm OCD}}\right)$ $\eta \sim 10^{-11} \sin \bar{\theta} \frac{v_h}{\Lambda_{\rm QCD}} \left(\frac{T_{\rm sph}}{T_{\rm reh}}\right)^3$ $\eta_{\rm obs} \simeq 8.5 \times 10^{-11}$

Constraints - Higgs mixing

We want to understand the universe!

