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A Brief History Of Our Universe
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Our Universe (a few hundred millions years old)
image from Hubble Space Telescope

Ordinary Matter

Dark Matter

Dark Energy
70%25%

5%

???

???

What is in our Universe?
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Elementary particles are described by 
the Standard Model (SM) of particle physics

Symmetry magazine

SU(3)c × SU(2)L × U(1)Y → SU(3)c × U(1)EM
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proton + electron 
= 

hydrogen

anti-proton + positron 
= 

anti-hydrogen

same mass opposite 
quantum charges

Standard Model also has “antimatter”
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Fermilab used to make 
a lot of antimatter!

protons

antiprotons

I used to work here!
Tevatron

1010 antiprotons/hour

Antimatter is very normal!

Batavia, IL USA
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Large Hadron Collider at CERN 

Collides protons 
with protons

both matter and 
antimatter is produced!

(France-Switzerland border)



Seyda Ipek 9

e− e+

Matter and Antimatter annihilate when they meet!

It’s good NOT to have an anti-Seyda around!

We wouldn’t 
be here if there 
was antimatter 

around us!



Seyda Ipek

But here we are…

10

Thanks to a matter—antimatter asymmetry!
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Planck 2015

Cosmic Microwave Background

η =
nB − nB̄

nγ
≃ 6 × 10−10

Baryon-to-photon ratio

 ~380,000 years

Electrons bind into nuclei

Photons 
can escape

Universe 
is neutral
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Particle Data Group

Primordial light element abundances

C
M

B

Big Bang Nucleosynthesis

10−10 10−9

Universe is ~ a min old

p + n → D + γ

D + D → 3He + n

3He + D → 4He + p

Protons and neutrons start 
binding to form light nuclei

Fun fact:  Pretty much all 
of the deuterium in the 
universe comes from this 
era

Helium-4 is the most 
abundant element

Small amounts of Li-7 
and Be-8
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10,000,000,001 10,000,000,000

quarks Antiquarks
η ∼ 10−10

How do we make sure there are more 
quarks than antiquarks in the early Universe?

Physics need to be a little bit different 
between matter and antimatter!

1. Baryon (matter) number cannot be a conserved quantity

2. Charge and Charge-Parity (CP) symmetries must be violated

3. Out-of-equilibrium processes

Sakharov conditions Andrei Sakharov
1921-1989

JETP Lett. 6 (1967) 4
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Baryon number is a 
quantum number/charge

proton

B = 1

anti-proton

B = -1

At the beginning: 
nq = nq̄

ΔB = nB − nB̄

ΔB = 0 ΔB ≠ 0

 cannot be a conserved 
quantity! It needs to 

change with time

ΔB

Net baryon number:

Baryon number violation
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How can physics laws tell the difference 
between a particle and an antiparticle?

Handedness

We look at some (a)symmetries 
under certain transformations

Parity

Charge 
transformation

Parity 
transformation

Left-handed
proton

Left-handed
anti-proton

Right-handed
anti-proton

Charge-parity violation



Seyda Ipek 16

Nothing interesting happens 
in thermal equilibrium

A B

Zero baryon asymmetry Some baryon asymmetry
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Universe

Being out of equilibrium
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Can the Standard Model of particle 
physics explain 

the baryon asymmetry of the Universe?

Does the Standard Model satisfy 
the Sakharov Conditions? 
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ΔB
T = 0

T ≫ 100 GeV “sphaleron” processes

Γsph ∼ 25 α5
WT4

Baryon number is violated in weak interactions

0 1 2

only left-handed particles interact 
via the weak nuclear force

Quantum tunneling is hard!

Γ ∼ e−4π/αW ∼ e−160

αW ∼
1
30

Instantons

∂μjB
μ = 3 ∂μjLi

μ = 3
g2

32π2
Wμν,aW̃a

μν

ΔB = ∫ d4x ∂μjB
μ = 3

g2

32π2 ∫ d4x Wμν,aW̃a
μν

Esph

Esph ∼
MW

αW
∼ 10 TeV
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The Standard Model is a “chiral” theory

e−
L e+

L

C

e−
L e−

R

P

e−
L e+

L

C

e+
R

P

Weak nuclear 
interactions are 

allowed

Weak nuclear 
interactions are 
not allowed

allowed but 
tiny bit 
different

SU(3)c × SU(2)L × U(1)Y
Charge-Parity violation
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Great! BUT not enough

ηSM CP ∼ 10−20

Gavela, Hernandez, Orloff, Pene, CERN 93/7081

How about the neutrino sector? Maybe PMNS CP violation?

Look out for DUNE and HyperK!

η ∼ J∏
i ( mi

MW )
2 more detailed calculations:handwavey:

Cronin, Fitch, Turlay got the Nobel Prize!

A historical review: Cronin, Eur. Phys. J. H 36 (2012) pp.487-508

KL → 2π KL → 3πAND

Entirely because there is a complex phase in the CKM matrix
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Rate of 
(weak) interactions

Expansion rate 
of the universevs

H ∼
T2

MPlanck
∼

T2

1019 GeV
Γweak ∼ G2

F × T3 ∼
T3

1010 GeV2

SM Universe 
always 

equilibriates!

Hubble

weak interactions
Too fast!

Temperature (GeV)

R
at

es
 (

G
eV

)

0.01 0.10 1 10 100

10-21

10-16

10-11

10-6

10-1

104

Equilibrium?
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Standard Model can NOT explain the 
matter-antimatter asymmetry of the universe!

particle
number
violation

…that interacts with the Standard Model!

out of 
equilibrium

CP
violation

We need some new physics…
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How to think about particle number violation?

B − L B + L

SM
Lepton asymmetry turns into a 
baryon asymmetry via sphalerons

Leptogenesis!

Right-handed 
Majorana neutrinos

neutrino masses + 
lepton asymmetry

dark sector SM

 can be conservedB, L

Neutrino portal, 
Higgs portal, 
neutron portal,…

conserved sphalerons

Explicit  violation: L

Particle number violation

Global  symmetriesU(1)

Baryon asymmetry
C.S. Fong, arXiv:2012.03973At this workshop: Rob McGehee, Jerome Vandecasteele, Can Kilic,… 
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What we have in the SM:   

de ≤ 10-38 e⋅cm

25

CP violation can be easy or hard

PMNS CP phase? Maybe! Hernandez, et al, arxiv:2305.14427

JILA, arXiv:2212.11841

Electron electric dipole moment:  de ≤ 4.1x10-30 e⋅cm

e e

𝛾

EW

loops

eL eRẽRẽL

� �

𝛾

╳

╳

SUSY CP problem

Fleig, DeMille, arXiv:2108.02809

Could come down to  !10−32
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Out of equilibrium: cosmological phase transitions???

v(Tc)

Tc
& 1

V(h)

h

0 high

V(h)

h

T

vev
SM EW transition is a crossover

Always in equilibrium

mh ≳ 75 GeV

First-order Phase Transition

vh = 0
vh ≠ 0
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J. Ellis, et al, arXiv:1809.08242

At this workshop: Anish Ghoshal, Oleksii Matsedonskyi, Carlos Wagner, Marcela Carena, Andrew Long, 
Miguel Vanvlasselaer, … 
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How about strong interactions?

28

SI, T. Tait, PRL (2019), 122, 112001

D. Croon, J. Howard, SI, T. Tait, arXiv:1911.01432
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QCD is asymptotically free at high energies, but
becomes strongly interacting at low energy

ΛSM
QCD ∼ GeV

Quarks confine into 
hadrons when the strong 
coupling becomes “large”

QCD Phase Transition

1 10 100 1000 104 105

0.1

0.5

1

αs =
g2

s

4π
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no antimattermatter = antimatter
?

Temperature

1 MeV100 GeV 3,000 Khot

kB = 1

Time

10-10 s 1 s 380,000

years

5 billion 13.8 billion

cold

Was QCD the same in the early universe?
Who knows what happened before BBN!
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ℒ ⊃ ( 1
g2

s
+

S
M* ) GμνGμν

1
g2

eff
=

1
g2

s
+

vs

M*

Confinement scale changes with new particles 
if they interact via strong interactions!

ΛQCD ≃ ΛSM
QCD exp ( 24π2

2Nf − 33
vs

M* )
1 10 100 1000 104 105

0.1

0.5

1

5

Was QCD the same in the early universe?
Who knows what happened before BBN!
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SM QCD New physics QCD

confinement ~ 400 MeV

mass of 
up/down quarks 

< ΛSM
QCD

m2
π0 =

2κ0(mu + md)
f 2

π0
pion masses: 

κ0 ≃ (225 MeV)3

fπ0 ≃ 94 MeV

QCD quantities:

confinement ~ 400 GeV

all quarks are 
lighter than Λnew

QCD

m2
π ≃ m2

π0 ( vh

vSM
h ) ξ

κ ≃ κ0 ξ3

fπ ≃ fπ0 ξ

pions are heavier:

ξ ≡
Λnew

QCD

ΛSM
QCD

with

Higgs vev 
at ~ΛQCD
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New scalar sector

Interesting dynamics

New QCD

Baryogenesis!

Vscalar = −μ2 |H |2 + λh |H |4

+a2 S2 + a3 S3 + a4 S4

−b1 S |H |2 + b2 S2 |H |2

ℒ ⊃ ( 1
g2

s
+

S
M* ) GμνGμν
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vs = 0, vh = 0

vs ≠ 0, vh = 0
TS

Tc
QCD confined

Td

QCD deconfines

vs = 0, vh = vSM
h

TBBN

vh = 0

vh ≠ 0

TSM
EW

ΛSM
QCD ∼ GeV

TBBN

QCD confined

vs ≠ 0, vh = 0

ΛSM
QCD ∼ GeV

SM QCD - confined

SM

Standard Model New Universe

vs ≠ 0, vh ≠ 0

confinement temp

de-confinement temp

150 GeV 150 GeV

not important
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S

h
vhTS

Tc

Td
vs

vs = 0, vh = 0

vs ≠ 0, vh = 0
TS

Tc
QCD confined

Td

QCD deconfines

vs = 0, vh = vSM
h

TBBN

TSM
EW

vs ≠ 0, vh = 0

ΛSM
QCD ∼ GeV

QCD confined

vs ≠ 0, vh ≠ 0

finite temperature corrections
the usual: gauge bosons, quarks,…

no quarks, 
but hadrons!

return to the SM

Transition pattern
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• Higgs gets a tadpole term from the meson mass-term

Vtad(vh) ≃ κ
yt

2
vh ≃ − 0.0158 GeV3 (

ΛQCD

Λnew
QCD )

3

vh

• Thermal corrections to the Higgs potential from mesons

Vmeson(vh, T ) = ∑
i=25...35

T4

2π2
JB ( m2

i

T2 )
JB(m2) = ∫

∞

0
dxx2 log (1 − e− x2 + m2)

• The gluon condensate contributes to the singlet potential

VGC(vs) ≃
vs

4M*
Λ4

QCD
S

M*
⟨GG⟩
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T > TEW > Tc

V(vh, vs, T ) = V0(vh, vs) + Vgauge(vh, T )
+Vtop(vh, T )

Finite temperature potential:

b1 = 0.7 GeV, b2 = 10−3

a2 = 108 GeV2, a3 = 0.15 GeV, a4 = 5 × 10−5

V0 = −μ2 |H |2 + λh |H |4

+a2 S2 + a3 S3 + a4 S4

−b1 S |H |2 + b2 S2 |H |2

vacuum is at vs ≠ 0, vh = 0

High temperature

global minimum

0 50 100 150 200 250 300 350

-1500

-1250

-1000

-750

-500

-250

0

250

500

vh (GeV)

v S
(G
eV

)

T = 200 GeV

◆
(87 GeV)4

●
(86 GeV)4
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b1 = 0.7 GeV, b2 = 10−3

a2 = 108 GeV2, a3 = 0.15 GeV, a4 = 5 × 10−5

Global minimum is SM-like

There is an impenetrable 
barrier between the two vacua!

Universe is stuck at vs, vh = 0

TEW > T > Tc

SE

T
∼ ( Δvs

ΔV(vs) )
4

∼ 10−8

Below EW scale

We require:  GeVmh = 125
  GeVv0

h = 246

Euclidean bounce action

0 50 100 150 200 250 300 350

-1500

-1250

-1000

-750

-500

-250

0

250

500

vh (GeV)

v S
(G
eV

)

T = 100 GeV

●
(77 GeV)4

◆
(86 GeV)4
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b1 = 0.7 GeV, b2 = 10−3

a2 = 108 GeV2, a3 = 0.15 GeV, a4 = 5 × 10−5

But there is still a barrier
between the two vacua! 

Tc ≳ T > Td

QCD confimenent tips this 
vacuum towards finite 
(but not towards the SM value)

vh

Universe is stuck at vs, vh < vSM
h

Below QCD confinement

0 50 100 150 200 250 300 350

-1500

-1250

-1000

-750

-500

-250

0

250

500

vh (GeV)

v S
(G
eV

)

T = ΛQCD = 85 GeV

●
(43 GeV)4

◆
(88 GeV)4

V(vh, vs, T ) = V0(vh, vs) + Vgauge(vh, T )
+Vtad(vh) + VGC(vs)
+Vmeson(vh, T )
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b1 = 0.7 GeV, b2 = 10−3

a2 = 108 GeV2, a3 = 0.15 GeV, a4 = 5 × 10−5Tc > Td > T

The barrier disappears

SM-like vacuum before BBN!

The universe can roll over 
instead of tunneling

Back to the SM

0 50 100 150 200 250 300 350

-1500

-1250

-1000

-750

-500

-250

0

250

500

vh (GeV)

v S
(G
eV

)

T = 2 MeV

●
(0 GeV)4

Universe has the 
right Higgs vev and ΛQCD
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CP violation

41

T = Tc

ma
θ̄

Tc

T
Td TSM

EW

m2
π f 2

π

m2
π f 2

π ζ (
ΛQCD

T )
n

m2
a(T )f 2

a ≃

T > Tc

T < Tc

ℒ ⊃ θ̄ GμνG̃μν

QCD has CP violation!
Axions!

has small mass at high T

T-dependence given by number 
of light flavors, etc  

How about B violation?
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Baryon number violation

42

ΓB ∼ 25α5
WT4

T = Tc

ℒeff =
10

f 2
πm2

η′￼

αs

8π
⟨GG̃⟩

αW

8π
WW̃

anomalous 
baryon current

αs

8π
⟨GG̃⟩ = m2

a(T )f2
a sin θ̄ μ =

10
f 2

πm2
η′￼

d
dt [m2

a(T )f2
a sin θ̄(T )]

generates a chemical potential 

∂μ jμ
B =

αW

8π
Tr[WW̃]

Γsphma
θ̄

Tc

T
Td TSM

EW A. Cohen, D. Kaplan, Nucl. Phys. B308 (1988) 913–928

Spontaneous baryogenesis

GG̃ WW̃
η′￼
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⟨qq̄⟩ = 0
⟨qq̄⟩ ∼ Λ3

QCD

hadrons

⟨h⟩ = 0

T = Tc ≃ 100 GeV

⟨qq̄⟩ = 0

⟨h⟩ = 0

⟨qq̄⟩ ∼ T3
c

⟨h⟩ = vh ≳ Tc

CP conserved

B conserved

θ̄eff

B

CP

GG̃ WW̃
η′￼

Γsphma
θ̄

Tc

T
Td TSM

EW

⟨h⟩ ≠ 0



Seyda Ipek 44

nB = ∫
tf

ti

dt
ΓB

T
μNumber of baryons:

η =
nB

s
≃

5625
2π2g*(Treh)

α5
w sin θ̄

Δ [m2
a(T )f 2

a]
f 2

πm2
η′￼ (

Tsph

Treh )
3

Baryon-to-entropy 
ratio

∼ m2
π f 2

π

∼ 45

4.4 × 10−9 sin θ̄ ( vh

v0
h ) (

ΛSM
QCD

ΛQCD )

η ∼ 10−11 sin θ̄
vh

ΛQCD (
Tsph

Treh )
3

ηobs ≃ 8.5 × 10−11

∼ 4 > 1
∼ 1
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vh =80.GeV
vh =120.GeVvh =160.GeV

Λ
QC
D
=
80
.G
eV

Λ
QC
D
=
85
.G
eV

=
90
.G
eV

m
S =16GeV

m
S =17.5GeV

m
S =19GeV

vh =80.GeV
vh =120.GeVvh =160.GeV

0.0 0.2 0.4 0.6 0.8 1.0
0.

0.5

1.

1.5

b1 (GeV)

b 2
(×
10

-
3 )

Benchmark 2

Cannot go to 
the SM vacuum

a2 = 108 GeV2, a3 = 0.15 GeV, a4 = 5 × 10−5, M* = 3 TeV

45

Sphalerons 
never turn on

Washout after 
confinement*

V0 = −μ2 |H |2 + λh |H |4 + a2 S2 + a3 S3 + a4 S4 − b1 S |H |2 + b2 S2 |H |2
fix (6 benchmark scenarios) vary

* too conservative
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Constraints - Higgs mixing

46

Mixing angle is too small 
for current searches

Singlet lighter than ~10GeV
is hard to constrain since it 
decays primarily to gluons

6 benchmark scenarios, 
there will be more!

Multi-step 1st order phase transitions Interesting GW 
signatures!

f ∼ 10−3 Hz

 gets smallerai

5 10 15 20 25 30 35 40
10-15

10-11

10-7

0.001
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We want to understand the universe!

Arthur B. McDonald
Institute 


