A Field Guide to the Mesons

Mainz Colloquium, April 26, 2023

Ryan Mitchell

Indiana University

conventional meson

hybrid meson

glueball

tetraquark

meson molecule

baryonium

K^{+}(kaon) $M \approx 494 \mathrm{MeV}$

J / ψ (charmonium) $M \approx 3097 \mathrm{MeV}$

double-bottom
tetraquark
$M \approx 10400 \mathrm{MeV}$

The Approach of a Field Guide

Quick Key: Butterflies

The Approach of a Field Guide

Contents

The Approach of a Field Guide

Contents

Quick Key inside front cover
The Plates 1
Swallowtails 3-11
Whites and Sulphurs 13-21
Gossamer-wings and Metalmarks 23-47
Brushfoots. 49-79
Spread-wing Skippers 81-91
Grass Skippers 93-127
Moths 129-131
Immature Stages 133-141
Larval Hosts and Nectar Sources 142-169
The Basics 171
Introduction 172
Why Butterflies? 172
What are Butterflies and Skippers? 174
Families of Butterflies and Skippers 176
Body Parts of Butterflies and Skippers 178
How to Identify Butterflies and Skippers 180
The First Question 180
The Second Question 181
Additional Questions 182
Using the Quick Key Boxes 182
Using the Plates: Butterflies and Skippers 183
The Species Descriptions 185
Using the Plates: Moths, Immature Stages, and Larval Hosts and Nectar Sources 189
Beyond the Basics 191
Indiana and Its Butterflies 192
Overview 192
The Geologic Foundation 192
Natural Regions 195
Natural Communities 204
Where, When, and How to Look for Butterflies 207
Where to Look 207
When to Look 210
How to Look 210

242

Beyond the Basics

about two-thirds of the images in this book were taken with slide film-either the discontinued Agfa RSXII 50, or more recently, Fuji Astia 100.

How I Photograph Butterflies
I am often asked how I get so many photographs of butterflies, but it is a hard question to answer. I find butterfly photography exciting, educational and immensely fun, but it can also be very challenging and sometimes frustrating, and I have not found any shortcuts. I just spend many hours in the field with my camera, and I do not "cheat": all my photographs are of wild free-flying, unmanipulated butterflies. I believe it is unethical to net and coo a subject, restrain one in a cage, pinch, or otherwise disturb any butterfly for the sake of getting a photograph. I also stay on trails or roads as much as pos sible to avoid trampling habitat. So I must simply rely on my stubbornness persistence, and patience to win out in the end. I try very hard to obtain nice photographs-in focus, exposed correctly, and with a nice composition-that capture the beauty of my subjects. In order to achieve those goals, I am con tinually trying to improve the following techniques:

- Finding approachable individuals
- The stalk-getting close enough
- Getting parallel-triangulating focus
- Framing-in thirds
- Supporting the camera

I believe the most challenging facet of butterfly photography is getting close enough to my subject. Not every butterfly can be photographed, some will simply not allow it, so my toughest challenge is being patient enough to
 for a buterly that is approach able. Depending on the abundance and habits of a species, it may taki awhile. Usually the most approach able butterflies are those that are the most distracted. I watch for butterflies that are stopping frequently to feed, or pausing more often to bask. These are the individuals that might be approachable.
When a butterfly is nectaring on a flower, basking on a leaf, or otherwise distracted, I begin my stalk. My aim is to be quiet, slow, and steady, without any sudden movements. I also try to keep my shadow from passing over the butterfly. Sometimes I get in a low crouch, so my outline will appear smaller. When I am stalking a butterfly in a woodland, I try to use getting parallel to two Harvesters tree trunks or branches to screen my

The Approach of a Field Guide

Contents

$\left\{\begin{array}{l}\text { Quick Key } \\ \text { The Plates }\end{array}\right.$

Swallowtail
Whites and Sulphurs
Gossamer-wings and Metalmarks
Brushfoots
Spread-wing Skippers
Grass Skippers
Moths.
Immature Stages
Larval Hosts and Nectar Sources

The Basics

Introduction
Why Butterflies?
What are Butterflies and Skippers? Families of Butterflies and Skippers
Body Parts of Butterflies and Skippers
How to Identify Butterflies and Skippers.
The First Question.
The Second Question
Additional Questions
Using the Quick Key Boxes
Using the Plates: Butterflies and Skippers
The Species Descriptions
Using the Plates: Moths, Immature Stages, and Larval Hosts and Nectar Sources

Beyond the Basics

Indiana and Its Butterflies.
Overview
The Geologic Foundation
Natural Regions
Natural Communities
Where, When, and How to Look for Butterfli Where to Look
When to Look
How to Look
..

The Approach of a Field Guide

Contents

Quick Key
 The Plates

Swallowtails
Whites and Sulphurs
Gossamer-wings and Metalmarks
Brushfoots.
Spread-wing Skippers
Grass Skippers
Moths.
Immature Stages
Larval Hosts and Nectar Sources

The Basics

Introduction
Why Butterflies?
What are Butterflies and Skippers? Families of Butterflies and Skippers. Body Parts of Butterflies and Skipper
How to Identify Butterflies and Skip
The First Question.
The Second Question
Additional Questions
Using the Quick Key Boxes
Using the Plates: Butterflies and Skipp
The Species Descriptions
Using the Plates: Moths, Immature St Larval Hosts and Nectar Sources

Beyond the Basics

Indiana and Its Butterflies
Overview
The Geologic Foundation
Natural Regions
Natural Communities
Where, When, and How to Look fo Where to Look
When to Look

12
 Whites

Cabbage White (Pieris rapae rapae)

Identification

1 Forewing with dark tip
Forewing with one spot (male) or two spots (female) 3 Forewing spots of spring and fall forms often pale 4 Forewing spots of spring and farl forms often pate Hindwing pale yellow (summer), gray-green
Larval hosts: Cabbage (Brassica oleracea), Garlic Mustard
Larval hosts: Cabbage (Brassica oleracea), Garlic Mustard Alliaria petiolata) Yellow Rocket (Barbarea vulgaris) [143], and other mustards Notes: Abundant; an be a pest on cabbages. Native to the Old World. first itroduced to North America at Quebec City in 1860. From there it advanced introduced to North America at Quebec City in 1860. From there it advanced across the continent: moving south it colonized Maine by 1865 and Massachusetts by 1870; then additional introductions occurred at New York City in 1868 and Charleston in 1873. Moving west, often as a stowaway aboard trains transporting cabbages to market, it arrived in Indianapolis in 1872 and Evansville in 1874 (Scudder 1887). By 1892 when Blatchley compiled the first Indiana checklist, it was common throughout the state, as it is today.
West Virginia White (Pieris virginiensis virginiensis)

dentification:

Flight more buoyant than Cabbage White
Forewing unmarked, occasionally with very faint spots 2 Hindwing with faint grayish-green veins
Habitat: Moist forests and moist ravines in dry forests Habitat: Moist forests and moist ravines in dry forests Larval hosts: Toothworts and bittercresses (Carda rockcresses (Bouchera) [143], and orher mustards Notes: Similar to spring form Cabbage Whites which have pale forewing spots but note underside hindwing pattern. Uncommon in southern Indiana, ap parently absent from the northern counties, although it does occur in centra Michigan. West Virginia White has a single flight in early spring; Cabbag White has many flights from spring through fall. Although Cabbage White can be seen in woodlands, West Virginia Whites rarely stray from their forest haunts to the gardens and disturbed habitats where Cabbage Whites abound.
Mustard White (Pieris oleracea oleracea)

Identification:

1 Both forms unmarked above, occasionally with faint spors 2 Spring form with distinct grayish-green venation 3 Summer form without venation (or, if present, very faint) Habitat: Fens and adjacent uplands
Larval host: Watercress (Nasturtium officinale) [143] Notes: State endangered; rare or uncommon in fens

Medium, white

Mustard White

A Field Guide to the Mesons

Contents
Quick Key inside front cover
The Plates ... 1
Swallowtails ...3-11
Whites and Sulphurs ...13-21
Gossamer-wings and Metalmarks 23-47
Brushfoots ...49-79
Spread-wing Skippers ...81-91
Grass Skippers ..93-127
Moths ... 129-131
Immature Stages .. 133-141
Larval Hosts and Nectar Sources 142-169
The Basics .. 171
Introduction ... 172
Why Butterflies? .. 172
What are Butterflies and Skippers?....................... 174
Families of Butterflies and Skippers...................... 176
Body Parts of Butterflies and Skippers.................... 178
How to Identify Butterflies and Skippers................. 180
The First Question .. 180
The Second Question... 181
Additional Questions .. 182
Using the Quick Key Boxes 182
Using the Plates: Butterflies and Skippers 183
The Species Descriptions 185
Using the Plates: Moths, Immature Stages, and Larval Hosts and Nectar Sources \qquad 189
Beyond the Basics ... 191
Indiana and Its Butterflies 192
Overview .. 192
The Geologic Foundation 192
Natural Regions \qquad 195
Natural Communities 204
Where, When, and How to Look for Butterflies 207
Where to Look .. 207
When to Look .. 210
How to Look .. 210

This Talk:

I. What are Mesons?
II. Families of Mesons
III. Looking for Mesons
IV. The Plates: $c \bar{c}$ and $c c$ mesons
V. The Plates: $b \bar{b}$ and $b b$ mesons
VI. Why Mesons?

I. What are Mesons?

QUARKS

		generations		
		I	II	III
$\begin{aligned} & 0.0 \\ & \text { 易 } \\ & \text { ت} \end{aligned}$	$+\frac{2}{3}$	$\begin{gathered} u \\ \text { (up) } \end{gathered}$	$\begin{gathered} c \\ \text { (charm) } \end{gathered}$	$\begin{gathered} t \\ \text { (top) } \end{gathered}$
$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$-\frac{1}{3}$	$\underset{(\text { down }}{d}$	$\begin{gathered} S \\ \text { (strange) } \end{gathered}$	$\begin{gathered} b \\ \text { (bottom) } \end{gathered}$

BARYONS: hadrons with three more quarks
than antiquarks (e.g. qqq)
\Longrightarrow strongly interacting particles, fermions, baryon number $=1$

MESONS: hadrons with equal numbers of quarks and antiquarks (e.g. $q \bar{q}$)
\Longrightarrow strongly interacting particles, bosons, baryon number $=0$

BARYONS

MESONS

I. What are Mesons?

A few famous baryons...

p (proton)
$M \approx 938 \mathrm{MeV}$

n (neutron)
$M \approx 940 \mathrm{MeV}$

Λ (lambda) $M \approx 1116 \mathrm{MeV}$

QUARKS

		generations		
		I	II	III
$\begin{aligned} & 0.00 \\ & \text { 흥 } \\ & \hline \end{aligned}$	$+\frac{2}{3}$	$\begin{gathered} u \\ (\text { up }) \end{gathered}$	c (charm)	$\begin{gathered} t \\ (\text { top }) \end{gathered}$
$\begin{aligned} & \text { U } \\ & \text { U } \\ & \frac{0}{0} \end{aligned}$	$-\frac{1}{3}$	$\underset{(d o w n)}{d}$	$\begin{gathered} S \\ \text { (strange) } \end{gathered}$	$\begin{gathered} b \\ \text { (bottom) } \end{gathered}$

conventional baryon

MESONS

I. What are Mesons?

Why are only these combinations of quarks and gluons allowed?

In Quantum Chromodynamics (QCD) quarks and gluons carry a color charge that follows SU(3) symmetry:
$q \bar{q}: \quad 3 \otimes \overline{3}=8 \oplus 1$
$q q q: \quad 3 \otimes 3 \otimes 3=(6 \oplus \overline{3}) \otimes 3$

$$
=10 \oplus 8 \oplus 8 \oplus 1
$$

Hadrons are colorless (color singlets).

Compare this to angular momentum, which follows SU(2) symmetry:
two spin-1/2 particles: $2 \otimes 2=3 \oplus 1$
two spin-1 particles: $\quad 3 \otimes 3=5 \oplus 3 \oplus 1$

QUARKS

		generations		
		I	II	III
$\begin{aligned} & 80 \\ & \stackrel{0}{5} \\ & \hline \end{aligned}$	$+\frac{2}{3}$	$\begin{gathered} u \\ \text { (up) } \end{gathered}$	$\begin{gathered} c \\ \text { (charm) } \end{gathered}$	$\begin{gathered} t \\ \text { (top) } \end{gathered}$
$\begin{aligned} & 0 \\ & \frac{0}{U} \\ & \frac{0}{0} \end{aligned}$	$-\frac{1}{3}$	$\begin{gathered} d \\ \text { (down) } \end{gathered}$	$\begin{gathered} S \\ \text { (strange) } \end{gathered}$	$\begin{gathered} b \\ \text { (bottom) } \end{gathered}$

BARYONS

MESONS

II. Families of Mesons

QUARKS

	d	u	s	c	b
\bar{d}	$\pi^{0}\|\eta\| \eta^{\prime}$	π^{+}	\bar{K}^{0}	D^{+}	\bar{B}^{0}
\bar{y}	\bar{u}	π^{-}	$\pi^{0}\|\eta\| \eta^{\prime}$	K^{-}	D^{0}
	\bar{s}	K^{0}	K^{+}	$\eta \mid \eta^{\prime}$	ϕ
	\bar{c}	D_{s}^{+}	\bar{B}_{s}^{0}		
\bar{c}	D^{-}	\bar{D}^{0}	D_{s}^{-}	J / ψ	B_{c}^{-}
\bar{b}	B^{0}	B^{+}	B_{s}^{0}	B_{c}^{+}	Υ

K^{+}family (weak decays, no mixing)
K^{0} family
(weak decays, mixing)
π^{0} family
(large electromagnetic decays)
J / ψ family
(strong decays, near or below open flavor threshold)

WEAK

Meson properties are largely dictated by how they decay.

ELECTROMAGNETIC
STRONG

II. Families of Mesons

		QUARKS					Decays via the weak force are slow:
		d	u	s	c	b	
\sim	\bar{d}	$\pi^{0}\|\eta\| \eta^{\prime}$	π^{+}	\bar{K}^{0}	D^{+}	\bar{B}^{0}	
先	\bar{u}	π^{-}	$\pi^{0}\|\eta\| \eta^{\prime}$	K^{-}	D^{0}	B^{-}	
$\stackrel{8}{2}$	\bar{s}	K^{0}	K^{+}	$\underbrace{\eta \mid \eta^{\prime}}_{\phi}$	D_{s}^{+}	\bar{B}_{s}^{0}	
$\stackrel{3}{2}$	\bar{c}	D^{-}	\bar{D}^{0}	D_{s}^{-}	J / ψ	B_{c}^{-}	$\tau_{\pi}=2.6 \times 10^{-8} \mathrm{~s} \quad c \tau_{\pi}=7.8 \mathrm{~m}$
	\bar{b}	B^{0}	B^{+}	B_{s}^{0}	B_{c}^{+}	Υ	

WEAK

Meson properties are largely dictated by how they decay.

ELECTROMAGNETIC

II. Families of Mesons

QUARKS

WEAK

Meson properties are largely dictated by how they decay.

ELECTROMAGNETIC

II. Families of Mesons

WEAK

Meson properties are largely dictated by how they decay.

ELECTROMAGNETIC

II. Families of Mesons

WEAK

Meson properties are largely dictated by how they decay.

ELECTROMAGNETIC

STRONG

II. Families of N

		QUARKS				
		d	u	s	c	b
	\bar{d}	$\pi^{0}\|\eta\| \eta^{\prime}$	π^{+}	\bar{K}^{0}	D^{+}	\bar{B}^{0}
足	\bar{u}	π^{-}	$\pi^{0}\|\eta\| \eta^{\prime}$	K^{-}	D^{0}	B^{-}
0	\bar{s}	K^{0}	K^{+}	$\underbrace{\eta \mid \eta^{\prime}}_{\phi}$	D_{s}^{+}	\bar{B}_{s}^{0}
3	\bar{c}	D^{-}	\bar{D}^{0}	D_{s}^{-}	J / ψ	B_{c}^{-}
	\bar{b}	B^{0}	B^{+}	B_{s}^{0}	B_{c}^{+}	Υ

Decays via the strong force are

$\tau_{J / \psi}=7.1 \times 10^{-21} \mathrm{~s} \quad c \tau_{J / \psi}=2.1 \mathrm{pm}$

Meson properties are largely dictated by how they decay.

ELECTROMAGNETIC

II. Families of Mesons

QUARKS

For a $q \bar{q}^{\prime}$ meson: $\vec{J}=\vec{L}+\vec{S}$ and $P=(-1)^{L+1}$ and $C=(-1)^{L+S}$
II. Families of M

Decays via the strong force are generally fast:

QUARKS

		d	u	s	c	b
	\bar{d}	$\pi^{0}\|\eta\| \eta^{\prime}$	π^{+}	\bar{K}^{0}	D^{+}	\bar{B}^{0}
	\bar{u}	π^{-}	$\pi^{0}\|\eta\| \eta^{\prime}$	K^{-}	D^{0}	B^{-}
	\bar{S}	K^{0}	K^{+}	$\eta \mid \eta^{\prime} \phi$	D_{s}^{+}	\bar{B}_{s}^{0}
	\bar{c}	D^{-}	\bar{D}^{0}	D_{s}^{-}	J / ψ	B_{c}^{-}
	\bar{b}	B^{0}	B^{+}	B_{s}^{0}	B_{c}^{+}	Υ

$u \bar{d}, u \bar{u}, d \bar{d}, s \bar{s} \quad c \bar{c} \quad b \bar{b} \quad d \bar{s}, u \bar{s}$

$1^{-(-)}$	$\rho(1700)$	$\omega(1650)$	$\phi(1680)$	$\psi(3770)$	Y(4S)	$K^{*}(1680)$
$2^{+(+)}$	$a_{2}(1320)$	$f_{2}(1270)$	$f_{2}^{\prime}(1525)$	$\chi_{\text {c2 }}(1 / P)$	$\chi_{62}(1 P)$	$K_{2}^{*}(1430)$
1^{+}	$a_{1}(1260)$	$f_{1}(1285)$	$f_{1}(1420)$	$\chi_{c 1}(1 P)$	$\chi_{b 1}(1 P)$	$K_{1}(1400)$
$0^{+(+)}$	$a_{0}(1450)$	$f_{0}(1370)$	$f_{0}(1710)$	$\chi_{c 0}(1 P)$	$\chi_{b 0}(1 P)$	$K_{0}^{*}(1430)$
excited $1^{+(-)}$	$b_{1}(1235)$	$h_{1}(1170)$	$h_{1}(1415)$	$h_{c}(1 P)$	$h_{b}(1 P)$	$K_{1}(1270)$
states $1^{-(-)}$	$\rho(770)$	$\omega(782)$	$\phi(1020)$	$J / \psi(1 S)$	$\mathrm{Y}(1 \mathrm{~S})$	$K^{*}(892)$
ground $0^{-(+)}$	π^{0} π^{+}	$\eta \mid \eta^{\prime}$	$\eta \mid \eta^{\prime}$	$\eta_{c}(1 S)$	$\eta_{b}(1 S)$	K^{0} K^{+}
state $J^{P(C)}$						

$c \bar{u}, c \bar{d}$	$c \bar{s}$	$d \bar{b}, u \bar{b}$	$s \bar{b}$
	$D_{s 1}^{*}(2700)^{+}$		
$D_{2}^{*}(2460)$	$D_{s 2}^{*}(2573)^{+}$	$B_{2}^{*}(5747)$	$B_{s 2}^{*}(5840)^{0}$
$D_{1}(2430)$	$D_{s 1}(2536)^{+}$		
$D_{0}^{*}(2300)$	$D_{s 0}^{*}(2317)^{+}$		
$D_{1}(2420)$	$D_{s 1}(2460)^{+}$	$B_{1}(5721)$	$B_{s 1}(5830)^{0}$
$D^{*}(2007)^{0} \mid D^{*}(2010)^{+}$ D^{0}	D_{s}^{*+}	B^{*}	$B_{s}^{*} 0$
$D^{0}{ }^{0} D^{+}$	D_{s}^{+}	B^{0} B^{+}	B_{s}^{0}

For a $q \bar{q}^{\prime}$ meson: $\vec{J}=\vec{L}+\vec{S}$ and $P=(-1)^{L+1}$ and $C=(-1)^{L+S}$

II. Families of Mesons

For a $q \bar{q}^{\prime}$ meson: $\vec{J}=\vec{L}+\vec{S}$ and $P=(-1)^{L+1}$ and $C=(-1)^{L+S}$

II. Families of Mesons

QUARKS

state

$Z_{c}(4020)^{+} \rightarrow \pi^{+} h_{c}$	$Z_{c}(4430)^{+} \rightarrow \pi^{+} \psi(2 S)$	$Z_{b}(10650)^{+} \rightarrow \pi^{+} h_{b}, \pi^{+} \Upsilon$	$X(2900)^{0} \rightarrow D^{+} K^{-}$
$Z_{c}(3900)^{+} \rightarrow \pi^{+} J / \psi$	$Z_{c s}(4000)^{+} \rightarrow K^{+} J / \psi$	$Z_{b}(10610)^{+} \rightarrow \pi^{+} h_{b}, \pi^{+} \Upsilon$	$T_{c c \bar{c}(6900) \rightarrow J / \psi J / \psi}$

II. Families of Mesons

QUARKS

		d	u	S	c	b
	\bar{d}	$\pi^{0}\|\eta\| \eta^{\prime}$	π^{+}	\bar{K}^{0}	D^{+}	\bar{B}^{0}
	\bar{u}	π^{-}	$\pi^{0}\|\eta\| \eta^{\prime}$	K^{-}	D^{0}	B^{-}
	\bar{S}	K^{0}	K^{+}	$\eta \mid \eta^{\prime}$	D_{s}^{+}	\bar{B}_{s}^{0}
	\bar{c}	D^{-}	\bar{D}^{0}	D_{s}^{-}	J / ψ	B_{c}^{-}
	\bar{b}	B^{0}	B^{+}	B_{s}^{0}	B_{c}^{+}	Υ

" $T_{c c}^{+}$" tetraquark:
$u \bar{d}, u \bar{u}, d \bar{d}, s \bar{s} \quad c \bar{c} \quad b \bar{b} \quad d \bar{s}, u \bar{s}$

III. Looking for Mesons

Step 1: Produce mesons...
... using a sledgehammer:
... using a scalpel:
Large Hadron Collider (LHC)

$$
\begin{aligned}
& \text { e.g., } e^{+} e^{-} \rightarrow J / \psi \rightarrow \pi^{+} \pi^{-} \pi^{0} \\
& e^{+} e^{-} \rightarrow \psi(3770) \rightarrow D^{+} D^{-}
\end{aligned}
$$

III. Looking for Mesons

Step 1: Produce mesons...
... using a sledgehammer:

... using a scalpel:

e.g., $e^{+} e^{-} \rightarrow \Upsilon(4 S) \rightarrow B^{+} B^{-}$

III. Looking for Mesons

Step 2: Detect mesons.

III. Looking for Mesons

Step 2: Detect mesons.

III. Looking for Mesons

Step 2: Detect mesons.

$$
\begin{aligned}
& e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} J / \psi \text { with } J / \psi \rightarrow l^{+} l^{-} \\
& \text {BESIII, PRL110, } 252001 \text { (2013) } \\
& M_{\pi J / \psi}=\sqrt{\left(E_{\pi}+E_{l l}\right)^{2}-\left(\vec{p}_{\pi}+\vec{p}_{l l}\right)^{2}}
\end{aligned}
$$

$$
e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} J / \psi \text { with } J / \psi \rightarrow \mu^{+} \mu^{-}
$$

BESIII, PRL110, 252001 (2013)

$$
M_{\mu \mu}=\sqrt{\left(E_{\mu^{+}}+E_{\mu^{-}}\right)^{2}-\left(\vec{p}_{\mu^{+}}+\vec{p}_{\mu^{-}}\right)^{2}}
$$

III. Looking for Mesons

Step 2: Detect mesons.

$p p \rightarrow$ many many hadrons (baryons and mesons)

III. Looking for Mesons

Step 2: Detect mesons.

III. Looking for Mesons

Step 2: Detect mesons.
$B^{+} \rightarrow J / \psi \phi K^{+}$with $J / \psi \rightarrow \mu^{+} \mu^{-}$and $\phi \rightarrow K^{+} K^{-}$
$B^{+} \rightarrow J / \psi \phi K^{+}$with $J / \psi \rightarrow \mu^{+} \mu^{-}$and $\phi \rightarrow K^{+} K^{-}$

A Field Guide to the Mesons

This Talk:

I. What are Mesons?
II. Families of Mesons
III. Looking for Mesons
IV. The Plates: $c \bar{c}$ and $c c$ mesons
V. The Plates: $b \bar{b}$ and $b b$ mesons
VI. Why Mesons?

IV. The Plates: $c \bar{c}$ and $c c$ mesons

QUARKS

				d	u	S	c	b	K^{+}family (weak decays, no mixing)									
				$\pi^{0}\|\eta\| \eta^{\prime}$	π^{+}	\bar{K}^{0}	D^{+}	\bar{B}^{0}	$K^{0} \text { family }$ (weak decays, mixing)									
	\underline{u}	\bar{l}		π^{-}	$\pi^{0}\|\eta\| \eta^{\prime}$	K^{-}	D^{0}	B^{-}	π^{0} family (large electromagnetic decays)									
	\bar{s}	\bar{S}		K^{0}	K^{+}		D_{s}^{+}	\bar{B}_{s}^{0}	J / ψ family(strong decays, near or below open flavor threshold)									
	\bar{C}	\bar{c}		D^{-}	\bar{D}^{0}	D_{s}^{-}	J / ψ	B_{c}^{-}	ρ family(strong decays, above open flavor threshold)									
				B^{0}	B^{+}	B_{s}^{0}	B_{c}^{+}	Υ	$\begin{aligned} & Z_{c}(3900) \text { family } \\ & \text { (exotic flavor quantum numbers) } \end{aligned}$									
$u \bar{d}, u \bar{u}, d \bar{d}, s \bar{s}$						$c \bar{c}$	$b \bar{b}$	$d \bar{s}, u \bar{s}$	$c \bar{u}, c \bar{d}$		$\begin{gathered} c \bar{s} \\ \hline D_{s 1}^{*}(2700)^{+} \\ \hline \end{gathered}$	$d \bar{b}, u \bar{b}$	$s \bar{b}$					
			700)	$\omega(1650)$	隹 ϕ (1680)		Y(4S)	$K^{*}(1680)$					$B_{s 2}^{*}(5840)^{0}$					
			(320)) $\mathrm{f}_{2}(1270)$	\|	c	${ }^{\prime}$ (158)	$\chi_{\text {c2 }}(1 P)$	$\chi_{62}(1 P)$	$K_{2}^{*}(1430)$	$D_{2}^{*}(2460)$		$D_{s 2}^{*}(2573)^{+}$	$B_{2}^{*}(5747)$				
			(260)	\|l	l	$\mathrm{f}_{2}(1285)$	\|		l	$\mathrm{f}_{2}(1420)$	$\chi_{c 1}(1 P)$	$\chi_{b 1}(1 P)$	$K_{1}(1400)$	$D_{1}(2430)$		$D_{s 1}(2536)^{+}$		
			(450)	\|	l	l			$\chi_{c 0}(1 P)$	$\chi_{b 0}(1 P)$	$K_{0}^{*}(1430)$	$D_{0}^{*}(2300)$		$D_{s 0}^{*}(2317)^{+}$				
xcited			(235)	\|l	l			$h_{c}(1 P)$	$h_{b}(1 P)$	$K_{1}(1270)$	$D_{1}(2420)$		$D_{s 1}(2460)^{+}$	$B_{1}(5721)$	B $B_{s 1}(5830)^{0}$			
states			770)	$\omega(782)$	崖 $\phi(1020)$	$J / \psi(1 S)$	Y(1S)	$K^{*}(892)$	$D^{*}(2007)^{0} \mid D^{*}(2010)^{+}$		D_{s}^{*+}	B^{*}	$B_{s}^{* 0}$					
round 0		π^{0}	π^{+}	$\eta \mid \eta^{\prime}$	$\eta \mid \eta^{\prime}$	$\eta_{c}(1 S)$	$\eta_{b}(1 S)$	K^{0} K^{+}	D^{0}	D^{+}	D_{s}^{+}	B^{0} B^{+}	B_{s}^{0}					
state $J^{P(C)}$ (${ }^{\text {c }}$																		

IV. The Plates: $c \bar{c}$ and $c c$ mesons

IV. The Plates: $c \bar{c}$ and $c c$ mesons

One example of a potential model:
PHYSICAL REVIEW D 72, 054026 (2005)

Higher charmonia

T. Barnes, ${ }^{1, *}$ S. Godfrey, ${ }^{2, \dagger}$ and E. S. Swanson ${ }^{3, \#}$
$V_{0}^{(c \bar{c})}(r)=-\frac{4}{3} \frac{\alpha_{s}}{r}+b r+\frac{32 \pi \alpha_{s}}{9 m_{c}^{2}} \tilde{\delta}_{\sigma}(r) \overrightarrow{\mathrm{S}}_{c} \cdot \overrightarrow{\mathrm{~S}}_{\bar{c}}^{\text {spin-spin (hyperfine) }}$
"Coulomb"
$\tilde{\delta}_{\sigma}(r)=(\sigma / \sqrt{\pi})^{3} e^{-\sigma^{2} r^{2}}$

$$
\begin{gathered}
V_{\text {spin-dep }}=\frac{1}{m_{c}^{2}}\left[\left(\frac{2 \alpha_{s}}{r^{3}}-\frac{b}{2 r}\right) \overrightarrow{\mathrm{L}} \cdot \overrightarrow{\mathrm{~S}}+\frac{4 \alpha_{s}}{r^{3}} \mathrm{~T}\right] \\
\text { spin-orbit (fine) } \\
\left\langle{ }^{3} \mathrm{~L}_{\mathrm{J}}\right| \mathrm{T}\left|{ }^{3} \mathrm{~L}_{\mathrm{J}}\right\rangle=\left\{\begin{array}{cc}
-\frac{\mathrm{L}}{6(2 \mathrm{~L}+3)}, & \mathrm{J}=\mathrm{L}+1 \\
+\frac{1}{6}, & \mathrm{~J}=\mathrm{L} \\
-\frac{(\mathrm{L}+1)}{6(2 \mathrm{~L}-1)}, & \mathrm{J}=\mathrm{L}-1
\end{array}\right.
\end{gathered}
$$

The charmonium spectrum:

IV. The Plates: $c \bar{c}$ and $c c$ mesons

The charmonium spectrum:

IV. The Plates: $c \bar{c}$ and $c c$ mesons

The charmonium spectrum:

IV. The Plates: $c \bar{c}$ and $c c$ mesons

The charmonium spectrum:

IV. The Plates: $c \bar{c}$ and $c c$ mesons

IV. The Plates: $c \bar{c}$ and $c c$ mesons

$e^{+} e^{-} \rightarrow \pi^{\mp} Z_{c}(3900)^{ \pm} \rightarrow \pi^{\mp}\left(\pi^{ \pm} J / \psi\right)$
BESIII, PRL 119, 072001 (2017)

(1) $Z_{c}(3900)^{ \pm} \rightarrow \pi^{ \pm} J / \psi$ implies $Z_{c}(3900)$ is not a $c \bar{c}$ charmonium state.
(2) Its proximity to $D^{*} \bar{D}$ threshold hints at a meson molecule interpretation.

The charmonium spectrum:

IV. The Plates: $c \bar{c}$ and $c c$ mesons

IV. The Plates: $c \bar{c}$ and $c c$ mesons

The charmonium spectrum:

IV. The Plates: $c \bar{c}$ and $c c$ mesons

NATURE PHYSICS | VOL 18 | JULY 2022 | 751-754 |
LHCb
Observation of an exotic narrow doubly charmed tetraquark

The $Z_{c}(3900), X(3872)$, and $T_{c c}$ (3875), among others, have clearly taken us beyond conventional mesons.

Productive conversations about their internal structure continue!

V. The Plates: $b \bar{b}$ and $b b$ mesons

QUARKS

V. The Plates: $b \bar{b}$ and $b b$ mesons

Spectroscopic notation:
orbital angular momentum (L) total quark spin (S)

V. The Plates: $b \bar{b}$ and $b b$ mesons

The bottomonium spectrum:

V. The Plates: $b \bar{b}$ and $b b$ mesons

The bottomonium spectrum:

V. The Plates: $b \bar{b}$ and $b b$ mesons

The bottomonium spectrum:

V. The Plates: $b \bar{b}$ and $b b$ mesons

PRL 119, 202001 (2017)

PHYSICAL REVIEW LETTERS
week ending
PRL 119, 202001 (2017)
PHYSICAL REVI
17 NOVEMBER 2017

Discovery of the Doubly Charmed $\Xi_{c c}$ Baryon Implies a Stable bbū̄ \bar{d} Tetraquark
Marek Karliner ${ }^{1, * *}$ and Jonathan L. Rosner ${ }^{2, \dagger}$

V. The Plates: $b \bar{b}$ and $b b$ mesons

PRL 119, 202001 (2017)
$\begin{array}{rr}\text { PHYSICAL } & \text { REVI } \\ & \wp^{\circ}\end{array}$
Discovery of the Doubly Charmed $\Xi_{c c}$ Ba

PHYSICAL REVIEW D 100, 014503 (2019)
Lattice QCD investigation of a doubly-bottom $\bar{b} \bar{b} u d$ tetraquark with quantum numbers $I\left(J^{P}\right)=0\left(1^{+}\right)$

Luka Leskovec, ${ }^{1}$ Stefan Meinel, ${ }^{2,3}$ Martin Pflaumer, ${ }^{4}$ and Marc Wagner ${ }^{4}$

VI. Why Mesons?

"All science is either physics or stamp collecting." - Ernest Rutherford (apocryphal)

Despite Rutherford's quote:
(1) The diversity of mesons is beautiful and can be appreciated in its own right.
(2) The collection of mesons provides countless opportunities to hone in on specific fundamental questions.
(3) The patterns of mesons inform our understanding of how quarks and gluons interact within hadrons.

VI. Why Mesons?

Despite Rutherford's quote:
(1) The diversity of m its own right.
(2) The collection of hone in on specific fur
(3) The patterns of m quarks and gluons inte

VI. Why Mesons?

"All science is either phys

Despite Rutherford's quote:
(1) The diversity of m its own right.
(2) The collection of hone in on specific fur
(3) The patterns of m quarks and gluons inte

VI. Why Mesons?

"All science is either physics or stamp collecting." - Ernest Rutherford (apocryphal)

Despite Rutherford's quote:
(1) The diversity of mesons is beautiful and can be appreciated in its own right.
(2) The collection of mesons provides countless opportunities to hone in on specific fundamental questions.
(3) The patterns of mesons inform our understanding of how quarks and gluons interact within hadrons.

A Field Guide to the Mesons

This Talk:
I. What are Mesons?
II. Families of Mesons
III. Looking for Mesons
IV. The Plates: $c \bar{c}$ and $c c$ mesons
V. The Plates: $b \bar{b}$ and $b b$ mesons
VI. Why Mesons?

> The discussion continues! Thanks!

