

Contents

Quick Key	inside front cover
The Plates	1
Swallowtails	
Whites and Sulphurs	
Gossamer-wings and Metalmarks	
Brushfoots	
Spread-wing Skippers	
Grass Skippers	
Moths	
Immature Stages	
Larval Hosts and Nectar Sources	
	171
Ine basics	172
W/l - Posterfligs?	172
Why Butternies:	174
Eamilies of Butterflies and Skippers	176
Pada Datts of Butterflies and Skippers	178
Body Parts of Butternies and Skippers	180
How to Identify Butternies and Skippers	180
The First Question	
The Second Question	
Additional Questions	182
Using the Quick Key boxes	
Using the Plates: Butternies and Skippers	
The Species Descriptions	and
Using the Plates: Moths, Immatule Stages	189
Larval Hosts and Nectal Sources	
Beyond the Basics	191
Indiana and Its Butterflies	
Overview	192
The Geologic Foundation	192
Natural Regions	195
Natural Communities	
Where, When, and How to Look for Bu	itterflies 207
Where to Look	
When to Look	210
How to Look	210

Contents

Quick Key	inside front cover
The Plates	
Swallowtails	
Whites and Sulphurs	
Gossamer-wings and Metalmarks	
Brushfoots	
Spread-wing Skippers	
Grass Skippers	
Moths	
Immature Stages	
Larval Hosts and Nectar Sources	
The Basics	
Introduction	
Why Butterflies?	
What are Butterflies and Skippers?	
Families of Butterflies and Skippers	
Body Parts of Butterflies and Skippers	
How to Identify Butterflies and Skipper	rs 180
The First Question	
The Second Ouestion	
Additional Ouestions	
Using the Ouick Key Boxes	
Using the Plates: Butterflies and Skippers	s 183
The Species Descriptions	
Using the Plates: Moths, Immature Stage	es, and
Larval Hosts and Nectar Sources	
Bevond the Basics	
Indiana and Its Butterflies	
Overview	192
The Geologic Foundation	192
Natural Regions	195
Natural Communities	
Where, When, and How to Look for B	outterflies 207
Where to Look	
When to Look	210
How to Look	

242

Beyond the Basics

about two-thirds of the images in this book were taken with slide film—either the discontinued Agfa RSXII 50, or more recently, Fuji Astia 100.

How I Photograph Butterflies

I am often asked how I get so many photographs of butterflies, but it is a hard question to answer. I find butterfly photography exciting, educational, and immensely fun, but it can also be very challenging and sometimes frustrating, and I have not found any shortcuts. I just spend many hours in the field with my camera, and I do not "cheat": all my photographs are of wild, free-flying, unmanipulated butterflies. I believe it is unethical to net and cool a subject, restrain one in a cage, pinch, or otherwise disturb any butterfly for the sake of getting a photograph. I also stay on trails or roads as much as possible to avoid trampling habitat. So I must simply rely on my stubbornness, persistence, and patience to win out in the end. I try very hard to obtain nice photographs—in focus, exposed correctly, and with a nice composition—that capture the beauty of my subjects. In order to achieve those goals, I am continually trying to improve the following techniques:

- · Finding approachable individuals
- The stalk-getting close enough
- Getting parallel—triangulating focus
- Framing—in thirds
- Supporting the camera

I believe the most challenging facet of butterfly photography is getting close enough to my subject. Not every butterfly can be photographed, some will simply not allow it, so my toughest challenge is being patient enough to

getting parallel to two Harvesters

wait for a butterfly that is approachable. Depending on the abundance and habits of a species, it may take awhile. Usually the most approachable butterflies are those that are the most distracted. I watch for butterflies that are stopping frequently to feed, or pausing more often to bask. These are the individuals that might be approachable.

When a butterfly is nectaring on a flower, basking on a leaf, or otherwise distracted, I begin my stalk. My aim is to be quiet, slow, and steady, without any sudden movements. I also try to keep my shadow from passing over the butterfly. Sometimes I get in a low crouch, so my outline will appear smaller. When I am stalking a butterfly in a woodland, I try to use tree trunks or branches to screen my

Contents

Quick Key inside
The Plates
Swallowtails
Whites and Sulphurs
Gossamer-wings and Metalmarks
Brushfoots
Spread-wing Skippers
Grass Skippers
Moths
Immature Stages
Larval Hosts and Nectar Sources
The Basics
Introduction
Why Butterflies?
What are Butterflies and Skippers?
Families of Butterflies and Skippers
Body Parts of Butterflies and Skippers
How to Identify Butterflies and Skippers
The First Question
The Second Question
Additional Questions
Using the Quick Key Boxes
Using the Plates: Butterflies and Skippers
The Species Descriptions
Using the Plates: Moths, Immature Stages, and
Larval Hosts and Nectar Sources

Beyond the Basics

Indiana and Its Butterflies
Overview
The Geologic Foundation
Natural Regions
Natural Communities
Where, When, and How to Look for Butterfli
Where to Look
When to Look
How to Look

Contents

210

Quick Key..... Th DI

he Plates	
Swallowtails	
Whites and Sulphurs	
Gossamer-wings and Metalmarks	
Brushfoots	
Spread-wing Skippers	
Grass Skippers	
Moths	
Immature Stages	
Larval Hosts and Nectar Sources	

The Basics

The Dasies
Introduction
Why Butterflies?
What are Butterflies and Skippers?
Families of Butterflies and Skippers
Body Parts of Butterflies and Skippers
How to Identify Butterflies and Skip
The First Question
The Second Question
Additional Questions
Using the Quick Key Boxes
Using the Plates: Butterflies and Skipp
The Species Descriptions
Using the Plates: Moths, Immature Sta
Larval Hosts and Nectar Sources
Beyond the Basics

Indiana and Its Butterflies
Overview
The Geologic Foundation
Natural Regions
Natural Communities
Where, When, and How to Look for
Where to Look
When to Look
How to Look

12 Whites	Medium, <i>white</i> 13
Cabbage White (Pieris rapae rapae) J F M M J A S O N D Identification: 1 Forewing with dark tip 2 Forewing with one spot (male) or two spots (female) 3 Forewing spots of spring and fall forms often pale 4 Hindwing pale yellow (summer), gray-green (spring/fall) Habitat: Fields, yards, gardens, woodlands Larval hosts: Cabbage (Brassica oleracea), Garlic Mustard (Alliaria petiolata), Yellow Rocket (Barbarea vulgaris) [143], and other mustards Notes: Abundant; can be a pest on cabbages. Native to the Old World; first introduced to North America at Quebec City in 1860. From there it advanced across the continent: moving south it colonized Maine by 1865 and Massa- chusetts by 1870; then additional introductions occurred at New York City in 1868 and Charleston in 1873. Moving west, often as a stowaway aboard trains transporting cabbages to market, it arrived in Indianapolis in 1872 and Evansville in 1874 (Scudder 1887). By 1892 when Blatchley compiled the first Indexa checklist, it was common throughout the stare, as it is today.	inde summer form Cabbage White
West Virginia White (<i>Pieris virginiensis virginiensis</i>) J F M A M J J A S O N D Identification: Flight more <i>buoyant</i> than Cabbage White 1 Forewing <i>unmarked</i> , occasionally with <i>very faint</i> spots 2 Hindwing with faint <i>grayish-green</i> veins Habitat: Moist forests and moist ravines in dry forests Larval hosts: Toothworts and bittercresses (<i>Cardamine</i>) [142], (142), (142) and other superado	Vest Virginia White
Notes: Similar to spring form Cabbage Whites which have pale forewing spots, but note underside hindwing pattern. Uncommon in southern Indiana, apparently absent from the northern counties, although it does occur in central Michigan. West Virginia White has a single flight in early spring; Cabbage White has many flights from spring through fall. Although Cabbage Whites can be seen in woodlands, West Virginia Whites rarely stray from their forest haunts to the gardens and disturbed habitats where Cabbage Whites abound.	2 spring form
Mustard White (Pieris oleracea oleracea)	Summer rom Mustard White see also: Clouded/Orange Sulphur, female form "alba" [17] Little Yellow [21]

A Field Guide to the Mesons

Contents

Quick Key	inside front cover
The Plates	
Swallowtails	
Whites and Sulphurs	
Gossamer-wings and Metalmarks	
Brushfoots	
Spread-wing Skippers	
Grass Skippers	
Moths	
Immature Stages	
Larval Hosts and Nectar Sources	
The Basics	
Introduction	
Why Butterflies?	
What are Butterflies and Skippers?	
Families of Butterflies and Skippers	176
Body Parts of Butterflies and Skippers	178
How to Identify Butterflies and Skipper	s 180
The First Question	
The Second Question	181
Additional Questions	
Using the Quick Key Boxes	
Using the Plates: Butterflies and Skippers	
The Species Descriptions	
Using the Plates: Moths, Immature Stages	s, and
Larval Hosts and Nectar Sources	
Beyond the Basics	
Indiana and Its Butterflies	
Overview	192
The Geologic Foundation	192
Natural Regions	195
Natural Communities	
Where, When, and How to Look for Br	utterflies 207
Where to Look	
When to Look	210
How to Look	

This Talk:

- I. What are Mesons?
- II. Families of Mesons
- III. Looking for Mesons
- IV. The Plates: $c\bar{c}$ and cc mesons
- V. The Plates: $b\bar{b}$ and bb mesons

VI. Why Mesons?

I. What are Mesons?

HADRONS: composite particles made from quarks (q), antiquarks (\bar{q}), and gluons (g) \implies strongly interacting particles

BARYONS: hadrons with three more quarks than antiquarks (e.g. qqq) \implies strongly interacting particles, fermions, baryon number = 1

generations **QUARKS** Ι Π Ш electric charge $+\frac{2}{3}$ t С U (up) (charm) (top) d b 1 S 3 (bottom) (down) (strange) q

BARYONS

conventional baryon

pentaquark

MESONS

MESONS: hadrons with equal numbers of quarks and antiquarks (e.g. $q\bar{q}$) \implies strongly interacting particles, bosons, baryon number = 0

I. What are Mesons?

I. What are Mesons?

				IIADI	<u> </u>									
			ρ()	1700)	$\omega(1)$	650)	$\phi(1$	680)	ψ(37	70)	Υ(4	<i>S</i>)		
		d	$l a_2($	1320)	$f_2(12)$	270)	$f'_2(1)$	525)	$\chi_{c2}(2)$	1 <i>P</i>)	$\chi_{b2}(1)$	<i>P</i>)	7)	
		0		1260)	$f_1(12)$	285)	$f_1(1-)$	420)	$\chi_{c1}(1)$	1 <i>P</i>)	$\chi_{b1}(1)$	(P)	57	
\sim	\bar{d}	π^{0} η η	$' \pi_{a_0}($	1450)	$f_0(12)$	370)	$f_0(1)$	710)	$\chi_{c0}(2)$	(P)	$\chi_{b0}(1)$	(P)		
SK	ī	π^{-}	$\pi^0 b_1($	1235)	$h_1(1)$	170)	$h_1(1)$	415)	$h_c(1$	<i>.P</i>)	$h_b(1)$	<i>P</i>)		
JAI		,,,	$\rho($	770)	ω(7	/82)	$\phi(1)$	020)	J/ψ((1 <i>S</i>)	Υ(1	S) c	ays)	
d G	\overline{S}	K^0	$K \pi^0$	π^+	η	$ \eta' $	η	η'	$\eta_c(1$	(S)	$\eta_b(1$	<i>S</i>)	Ύ	(4S)
ILN								$a_{1}(126)$	50) $f_1(128)$	$f_1(1)$	420)	$\chi_{c2}(1P)$	χ_{b2}	(1P) (1P)
AN	\bar{c}	D^{-}	50 K*(1680)	<u>– ת</u> –			<u></u> _	$D_{1}^{*}($	2700)+	70 $f(1)$	710	(1D)		(1 <i>P</i>)
			X (1000) X (1420)		D*()/	160)		$\frac{s_1}{D*(}$		7				(1 P)
	b	B^0	$X_2^{*(1430)}$		$D_2^*(22)$	+00)		$\frac{D_{s2}}{D}$						
		uā, uū	$K_{\bar{d}_{1}}(1400)$	c	$_{\bar{c}}D_{1}(24)$	30) bb	$d\bar{s}$	$D_{s1}($	2330) cū, c	ā	CS.	0	$l\bar{b}, u\bar{b}$	sb
↑	$1^{-(-)} \rho(170)$	$0) \omega(1)$	$K_0^*(1430)$)	$D_0^*(23)$	300)	e	$D_{s0}^{*}($	2317)+		70			
	$2^{+(+)} a_2(132)$	(0) $f_2(1)$	$K_1(1270)$)	$D_1(24)$	20)	2	$D_{s1}($	2460)+	$B_{1}(57)$	721)	$B_{s1}(58)$	$(330)^{0}$	$B_{s2}^*(5840)^0$
	$1^{+(+)}$ $a_1(126)$	$\begin{array}{c c} 0 \\ \hline 0 \\ \hline 0 \\ \hline \end{array} f_1(1) \\ \hline f_1(1) \\ \hline \end{array}$	$K^{*}(892)$	$D^{*}(20)$	$(07)^0 \perp$	$D^{*}(201)$	$(0)^{+}$]	D_{s}^{*+}	B^{2}	*	B_{*}^{*}	0 -	
excited	$1^{+(-)} b_1(123)$	$\frac{f_{0}}{f_{0}} = \frac{f_{0}}{h_{1}}$	K^0 K^+		0	D+	2		D^+	R^0	R^+	$\frac{-s}{R^{(}}$)	$B_{s1}(5830)^0$
states	$1^{-(-)} \rho(770)$)) $\omega(70)$	$\frac{1}{2} \qquad \varphi(1020)$		13)	<i>D</i>	A *(8	92) <i>L</i>	2° s >*(2007)° D	*(2010)			<u></u>	B_s^{*0}
ground	$0^{-(+)}$ π^0 π	τ^+ $\eta \mid \eta$	$\eta' = \eta'$	$\eta_c(1$	<i>S</i>)	$\eta_b(1S)$	<i>K</i> ⁰	<i>K</i> ⁺	D^0	D^+	D_s^+	В	$B^0 B^+$	B_s^0
state	$J^{P(C)}$													$(00)^0 \rightarrow D^+ K^-$
		E	$r \circ a \overline{a}' m \circ$	son: \vec{I}	\overrightarrow{I}	$\vec{\mathbf{r}}$	d D -	_ (1	1)L+1 on	dC -	(1) <i>L</i> -	+S		$(900) \rightarrow J/\psi J/\psi$
	K*(1680)	ΓŪ.		50II. J	-L		$Z_c(3)$	900)* -	$\pi^{-}J^{-}\psi$	$Z_b(10610)$	$h^{r} \rightarrow \pi^{r} h_{b}$	$,\pi^+$ ľ		
	$K_2^*(1430)$	$D_2^*(246)$	D_{s}^{*}	$(2373)^{-1}$	$B_{2}^{*}(574)$	7) $ B_{s2}^{*}(5) $	$(840)^{0}$							

 $D_{s1}(2536)^+$

 $K_1(1400)$

 $D_1(2430)$

			$\rho(1$	700)			8. Nam	ning Sch	eme fo	or Had	lrons		
		d	$l a_2(1)$	320)	Revised	l August 20 Detrigneni	21 by V.D. Burker	rt (Jeffersor	n Lab), C.	Hanhar	t (Jülich)), R.E. Mitc	hell (Indiana
7	\bar{d}	$\pi^0 \eta \eta'$	$\pi \frac{a_1(1)}{a_0(1)}$	450)		an (George	Washington U.).	. 1 noma (f	30nn U.),	L. Hat	or (KPH	, JGU Mair	nz) and R.L.
ARK	ū	π^{-}	$\pi^0 \mid b_1(1) = \frac{b_1(1)}{\rho(1)}$	235) 770)	$h_1(11)$ $\omega(78)$	Table 8tum nun	.1: Symbols for abers equal to ze	mesons wero. States	vith stran s that do	ngeness a not (ye	and hear t?) app	vy-flavor q ear in the]	uan- RPP
UQU	\overline{S}	K^0	$K \pi^0$	π^+	$\eta \mid r$	are listed	d in parentheses.		0-+	1+-		0++	
LNA	\bar{c}	D^{-}	<u>≂</u> 0 (*(1680)		1/.		J^P	$C^{C} = \begin{cases} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	2^{-+} :	3+- :	2 :	1 ⁺⁺ :	
	\bar{b}	$B^0 \stackrel{K}{\longrightarrow}$	$\frac{(1430)}{(1400)}$		$D_2^*(246)$		$u\bar{d}, u\bar{u} - d\bar{d}, d\bar{u}$ ($d\bar{d} + u\bar{u}$ and/or ($c\bar{c}$	$\frac{I}{I=1}$ $s\bar{s} \ (I=0)$	$\pi \ \eta, \eta' \ \eta_c$	b h,h' h_c	$egin{array}{c} \rho \ \omega, \phi \ \psi^* \end{array}$	$\frac{a}{f,f'}$	
Ť	$1^{-(-)} \rho(170)$ $2^{+(+)} \sigma(132)$	$u\bar{d}, u\bar{u}$ $0) \qquad \omega(K = K)$	$\frac{51}{2} (1430)$	C	$\frac{c}{c} \frac{D_1(243)}{D_0^*(230)}$	-	$bar{b}$ $I=1 ext{ with } car{c}$ $I=1/2 ext{ with } scar{c}$	2	$ \begin{array}{c} \eta_b \\ (\Pi_c) \\ (\Pi_{cs}) \end{array} $	$egin{array}{c} h_b \ Z_c \ Z_{cs} \end{array}$	Υ R_c (R_{cs})	$\begin{array}{c} \chi_b \\ (W_c) \\ (W_{cs}) \end{array}$	\bar{b}
	$\begin{array}{c} 2 \\ 1^{+(+)} \\ 0^{+(+)} \\ a_0(145) \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$X_1(1270)$ $X^*(892)$	<i>D</i> *(20	$D_1(242)$ $(007)^0 \mid D$		$I = 1 \text{ with } bb$ $I = 1/2 \text{ with } sb\bar{b}$	-	$(\Pi_b) \\ (\Pi_{bs})$	$\frac{Z_b}{(Z_{bs})}$	$(R_b) \\ (R_{bs})$	$(W_b) \\ (W_{bs})$	840)*
excited states ground	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c} (5) & h_1(\\ \hline \\ 0) & \omega(782) \\ \hline \tau^+ & \eta \mid \eta' \end{array}$	$\begin{array}{c c} K^0 & K^+ \\ \hline & \varphi(1020) \\ \hline & \eta \mid \eta' \end{array}$	$ \begin{array}{c c} D \\ \hline J & \eta_c(1) \end{array} $	$\begin{array}{c c} 0 \\ \hline 15 \\ \hline S \\ \hline \eta_b \end{array}$	$\begin{array}{c c} D^+ \\ \hline (1S) \\ \hline I \\ \end{array}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	- 007)° D*(00	B ⁰ (2010) ⁺	B^+	+ s	$\begin{array}{c c}B_s^0\\\hline B^{0}\\B^{+}\end{array}$	$ \begin{array}{c} B_{s1}(5830)^{0} \\ B_{s}^{*0} \\ B_{s}^{0} \\ B_{s}^{0} \end{array} $
state	J ^{P(C)}	For	a qq' mes	son: \vec{J}	$\vec{L} = \vec{L} + \vec{L}$	\vec{S} and	$P = (-1)^L$	+1 and	<i>C</i> =	(-1)	L+S		$(00)^0 \rightarrow D^+ K^-$ $(900) \rightarrow J/\psi J/\psi$
	$K_2^*(1430)$	$D_2^*(2460)$	D_{s2}^*	$(2573)^+$ $(2536)^+$	<i>B</i> [*] ₂ (5747)	$B_{s2}^{*}(5840$	$\frac{1}{2}$	γ)	_b , 1		10
	$N_1(1400)$	$D_{1}(2430)$	$\boldsymbol{\nu}_{s1}$										19

	i		$\rho(1)$	700) ω	(1650)	$\phi(1680)$	$\psi(37)$	770)	Υ(4	4 <i>S</i>)	
		d	<i>l a</i> ₂ (1	320) <i>f</i> ₂	(1270)	$f'_2(1525)$	$\chi_{c2}($	1 <i>P</i>)	$\chi_{b2}($	(1P)	
			$a_1(1)$	260) f_1	(1285)	$f_1(1420)$	$\chi_{c1}($	$\chi_{c1}(1P)$		1P)	
	\overline{d}	$\pi^0 \eta \eta'$	$\pi a_0(1$	450) <i>f</i> ₀	(1370)	$f_0(1710)$	$\chi_{c0}($	1 <i>P</i>)	$\chi_{b0}($	1 <i>P</i>)	
SK	-	π^{-}	$\pi^0 b_1(1)$	235) <i>h</i> ₁	$h_1(1170)$	$h_1(1415)$) $h_c(1)$	(<i>P</i>)	$h_b(1)$	(<i>P</i>)	
JAF	u	Л	$\rho(7)$	(70) <i>a</i>	p(782)	$\phi(1020)$	$J/\psi($	(1S)	Υ(1	(S) cays)	
0	\overline{S}	K^0	$K \pi^0$	π^+	$\eta \mid \eta'$	$\eta \mid \eta'$	$\eta_c(1)$	(S)	$\eta_b(1$	(S)	$\Upsilon(4S)$
IL							$\frac{J_2}{J_2}$	J_2	420)	χ_{c2} χ	$\frac{b2(1P)}{b(1P)}$
Ż	-	D	50	D=	Ibu	\mathbf{D}^{-}	$f_1(12)$	$f_1(1)$	420)	$\chi_{c1}(1P)$ χ	$\frac{b_1(1P)}{b_1(1P)}$
\triangleleft	С	D	(1680)			D^*_s	$(2700)^+$	7	H		$\frac{1}{(1P)}$
	$- \frac{U*(1420)}{U}$			D*((2460)	$D^*(2573)^+$					b(11)
\bar{b} $B^0 \frac{K_2^*(1430)}{2}$			$D_{2}^{\cdot}($	(2400)	$D_{s2}(2373)$		$B_2^*(5/47)$ $B_{s2}^*(5)$		$B_{s2}^{*}(5840)^{\circ}$	(13)	
		$\overline{1}$ \overline{k}	$\zeta_1(1400)$	$_D_1($	2430)	D_s	$(2536)^+$	/			5(15) T
	1 - (-) (170)	ua, uu a	7 7 ss 7*(1430) 5	$\frac{cc}{D*c}$	(2300)	$as T^{s}$	$(2317)^{+}$	d	<u>C3</u>	db, ub	
↑	p(170) p(170) p(170)	$\omega(1)$	<u>0 (1130))</u>	D_0	(2300)		${(2460)\pm}$				$P*(5840)^0$
	$\frac{2}{1^{+(+)}}$ $\frac{a_2(132)}{a_2(132)}$	$\frac{J_2}{J_2}$	$X_1(1270)$	$D_1($	2420)	D_s	₁ (2460)'	$B_{1}(57)$	721)	$B_{s1}(5830)^{0}$	$D_{s2}^{+}(3640)$
	$0^{+(+)}$ $a_0(145)$	$f_{0} = \frac{f_{1}}{f_{0}}$	K*(892)	$D^{*}(2007)^{0}$) <i>D</i> *(202	10)+	D_s^{*+}	B^{2}	* 5	B_s^{*0}	<u>}</u>
excited	$1^{+(-)} b_1(123)$	5) $h_1($	K^0 K^+ V	D^0	D^+	2	D_s^+	B^0	B^+	$B_{ m s}^0$	$B_{s1}(5830)^0$
states	$1^{-(-)} \rho(770)$)) $\omega(702$, φ(1020)	$J/\psi(1S)$	1(15)	A ™(892)	$D^{*}(2007)^{\circ} D$	*(2010)'			B_s^{*0}
ground	$0^{-(+)}$ π^0 π	τ^+ $\eta \mid \eta'$	$\eta \mid \eta'$	$\eta_c(1S)$	$\eta_b(1S)$	K^0 K^+	D^0	D^+	D_s^+	$B^0 B^+$	B_s^0
state	$J^{P(C)}$										$000)^0 + D^+ V^-$
		$Z_{c}(40)$	$20)^+ \to \pi^+ h_c$	$Z_c(4430)^+$ -	$\rightarrow \pi^+ \psi(2S)$	$Z_b(10650)$	$^{+} \rightarrow \pi^{+} h_{b}, \pi^{+} \Upsilon$	X(2)	$2900)^0 \to .$	D^+K^-	$\frac{(6000)^{\circ} \rightarrow D^{\circ} K}{(6000)} \rightarrow U/wU$
[<i>K</i> *(1680)	$Z_{c}(390)$	$(00)^+ \to \pi^+ J/\psi$	$Z_{cs}(4000)^+$	$\rightarrow K^+ J/\psi$	$Z_b(10610)$	$^+ \rightarrow \pi^+ h_b, \pi^+ \Upsilon$	$T_{cc\bar{c}\bar{c}}$	$(6900) \rightarrow$	$J/\psi J/\psi$	$(0900) \rightarrow JT\psi J$
	<i>K</i> [*] ₂ (1430)	$D_2^*(2460)$	D_{s2}^{*}	$(2373)^{-1} B_{2}^{*}(5)$	$(747) B_{-2}^{*}(5) B_{$	5840) ⁰					•••
	<i>K</i> ₁ (1400)	D ₁ (2430) D_{s1}	(2536)+	52						20

			$\rho(1)$	$700)$ $\omega($	1650)	<i>φ</i> (1680)		$T_{cc}^{+,"}$ tet	raquark:		
		d	<i>l a</i> ₂ (1	320) $f_2($	1270)	<i>f</i> ['] ₂ (1525)					
\mathbf{N}	\bar{d}	$\pi^0 \eta \eta'$	$\pi \frac{a_1(1)}{a_0(1)}$	260) $f_1($ 450) $f_0($	1285) 1370)	$f_1(1420)$ $f_0(1710)$					
ARK	ū	π^-	$\pi^0 \mid b_1(1) = \rho(7)$	$\begin{array}{c c} 235 \\ \hline 70 \\ \hline \omega \end{array}$	(1170) (782)	$h_1(1415)$ $\phi(1020)$		С	U		
IQU	\overline{S}	<i>K</i> ⁰	$K \pi^0$	π ⁺ ι	$\eta \mid \eta'$	$\eta \mid \eta'$			Ā		
ANT	Ē	D^{-}	5 0 (*(1680)	D-	Ibu	$\begin{array}{c c} \mathbf{p} \\ \mathbf{s} \\ $			u		
	\bar{b} $B^0 \frac{K_2^*(1430)}{K_2(1400)}$		$X_2^*(1430)$	$D_2^*(2460)$ D_{s2}^* D_{s2}^*							
▲	$ \begin{array}{c c} u\bar{d}, \ u\bar{u} & \overline{dd}, \ s\bar{s} \\ 1^{-(-)} & \rho(1700) & \omega(& K_0^*(1430) \end{array} \end{array} $			$\frac{c\bar{c}D_1(z)}{D_0^*(z)}$	2430 <u>1</u> 2300)	$\frac{d\bar{s}}{d\bar{s}} \frac{D_{s1}}{D_{s0}^*}$	$(2330)^{\frac{c\bar{\mu}, c}{\mu}}_{(2317)^{+}}$	<u>į</u> (2 <u>5</u>	<u>▶</u> s b	
	$2^{+(+)}$ $a_2(132)$ $1^{+(+)}$ $a_2(126)$	$\begin{array}{c c} f_{2}(1320) & f_{2}(1320) \\ \hline (1260) & f_{1}(1270) \\ \hline (1450) & f_{0}(1450) \\ \hline \end{array} \\ \begin{array}{c c} K^{*}(892) \\ \hline \end{array} \end{array}$		$\frac{D_1(2420)}{D^*(2007)^0 \mid D^*(20)}$		D_{s1}	(2460)+	$B_1(5721)$	$B_{s1}(5830)$	$(0)^0 = \frac{B_{s2}^*(5840)^0}{B_{s2}^*(5840)^0}$	
	$\begin{array}{c c} 1 & a_1(120) \\ 0^{+(+)} & a_0(145) \end{array}$					$(0)^{+}$	D_{s}^{*+}	B^* B_s^*			
excited	$1^{+(-)} b_1(123)$	$h_1($	$K^0 K^+$	D^0	D^+	2	D_s^+	$B^0 B^+$	B_s^0	$B_{s1}(5830)^0$	
states ground	$ \begin{array}{c c} $	$\frac{\omega(782)}{\tau^{+}} \qquad \eta \mid \eta'$	$\frac{\varphi(1020)}{\eta \mid \eta'}$	$\frac{J/\psi(1S)}{\eta_c(1S)}$	$\eta_b(1S)$	$\begin{array}{c c} \mathbf{K}^{+}(892) \\ \hline \mathbf{K}^{0} \\ \hline \mathbf{K}^{+} \end{array}$	$\frac{D^*(2007)^\circ D^*}{D^0}$	$(2010)^{+}$ L D^{+} I	D_s^+ B^0 B^+	$\begin{array}{c c} & B_s \\ \hline B_s \\ \hline B_s \\ \hline B_s \\ \hline \end{array}$	
state	$J^{P(C)}$				-			0		$(2900)^0 \to D^+ K^-$	
	$Z_c(4020)^+ \to \pi^+ h_c$			$Z_c(4430)^+ \rightarrow Z_c(4000)^+$	$\rightarrow \pi^+ \psi(2S)$	$Z_b(10650)^+ \to \pi^+ h_b, \pi^-$		$X(2900)^{0}$	$\rightarrow D^+ K^-$	$\overline{cc}(6900) \rightarrow J/\psi J/\psi$	
ł	$K^{*}(1680)$ $K^{*}(1/20)$	D*(246)	$(0)^* \to \pi^* J/\psi^*$	$Z_{cs}(4000)^{+} \rightarrow K^{+}J/\psi \qquad Z_{b}(10610)^{+}$			$\rightarrow \pi^+ n_b, \pi^+ 1$	$I_{cc\bar{c}\bar{c}}(0900)$	$\rightarrow J/\psi J/\psi$	•••	
	$\frac{K_2(1430)}{K_1(1400)}$	$D_{2}(2400)$ $D_{1}(2430)$	$\frac{D_{s2}}{D_{s1}}$	$(5)^{+}$	(38)	540) ⁻				21	
	$\Lambda_1(1400)$	$D_{1}(2430)$	$) \qquad \qquad$							Δ1	

Step 1: Produce mesons...

... using a sledgehammer:

... using a scalpel:

Beijing Electron Positron Collider (BEPCII) e^+e^- collisions at low energies (2-5 GeV) Beijing, China BESIII

$$e^{-\gamma}$$

e.g., $e^+e^- \rightarrow J/\psi \rightarrow \pi^+\pi^-\pi^0$ $e^+e^- \rightarrow \psi(3770) \rightarrow D^+D^-$

 $pp \rightarrow$ many many hadrons (baryons and mesons)

Step 1: Produce mesons...

... using a sledgehammer:

 $pp \rightarrow$ many many hadrons (baryons and mesons)

SuperKEKB e^+e^- collisions at higher energies (10.58 GeV) Mt. Tsukuba Tsukuba, Japan Belle II km KEKB Ring 1.5 km

... using a scalpel:

e.g., $e^+e^- \rightarrow \Upsilon(4S) \rightarrow B^+B^-$

Step 2: Detect mesons.

 $pp \rightarrow$ many many hadrons (baryons and mesons)

A Field Guide to the Mesons

Contents

Quick Key	inside front cover
The Plates Swallowtails Whites and Sulphurs Gossamer-wings and Metalmarks Brushfoots Spread-wing Skippers Grass Skippers Moths Immature Stages Larval Hosts and Nectar Sources	1
 The Basics Introduction Why Butterflies? What are Butterflies and Skippers? Families of Butterflies and Skippers Body Parts of Butterflies and Skippers How to Identify Butterflies and Skipper The First Question The Second Question Additional Questions Using the Quick Key Boxes Using the Plates: Butterflies and Skipper The Species Descriptions Using the Plates: Moths, Immature Stage Larval Hosts and Nectar Sources 	
Beyond the Basics Indiana and Its Butterflies Overview The Geologic Foundation Natural Regions Natural Communities Where, When, and How to Look for B Where to Look When to Look How to Look	

This Talk:

- I. What are Mesons?
- II. Families of Mesons
- III. Looking for Mesons
- IV. The Plates: $c\bar{c}$ and cc mesons
- V. The Plates: $b\bar{b}$ and bb mesons

VI. Why Mesons?

				INDIA -									
			ρ(17	/00) ω	(1650)	$\phi(16$	580)	ψ(37	70)	Υ(4 <i>S</i>)		
		d	$l a_2(13)$	$(320) f_2$	<i>f</i> ₂ (1270)		525)	$\chi_{c2}(1P)$		χ_{b2}	$\begin{array}{c} \chi_{b2}(1P) \\ \chi_{b1}(1P) \end{array} \\ \chi_{b0}(1P) \end{array}$		
ARKS	\bar{d}		$a_1(12)$	260) f_1	$f_1(1285)$		420)	$\frac{\chi_{c1}(1P)}{\chi_{c0}(1P)}$		χ_{b1}			
		$\pi^0 \eta \eta'$	$\pi a_0(14)$	(450) f_0	(1370)	$f_0(1710)$				χ_{b0}			
	ū	π^{-}	$\pi^0 b_1(12)$	235) h_1	(1170)	$h_1(1415)$ $\phi(1020)$		$h_c(1)$	<i>.P</i>)	$h_b($	1 <i>P</i>)		
		Л	μ $\rho(7'$	70) a	v(782)			$J/\psi(1S)$		$\Upsilon(1S)$		cays)	
	\overline{S}	K^0	$K \pi^0$	π^+	$\eta \mid \eta'$	η	η'	$\eta_c(1$	(S) 1	$\eta_b($	1 <i>S</i>)) $\Upsilon($	(1P)
ANT	ī	D^{-}	D^{-} $\overline{K^{*}(1680)}$		Ilsu		$a_1(1260)$ $D_{s1}^*(2)$	$f_1(128)$ $f_1(128)$ $(700)^+$	$f_1(1)$	420)	$\begin{array}{c c} \chi_{c2}(1P) & \chi_{b} \\ \chi_{c1}(1P) & \chi_{b} \\ \chi_{c1}(1P) & \chi_{b} \\ \chi_{c1}(1P) & \chi_{c2} \\ \chi_{c1}(1P) & \chi_{c2} \\ \chi_{c1}(1P) & \chi_{c2} \\ \chi_{c2}(1P) & \chi_{c2} \\ \chi_{c2}(1P) & \chi_{c2} \\ \chi_{c1}(1P) & \chi_{c2} \\ \chi_{c2}(1P) & \chi_{c2} \\ \chi_{c1}(1P) & \chi_{c2} \\ \chi_{c2}(1P) & \chi_{c2}(1P) & \chi_{c2} \\ \chi_{c2}(1P) & \chi_{c2} \\ \chi_{c2}(1P) & \chi_{c2} \\ \chi_{$		(1P) $(1P)$ $(1P)$ $(1P)$
	$ar{b}$	\bar{b} $B^0 \frac{K_2^*(1430)}{K_1(1400)}$			$D_{s2}^{*}(2573)^{+}$ $D_{s1}^{*}(2536)^{+}$			$B_{2}^{*}(5)$	$(5747) = B_{s2}^*(584)$			1S) 1S)	
▲	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$C_0^*(1430)$	D_0^*	D_0^* (2300) D_1 (2420) $007)^{(} D^*(201)$		$ \begin{array}{c} a \\ a \\ a \\ c \\ c$		$(2317)^+$ $(2460)^+$ $(B_1(57)^+)^*$ $(B_1(57)^+)^*$ $(B_2(57)^+)^*$			<i>db, ub</i>]	SD
			(1270)	$D_1($							$(21) = B_{s1}(5830)^0$ B_{s}^{*0}		$B_{s2}^{*}(5840)^{0}$
			K*(892)	$D^{*}(2007)^{0}$									
l excited	$1^{+(-)} b_1(123)$	(5) $h_1($	K^0 K^+	D^0	D^+	2	Ľ	P_s^+	B^0	B^+	B	0	$B_{s1}(5830)^0$
states ground	$\begin{array}{c c} 1^{-(-)} & \rho(770) \\ 0^{-(+)} & \pi^0 & \mu \end{array}$	$\frac{\omega(782)}{\tau^{+}} \frac{\omega(782)}{\eta \mid \eta'}$	$p = \frac{\varphi(1020)}{\eta \mid \eta'}$	$\frac{J/\psi(1S)}{\eta_c(1S)}$	$\frac{\Gamma(1S)}{\eta_b(1S)}$		$\frac{D^*}{K^+}$	$(2007)^{\circ} D$ D^{0}	$\frac{*(2010)}{D^+}$	D_s^+		B^{0} B^{+}	$\frac{B_s^{*0}}{B_s^0}$
state	$I^{P(C)}$												
	$Z_c(4020)^+ \to \pi^+ h_c \qquad Z_c(4020)^+ \to \pi^+ H_c \rightarrow X_c(4020)^+ \to X_c(4020)^+ $			$Z_c(4430)^+$ -	$(4430)^+ \to \pi^+ \psi(2S)$		$(0650)^+ \rightarrow$	$^{+} \rightarrow \pi^{+} h_{b}, \pi^{+} \Upsilon$		$X(2900)^0 \to D^+ K^ X(2900)^0 \to D^+ K^-$		X(290	$\frac{(0)^0 \to D^+ K^-}{(000) \to J/wl}$
	$K^*(1680)$ $Z_c(3900)^+ \to \pi^+ J$		$(0)^+ \to \pi^+ J/\psi$	$Z_{cs}(4000)^+$	$Z_b(10)$	$(0610)^+ \rightarrow$	$\pi^+ h_b, \pi^+ \Upsilon$ $T_{cc\bar{c}\bar{c}}$		$\frac{cc\bar{c}}{c\bar{c}\bar{c}}(6900) \rightarrow J/\psi J/\psi$				
	<i>K</i> ₂ *(1430)	$D_2^*(2460)$	$D_{s2}^{*}(2$	$B_{2}^{*}(2)$	5747) $ B_{s2}^*(5) $	5840) ⁰							
$K_1(1400)$ $D_1(2430)$ $D_{s1}(2536)^+$									31				

/ψ

	50)								51	
$K_2^*(143)$	30)		$K_{2}^{*}(14)$	430)		$D_2^*(246)$	60)		$D_{s2}^{*}(2)$	57
$\frac{K_{1}}{k_{1}}$)())		$K_{1}(12)$	400)	07	$\frac{1}{2}D_{1}(243)$	(0)	15	$D_{s1}(2)$	53
$K_{0}^{*} \wedge 1^{-(-)} \rho(1)$		иа ии	$K_0^*(14)$	430)	CC		$D_{s0}^{*}(2)$	31		
$\overline{K_1}$	$2^{+(+)} a_2(1)$		$K_1(12)$	270)	$D_1(2420)$				$D_{s1}(2 + 1)$	46
K	$\begin{array}{c c} 1^{+(+)} & a_1(1) \\ \hline 0^{+(+)} & a_0(1) \end{array}$		<i>K</i> *(8	392)	D*(20	$(07)^0 D$	*(2010	$))^{+}$		*+ 5
K excite	$d 1^{+(-)} b_1(1)$		K^0	<i>K</i> ⁺	D	0	D^+		D	+ s
ground	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
state	$I^{P(C)}$									
$Z_c(4020)^+ \rightarrow$	$\pi^+ h_c$ Z_c	Z	₂ (4020) ⁺ -	$\rightarrow \pi^+ h_c$	$Z_{c}(443)$	$(30)^+ \to \pi^+ \psi$	v(2S)	$Z_b(1)$	$(0650)^+ \rightarrow$	π^+
$Z_c(3900)^+ \to \pi$	K*(1680)	$Z_c($	(3900) ⁺ →	$\rightarrow \pi^+ J/\psi$	$Z_{cs}(40)$	$(000)^+ \to K^-$	$^{+}J/\psi$	$Z_b(1)$	$(0610)^+ \rightarrow$	π^+
	<i>K</i> [*] ₂ (1430)									
D ₁ (2430)	K ₁ (1400)	$D_1(2)$	+30)	\square_{S}	(2330)					
D ₀ *(2300)	<i>K</i> [*] (1430)	$D_0^*(2$	300)	D_{s}^{*}	$(2317)^+$					
D ₁ (2420)	<i>K</i> ₁ (1270)	$D_1(24)$	420)	D_s	$(2460)^+$	$B_1(5721)$	$B_{s1}(583)$	30) ^{0 d,}	discovered	
$(07)^0 D^*(2010)^+$	K*(892)	$D^{*}(2007)^{0}$	D*(2010)+	D_{s}^{*+}	B*	B_{s}^{*0}	, u	ndiscovered	
D^+	K^0 K^+	D^0	D^+		D_s^+ a	B^0 B^+	B_s^0	ed	, discovered	
$(1)^+ \rightarrow \pi^+ w(2S)$	7(4020) + + 1	7 (4420)+	-+(2.5)	7 (10(50)	+ , _+ <i>i</i> + x _	-V(2000)	$D^+\nu^-$	 1++	2++	L
$\frac{(0)}{(0)} \rightarrow \frac{1}{2} \psi (2S) \qquad Z$	$Z_c(4020)^+ \to \pi^+ J/\psi$	$Z_c(4430) \rightarrow Z_c(4000)^+ \rightarrow Z_$	$\rightarrow K^+ J/\psi$	$Z_b(10030)$ $Z_b(10610)$		$T_{cc\bar{c}\bar{c}}(6900)$	$X(2900)^{\circ} \to D^{+}K$ $T_{cc\bar{c}\bar{c}}(6900) \to J/\psi J/\psi$			

Z_c(4430) $\Psi(4^{3}S_{1})$ 4. $\eta_{c}(4^{1}S_{0})$ Y(4360) $\chi_{c2}(3^{3}P_{2})$ $h_{c}(3^{1}P_{1})$ $\chi_{c1}(3^{3}P_{1})$ Y(4260) 4.2 $\chi_{c0}(3^{3}P_{0})$ $\Psi(2^{3}D_{1})$ ψ(3³S₁) [GeV/c²] 4. Z_c(4020) 1S₀) χ_{c2}(2³P₂) X(3915) Z_c(3900) $h_{c}(2^{1}P_{1})$ X(3872) MASS 3.8 $\chi_{c0}(2^{3}P_{0})$ ψ''(1³D₁) $2M_{\text{D}}$ ψ′(2³S₁) η_c′(2¹S₀) 3.6 χ_{c2}(1³P₂) h_c(1¹P <mark>χ</mark>c1(1³P1) <mark>X₀0(1³P</mark> 3.4 3.2 predicted, discovered J/ψ(1³S₁ predicted, undiscovered 3.0 unpredicted, discovered η_c(1¹S₀) 0-+ 1+-0++ 1++ 2++ 1--JPC

The charmonium spectrum:

36

37

 B^0

ccud

bcud

В

The $Z_c(3900)$, X(3872), and $T_{cc}(3875)$, among others, have clearly taken us beyond conventional mesons.

Productive conversations about their internal structure continue! keV)

41

				LADI	<u> </u>										
			$\rho(17)$	/00)	ω(165	0)	$\phi(10)$	680)	ψ(37	70)	Υ(-	4 <i>S</i>)			
		d	$l a_2(1)$	<i>l a</i> ₂ (1320)		0)	$f'_2(1525)$		$\chi_{c2}(1P)$		$\chi_{b2}(1P)$				
NTIQUARKS		0	$a_1(12)$	260)	$f_1(128)$	5)	$f_1(14)$	420)	$\chi_{c1}(1P)$		$\chi_{b1}($	(1P)	g)		
	\bar{d}	$\pi^0 \eta \eta'$	$\pi a_0(1)$	450)	$f_0(137)$	$f_0(1370)$		1710) $\chi_{c0}($		P) $\chi_{b0}(1P)$		(1 <i>P</i>))		
	ū	π^{-}	$\pi^0 \mid b_1(1)$	235)	$h_1(117)$	(0)	$h_1(1415)$		$h_c(1P)$		$h_b($	$h_b(1P)$			
	<i>u</i>	<i></i>	$\rho(7)$	70)	$\omega(782)$		<i>φ</i> (10	020)	$J/\psi(1)$	1 <i>S</i>)) χ $\Upsilon(1S)$		cays)		
	\overline{S}	\overline{s} K^0 K		π^+ $\eta \mid \eta'$		/	$\eta \mid \eta'$		$\eta_c(1S)$ 1		$\eta_b($	$\eta_b(1S)$		$\frac{(4S)}{(1P)}$	
	\bar{c} D^-		50	D=	I/s	_		$a_1(1260)$	$f_1(128)$	5) $f_1(1)$	420)	$\chi_{c1}(1P)$	χ _{b1}	(1P) $(1P)$	
4			(1680)				D_{s1}		700)		The second se		6 6	(1 <i>P</i>)	
	\bar{b}	$\frac{B^{0}}{u\bar{d}} \frac{K_{2}^{*}(1430)}{K_{1}(1400)}$		$D_2^*(2460)$				$D_{s2}^{*}(2$	$(573)^+ = B_2^*(5747)^+$ $(536)^+ = \frac{1}{c\bar{u}.c\bar{d}}$		747)) $B_{s2}^{*}(5840)^{0}$ (1S) (1S)			
				$D_1(2430)$		訪	$\frac{1}{d\bar{s}} \frac{D_{s1}}{d\bar{s}}$				c s d			sħ	
♠	$1^{-(-)} \rho(170)$	$\begin{array}{c c} & & \\ \hline \\ 0 \\ \hline \\ \end{array} \\ \hline \\ \omega(1 \\ K \\ K \\ \hline \\ \end{array} \\ \hline \\ \end{array}$	$X_0^*(1430)$		$D_0^*(2300)$))		$D_{s0}^{*}(2$	317)+		7(<i>, </i>		1
	$2^{+(+)}$ $a_2(132)$	$\begin{array}{c c} f_2(f) \\ \hline f_2(f) \hline \hline f_2(f) \\ \hline f_2(f) \hline \hline f_2(f) \\ \hline f_2(f) \hline \hline f_$	$X_1(1270)$		$D_1(2420)$))	2	$D_{s1}(2$	460)+	$B_1(57)$	(21)	$B_{s1}(58)$	330) ⁰	$B_{s2}^{*}(5840)^{0}$	5
	$\begin{array}{c c} 1^{+(+)} & a_1(126) \\ 0^{+(+)} & a_0(145) \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		D*(20	$(07)^0 D^*$	*(201))+ 4	D	s (B* 1		B_s^*	B_s^{*0}		
excited	$1^{+(-)} b_1(123)$	5) $h_1($	K^0 K^+	D	$D^0 \qquad D^+$		2		D_s^+	B^0	B^+ B_s^0 B^+ B_s^0 B^+		0	$B_{s1}(5830)^{(1)}$)
states	$1^{-(-)} \rho(770)$	$\omega(762)$	$\phi(1020)$	$J/\psi(1)$	(S) n	(15)	$\frac{\mathbf{\Lambda}^{*}(892)}{\mathbf{W}^{0}} D^{*}$		(2007) D*(2010)				B^{*}	$\frac{B_s^{*0}}{P^0}$	
state	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			$\eta_c(1S) = \eta_b(1S)$			Λ				D_s B° B				
	$Z_c(4020)^+ \to \pi^+ h_c$			$Z_{c}(44)$	$Z_c(4430)^+ \to \pi^+ \psi(2S)$			$Z_b(10650)^+ \rightarrow$		$\rightarrow \pi^+ h_b, \pi^+ \Upsilon \qquad X(2)$		$(2900)^0 \to D^+ K^ \frac{X(2)}{r}$		$(00)^0 \rightarrow D^+ K$ $(900) \rightarrow I/m$	 1/π
	<i>K</i> *(1680)	$(00)^+ \to \pi^+ J/\psi$	$\tau^+ J/\psi \qquad \qquad Z_{cs}(4000)^+ \to K^+ J/\psi$				$(0610)^+ \rightarrow$	$\pi^+ h_b, \pi^+ \Upsilon$	$T_{cc\bar{c}\bar{c}}$	(6900) –	→ J/ψJ/ψ		····	, φ	
	$K_2^*(1430)$	$D_2^*(2460)$	D_{s2}^{*}	.575)	$B_2^*(5747)$	$B_{s2}^{*}(584)$	$(0)^{0}$								
	<i>K</i> ₁ (1400)										42	2			

The bottomonium spectrum:

JPC

44

The bottomonium spectrum:

46

"All science is either physics or stamp collecting." — Ernest Rutherford (apocryphal)

Despite Rutherford's quote:

(1) The diversity of mesons is beautiful and can be appreciated in its own right.

(2) The collection of mesons provides countless opportunities to hone in on specific fundamental questions.

(3) The patterns of mesons inform our understanding of how quarks and gluons interact within hadrons.

"All science is either phys

Despite Rutherford's quote:

(1) The diversity of m its own right.

(2) The collection of 1 hone in on specific fur

(3) The patterns of me quarks and gluons inte

"All science is either phys

Despite Rutherford's quote:

(1) The diversity of m its own right.

(2) The collection of r hone in on specific fur

(3) The patterns of me quarks and gluons inte

"All science is either physics or stamp collecting." — Ernest Rutherford (apocryphal)

Despite Rutherford's quote:

(1) The diversity of mesons is beautiful and can be appreciated in its own right.

(2) The collection of mesons provides countless opportunities to hone in on specific fundamental questions.

(3) The patterns of mesons inform our understanding of how quarks and gluons interact within hadrons.

