Tuning in to Axion Dark Matter with the ADMX Experiment

PRISMA+ Centre of Excellence Johannes Gutenberg University Mainz

> Gianpaolo Carosi November 15th, 2023

Tuning into Dark Matter

LNL-PRES-856462

his work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory nder contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

My primary interest: Explaining how our physical reality works (This is why I get up in the morning)

Always wanted to do something with space

Harvey Mudd College (B.S. in Physics) 2000 JPL Table Mountain Facility (HMC/Pomona 1-m telescope) JPL Keck Telescope Interferometer (landed a summer job before graduate school)

> MIT (Ph.D in Physics) 2006 AMS-02 Experiment (Cosmic Rays)

Lawrence Livermore National Laboratory

awrence Livermore National Laboratory LLNL-PRES-856462

The Nature of Dark Matter

One of the premier unsolved mysteries in physics

<u>1980s</u>

Vera Rubin: Galaxy rotation curves did not make sense without a large unseen mass Performed systematic surveys... put the issue of dark matter at the forefront of physics & cosmology

One of the premier unsolved mysteries in physics

Additional indirect evidence continues to build

Bullet cluster

X-ray imaging (hot gas) and Gravitational Imaging (majority gravitating mass) shows separation after collision Primordial Nucleosynthesis: Ratios of Hydrogen, Helium, Lithium limit number atoms in the universe. It has to be something else!!!

Neutrinos are close but don't cut it (to small a fraction).

Primordial

Meanwhile... another mystery of physics:

Why is the neutron electric dipole moment so small?

Lawrence Livermore National Laboratory

Peccei-Quinn Solution to the Strong-CP problem

Something conserved implies a Symmetry

- Peccei & Quinn: Postulated new U(1) symmetry that would be spontaneously broken.
- Weinberg & Wilczek: A new Goldstone boson (dubbed the axion)
- Remnant axion vacuum expectation value nulls QCD CP violation.
- Only free parameter: Symmetry breaking scale (f_a)
- "Invisble Axion": $f_a >> Weak Scale$ (dark matter candidate)
- Two general classes of models
 - KSVZ [Kim (1979), Shifman, Vainshtein, Sakharov (1980)]
 - Couples to leptons
 - **DFSZ** [Dine, Fischler, Srednicki (1981), Zhitnitsky (1980)]
 - Couples to quarks & leptons

minimum - Daniel Grin

Roberto Peccei 1942-2020

Helen Quinn

Frank Wilczek

The Mass Range of Dark Matter Candidates

Credit to: xkcd.com (Aug. 20, 2018) "A webcomic of romance, sarcasm, math, and language."

Axion mass range

Lower bound set by size of dark matter halo size of dwarf galaxies				Upper b SN1987A and	oound set by white dwarf cooling time	
		eV				
10 -22	10 -18	10 -14	10 -10	10 -6	10 -2	
10 -8	10-4	1	10 ⁴	10 ⁸	10 ¹²	1
>		H	z		¢	
Pre-in PQ phase	flation transition			>	Ele 0.5	ectrons 5 GeV
				←	Protons	s/Neutrons
					938/3	40 GeV
		F PQ I			ion Isition	

Adapted from Lindley Winslow DPF slide

Axion Couplings

General classes of couplings

Axion – Nucleon Axion – Electron Axion – Photon

 $g_{a\gamma\gamma}$ is a process with small model uncertainty Coupling used for haloscopes

Rate depends on "unification group" (the particles in the loops), ratio of u/d quark masses. The U(1) charges at the axion vertex cancel with little model dependence

$$g_{a\gamma\gamma} \sim \frac{\alpha}{f_{PQ}} (\frac{E}{N} - 1.95)$$

Types of axion experiments

Laboratory Experiments: Lasers (light shining through walls) & 5th force experiments

LLNL-PRES-856462

Axion Dark Matter Searches: The Haloscope Technique

Power transfer from axion field to cavity field

Weak coupling Takes many swings to fully transfer the wave amplitude.

Number of swings is equivalent to cavity *Quality factor (Q)*.

Narrowband cavity response \rightarrow iterative scan through frequency space.

ADMX started at LLNL

- Built off pioneering experiments at U. of Florida and Rochester/Brookhaven/Fermilab in late 1980s
- ADMX started with the purchase of large (8T 60-cm bore) Solenoid from Wang NMR (located in Livermore over by Costco). 16 MJ of stored energy (220 amps)
- Installed in the early 1990s and took data there with continuous upgrades until 2010. System then moved to the University of Washington

I joined as postdoc in 2006

ADMX experiment

Lawrence Livermore National Laboratory LLNL-PRES-856462

Microwave Cavity needs tunable resonance

Microwave Cavity needs tunable resonance

Josephson Parametric Amplifiers (JPAs)

*figures courtesy of Shahid Nawaz

ADMX Gen-2: Main Cavity & Sidecar Cavity

New Traveling Wave Parametric Amplifier (TWPA)

 Use long array of junctions. Phase match with pump (now directional 2-port device)

Broadband amplifier

- Potentially useful for frequency multiplexed axion searches (large # of cavities with complimentary frequency coverage).
- Provided to ADMX by Lincoln Lab
- Test on Sidecar cavity system

Traveling Wave Parametric Amplifier (TWPA)

Lawrence Livermore National Laboratory

Slide from C. Bartram (UW) NNS

23

Slide from C. Bartram (UW) NNS 24

Data-Taking Mode

- Lowest attenuation on the output line
- Highest attenuation on the input lines
- Signal path in blue. Weak port is terminated unless SAG is being injected.

Majority of time spent here collecting data *SAG: Synthetic Axion Generator

Noise Calibration Mode

- Receiver chain provides means for measuring key RF parameters, such as quality factor
- Two types of noise measurement
- 1) Heating of the 'hot-load' via dc current (by design)
- 2) Heating of the quantum amplifier package via an RF switch

Performed semi-regularly (every few months)

ADMX Run 1C: Tuning & Coupling

ADMX Run 1C: Persistent Signal at 896.45 MHz!

ADMX Run 1C: Persistent Signal at 896.45 MHz!

ADMX-G2 results and near term plans

ADMX-G2 results and near term plans

- Operations in phases that match the cavity tunable bandwidths
- Previous runs with sets of two tuning rods (runs 1A, 1B, 1C)
- Upcoming 1D (single rod) 1-1.4 GHz

Lawrence Livermore National Laboratory

ADMX-G2 results and near term plans

- Operations in phases that match the cavity tunable bandwidths
- Previous runs with sets of two tuning rods (runs 1A, 1B, 1C)
- Upcoming 1D (single rod) 1-1.4 GHz
- Switch to frequency locked 4cavity array for 1.4-1.9 GHz

Lawrence Livermore National Laboratory

ADMX-Extended Frequency Range (2-4 GHz)

DOE HEP sponsored *Dark Matter New Initiative* project Picks up where ADMX-G2 ends (~1.9 GHz) Currently in Design and Prototyping Phase Aiming for construction start FY25. Aimed to be installed at Fermilab!

New MRI magnet being acquired (9.4 T – 800 mm bore) > 8x stored energy of ADMX-G2

	ADMY C2 Marriet	ADMY FEB Massat
	ADMA-G2 Magnet	ADMA-EFK Magnet
Peak Field	7.6 T	9.4 T
Bore diameter	530 mm	800 mm
Magnet length	1117 mm	3100 mm
Cryostat diameter	1295 mm	2580 mm
Stored Energy	16.5 MJ	140 MJ
Weight	6 tons	45 tons
Helium consumption	3 liters/ hour	0.35 liters/hour
Current	204 Amps	220 Amps
Persistent current	No	Yes
Orientation	Vertical	Horizontal
Manufacturer	Wang NMR	GE Medical Systems
Manufacture date	1993	2003

9.4 T 800 mm bore MRI magnet

ADMX-Extended Frequency Range

Overall System Concept

- 18 cavities each instrumented with their own quantum amplifier chain and readout.
- In-phase amplitude combing digitally at room temperature

- Takes full advantage of coherence of axion signal relative to incoherent noise
 - SNR goes as \sqrt{N} cavities coherently combined.
 - Scan rate goes as SNR² ~ N. Factor of 18 x faster scanning than non-locked individual cavities
- Maximal flexibility, system repeatability and mass production

Resonator Design currently clamshell cavity

- Current baseline cavity cell is ~1 m long copper cavities with copper tuning rods.
- Two sets of tuning rods diameters (2-3 & 3-4 GHz with same clamshells)
- Piezoelectric actuators for frequency tuning & antenna coupling

Postdoc Nick Du mounting scale length prototypes in dilution refrigerator

Tuning rod wired for thermal timeconstant studies of sapphire axles

What about using superconductors for cavities?

- Extremely low RF resistance is ideal for high Q resonators
- Standard for accelerator cavities with typical $Q_0 \cong 10^{10}$ in zero magnetic field
- ADMX Copper cavities, $Q_0 \cong 10^4 10^5$
- Axion $Q_a > 10^6$

Accelerator Cavity. Image credit: Fermilab SQMS

The Challenge for ADMX SRF cavities

- **Meissner Effect:** the expulsion of magnetic field upon superconduction (Below critical fields B_{c1} , B_{c2} in Type II SCs)
- **Problem:** SRF cavity quality factor quickly degrades in external magnetic fields due to breakdown of Meissner Effect
 - Development of vortices' or fluxons with magnetic field (normal regions) in Type II Superconductors
 - Magnetic vortices' motion drive up the surface resistance.
 - Maximal loss for surfaces perpendicular to magnetic field with greatest Lorentz forces (end caps) on the fluxons.

Possible Solution: Hybrid Material Cavity

- Since vortex losses are minimal for surfaces parallel to field, only coating the walls of the cavity cuts out most dissipative part
- For an empty cavity, Q of the TM_{010} mode improves by a factor of (1 + L/R) when the barrel is coated with a thin-film superconductor.

Test Cavity Geometries: Multi-mode Measurements with NbTi Clamshell

- Cavity machined out of NbTi Square stock
- Looked at first 3 TM modes Q
- HFSS simulations of the cavity structure yields the geometric factor estimate for each mode and sub-surface
- This over-constrained problem allows us to calculate the wall vs. endcap resistance

Geometric Factor (Ω)	TM ₀₁₀	TM ₀₁₁	TM ₀₁₂
Walls	448	464	512
Top End Cap	4060	2194	2407
Bottom End Cap	4375	2173	237
Total End Caps	2106	1092	1195

NbTi Clamshell Cavity RF losses in Field: endcaps vs walls

- Applied method to show the endcap degradation in a Bulk NbTi clamshell cavity
- NbTi: $B_{c2} > 14 T$, $T_c \cong 8.3 K$
- Thesis work of UW grad student Tom Braine

T. Braine et al. Multi-mode analysis of surface losses in a superconducting microwave resonator in high magnetic fields. *Rev Sci Instrum* 1 March 2023; 94 (3): 033102. <u>https://doi.org/10.1063/5.0122296</u>

Lawrence Livermore National Laboratory

Simulations allow calculation of Geometric Factors

Need to maintain high form-factor minimizernumber of mode-LLNL-PRES-856462

B-field tolerant SRF cavity development worldwide

Worldwide there has been excellent progress on field-tolerant SRF cavities for axion searches 3 potential materials (NbTi, Nb3Sn, and YBCO)

- NbTi sputtered cavities as inspired by QUAX group
- Nb3Sn on Niobium led by SQMS (Sam Posen & Anna Grasselino)
- Nb3Sn on Copper collaboration with Florida Statue U. (Lance Cooley)
- HTC (EuBCO+APC) superconducting cavities CAPP

Recent SQMS results with Nb3Sn

Near term 'Hybrid'-SRF ADMX Sidecar (Installing now)

- Sidecar is a 'test'-bed for new axion tech atop the main experiment cavity
- Copper clamshell design with piezoactuated rotor and TWPA readout
- Tuning rod is hollow Nb with a Nb₃Sn coating. (1.75" Diameter) from SQMS!

Copper Cavity Produced by U. Sheffield.

Nb3Sn Tuning Rod from SQMS

ADMX-EFR Run Times Estimates

Parameter	Unit	Threshold	Objective
Cavity system full tuning range	GHz	2-4	2-4
Magnetic Field Average	Tesla	9.1	9.4
N Cavities		16	18
Volume per cavity	Liters	12.1/10.4	
Cavity Q ₂ at 4 GHz *		54,000	180,000
Cavity TM010 form factor *		-5%	0.4-0.5
Maximum Cavity Physical Temperature	mК	100	100
Maximum Electronics Physical			
Temperature	mК	25	25
JPA Noise Temperature at 4 GHz *	mК	200	200
JPA Gain	dB	15	21
JPA Tuning range/ Circulator Bandwidth	GHz	0.5	1
Insertion loss (cavity to JPA, max)	dB	2	2
System Noise Temperature at 4 GHz *	mК	500	440
Amplifier squeezing speed up factor		1	1.4
Cavity locking error	% BW	15	5
Power combining efficiency	%	95%	99%
Time Fraction Initial Scan	%	21	28

Instantaneous scan rate to be updated as results of prototyping become clearer. 3 cavity configuration (0.99, 1.00 and 1.005 m) allows to fill in mode-crossings.

Skipped (Mode Crossings) $\sim (10~\pm~3)\%$

ADMX-EFR Run Times Estimates

awrence Livermore National Laboratory

LLNL-PRES-856462

3 years Threshold: Q ~ Copper Cavity skips mode crossings Objective: Q ~ 3 x Q Copper Cavity Includes mode crossings

Q > 27 x Q_{copper} would allow same DFSZ experiment with only 4 cavities (save cost)

Could run 2-3 GHz & 3-4 GHz simultaneously

Could drive down < DFSZ

46

ADMX-EFR Run Times Estimates

3 years Threshold: Q ~ Copper Cavity skips mode crossings Objective: Q ~ 3 x Q Copper Cavity Includes mode crossings

Recently joined the SQMS quantum center at Fermilab.

Prototypes in process of being tested

Squeezing the vacuum (HAYSTAC group)

Squeezed Vacuum Used to Accelerate the Search for a Weak Classical Signal

M. Malnou,^{1,2,*,†} D. A. Palken,^{1,2,†} B. M. Brubaker,^{1,2} Leila R. Vale,³ Gene C. Hilton,³ and K. W. Lehnert^{1,2} ¹JILA, National Institute of Standards and Technology and the University of Colorado, Boulder, Colorado 80309, USA ²Department of Physics, University of Colorado, Boulder, Colorado 80309, USA ³National Institute of Standards and Technology, Boulder, Colorado 80305, USA 15(a) Power/vacuum (dB) b 0. 50 kHz $lpha/lpha_{
m max}$ 50.01Signal visibility (normal vs squeezed 0.001 $\omega/2\pi$ 2010 ω/κ_l Signal over background 1 MHz from cavity

Demonstrated in lab. Factor of 2.5 increased scan rate!

Figures from Phys. Rev. X 9, 021023 – Published 3 May 2019

Dish Antenna Type Experiments (Broadband)

 $2\sqrt{2}R$

R

MADMAX (Max Planck Institute)

Will probe 40-400 µeV range (10-100 GHz) 10 T field & ~80 disks

Prototype phase using dipole magnet at CERN

$$P/A = 2.2 \times 10^{-27} \,\mathrm{W}\,\mathrm{m}^{-2} \left(\frac{B_e}{10\,\mathrm{T}}\right) C_{a\gamma}^2 \cdot \beta^2$$

 β^2 : power emitted by booster / power emitted by single mirror ($\epsilon = \infty$)

Similar production concept as microwave cavities. Magnetic field allows axions to convert to photons near a surface such as a mirror or dielectric

ext

Does not use high resonance of a cavity (broadband searches)

Variety of detectors that m could be employed -superconducting nanowires -quantum cap. detectors -KID/TES

BREAD (Fermilab)

ARE AXIONS DARK MATTER?

Maybe! We are getting closer to finding out!

Thank You!

Acknowledgements:

This work was supported by the U.S. Department of Energy through Grants No DE-SC0009800, No. DE-SC0009723, No. DE-SC0010296, No. DE-SC0010280, No. DE-SC0011665, No. DEFG02-97ER41029, No. DE-FG02-96ER40956, No. DEAC52-07NA27344, No. DE-C03-76SF00098 and No. DE-SC0017987. Fermilab is a U.S. Department of Energy, Office of Science, HEP User Facility. Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No. DE-AC02-07CH11359. Additional support was provided by the Heising-Simons Foundation and by the Lawrence Livermore National Laboratory and Pacific Northwest National Laboratory LDRD offices.

Lawrence Livermore National Laboratory

Los Alamos

LABORATORY

Axions: A solution to two major mysteries in physics and cosmology

Lawrence Livermore National Laboratory

