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time, unlike the physical distance between them. However, this is a purely con-
ventional and rather artificial definition of distances, since we can’t see remote
objects today - they might even have disappeared. Anyway, we should not argue
about the definition of distances, because distances are not directly measurable
quantities in cosmology. We should concentrate on experimental, indirect ways
to probe them. Each experimental technique will lead to a particular definition
of distance.

In astrophysics, distances are usually measured in three ways:

• From the redshift. In principle the observed redshift of objects measures
the ratio a(t0)/a(te) plus corrections due to the local e↵ects of small-scale
inhomogeneities (peculiar velocity of the object, ...). On very large dis-
tances, one can neglect the impact of inhomogeneities and assume in first
approximation that the observed redshift is really equal to a(t0)/a(te)�1.
Then, if we know in advance the function a(t), we can identify the time
te and compute the comoving distance �(te) by integrating (c dt/a(t))
from te to t0. This method is (in first approximation) the one used by
observers trying to infer the spatial distribution of galaxies from galaxy
redshift surveys. The distance reported in pictures showing the distribu-
tion of galaxies in slices of our universe is obtained in that way. However,
it assumes an a priori knowledge of the function a(t). In many cases, this
function is precisely what one wants to measure.

• From the angular diameter of standard rulers. Surprisingly, there exist
a few objects in astrophysics and cosmology which physical size can be
known in advance, given some physical properties of these objects. They
are called standard rulers. In the next chapters we will introduce one
example of standard ruler: the sound horizon at decoupling, “observed” in
CMB anisotropies. In Euclidean space, the distance d to a spherical object
can be inferred from its physical diameter dl and its angular diameter d✓

through dl = d ⇥ d✓. In FLRW cosmology, although the geometry is
not Euclidean, we will adopt exactly this relation as one of the possible
definitions of distance. The corresponding quantity is called the angular
diameter distance dA,

dA ⌘
dl

d✓
. (3.39)

In Euclidean space, dA would be proportional to the usual Euclidean dis-
tance to the object and therefore to its redshift. In the FLRW universe,
the relation between the angular diameter distance and the redshift is
non-trivial and depends on the spacetime curvature, as we shall see in the
next subsection.

• From the luminosity of standard candles. As we have seen already with
Cepheids, there exists also objects called standard candles for which the
absolute luminosity (i.e. the total luminous flux emitted per unit of time)
can be estimated independently of its distance and apparent luminosity.
In Euclidean space, the distance could be inferred from the absolute lumi-
nosity L and apparent one l through l = L/(4⇡d

2). In cosmology, although
the geometry is not Euclidean, we will adopt exactly this relation as one of
the possible definitions of distance. The corresponding quantity is called
the luminosity distance dL,

dL ⌘

r
L

4⇡l
. (3.40)

In Euclidean space, dL would be again proportional to the usual Euclidean
distance to the object and therefore to its redshift, while in the FLRW
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that since � scales like (1 + ze), both the energy and the frequence scale like
(1 + ze)�1).

We see that the luminosity distance is not indepent from the angular dis-
tance:

dL = a(t0) re (1 + ze) = a(te) re (1 + ze)
2 = (1 + ze)

2
dA . (3.50)

Like dA, the luminosity distance can be written formally as a function of ze:

dL = a(t0) (1 + ze) fk

✓Z
ze

0

c dz

a(t0)H(z)

◆
. (3.51)

Again, we would need to know the function H(z) and the value of k in order
to calculate explicitly the luminosity distance – redshift relation dL(ze). In
the limit z �! 0, the three definition of distances given in the past sections
(namely: a(t0)�, dA and dL) are all equivalent and reduce to the usual definition
of distance d in Euclidean space, related to the redshift through d = z(c/H0).
Hence, the measurement of dA(z) and dL(z) at small redshift does not bring new
information with respect to a Hubble diagram (i.e., it only allows to measure
one number H0), while measurements at high redshift depend on the spatial
curvature and the dynamics of expansion. We will see in the next chapter that
dL(z) has been measured for many supernovae of type Ia till roughly z ⇠ 2,
leading to one of the most intriguing discovery of the past years.

In summary of this section, according to General Relativity, the homoge-
neous universe is curved by its own matter content, and the space–time curva-
ture can be described by one number plus one function: the comoving spatial
curvature k, and the scale factor a(t). We should now be able to relate these
two quantities with the source of curvature: the matter density.

3.4 The Friedmann law

From now on, we will adopt units in which c = 1 in most equations.

3.4.1 Einstein’s equation

The relationship between the properties of matter in one point and those of
curvature in the same point is given by the Einstein equation

Gµ⌫ = 8⇡G Tµ⌫ . (3.52)

The Einstein tensor Gµ⌫ can be computed for the FLRW metric using Christof-
fel’s symbols. After some calculations, one finds that Gµ⌫ , and even more G

µ

⌫
,

has a rather simple expression. It is diagonal, and G
1
1 = G

2
2 = G

3
3. In fact, these

properties are a direct consequence of the homogeneity/isotropy assumption.
When studying special and general relativity, we have seen a similar structure
in the stress-energy tensor of a perfect fluid in the MCRF. Indeed, for such a
fluid,

T
µ⌫ = (⇢ + p)Uµ

U
⌫ + pg

µ⌫
, (3.53)

with U
µ = (U0

, 0, 0, 0). The value of U
0 is given as usual by the constraint

~U · ~U = U
0
g00U

0 = �1. Using the Friedmann metric expressed with proper
time, one has g00 = �1 and hence U

0=1, i.e. U
µ = �

µ

0 . The associated covector
is U⌫ = U

µ
gµ⌫ = ��

0
⌫
. The stress-energy tensor can then be computed. It looks
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Concordance cosmology

1992 - 2016: towards concordance cosmology:


• Cosmic Microwave Background (CMB): maps for 

• temperature, 

• polarisation, 

• gravitational lensing.


• Big Bang Nucleosynthesis (BBN) & primordial elements


• Large Scale Structure of the universe (LSS):

• Galaxy clustering

• Cosmic shear (weak lensing)


• Cepheids and Supernovae luminosity

…


CDM concordance model: 


• General Relativity, QED, nuclear physics; 

• inflation, baryons, Cold Dark Matter, cosm. const., photons, neutrinos; 

• 7 free params. (6 after measurement of )

⇒ Λ

TCMB

Planck maps
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Discordance cosmology
21

Moresco et al. (2022), open wCDM with systematics: 67.8-7.2
+8.7

Moresco et al. (2022), flat ΛCDM with systematics: 66.5 ± 5.4

Hotokezaka et al. (2019): 70.3-5.0
+5.3

Mukherjee et al. (2019), GW170817+VLBI: 68.3-4.5
+4.6

Mukherjee et al. (2020), GW170817+ZTF: 67.6-4.2
+4.3

Gayathri et al. (2020), GW190521+GW170817: 73.4-10.7
+6.9

Palmese et al. (2021), GW170817: 72.77-7.55
+11

Abbott et al. (2021), GWTC–3: 68-8.0
+12.0

Mukherjee et al. (2022), GW170817+GWTC–3: 67-3.8
+6.3

Wong et al. (2019), H0LiCOW 2019: 73.3-1.8
+1.7

Shajib et al. (2019), STRIDES: 74.2-3.0
+2.7

Liao et al. (2019): 72.2 ± 2.1
Liao et al. (2020): 72.8-1.7

+1.6
Qi et al. (2020): 73.6-1.6

+1.8
Millon et al. (2020), TDCOSMO: 74.2 ± 1.6

Yang, Birrer, Hu (2020): 73.65-2.26
+1.95

Birrer et al. (2020), TDCOSMO+SLACS: 67.4-3.2
+4.1

Birrer et al. (2020), TDCOSMO: 74.5-6.1
+5.6

Denzel et al. (2021): 71.8-3.3
+3.9

Wang, Meng (2017): 76.12-3.44
+3.47

Fernandez Arenas et al. (2018): 71.0 ± 3.5

Schombert, McGaugh, Lelli (2020): 75.1 ± 2.8
Kourkchi et al. (2020): 76.0 ± 2.6

Pesce et al. (2020): 73.9 ± 3.0

de Jaeger et al. (2020): 75.8-4.9
+5.2

de Jaeger et al. (2022): 75.4-3.7
+3.8

Cantiello et al. (2018): 71.9 ± 7.1
Khetan et al. (2020) w/ LMC DEB: 71.1 ± 4.1

Blakeslee et al. (2021) IR-SBF w/ HST: 73.3 ± 2.5

Huang et al. (2019): 73.3 ± 4.0

Yuan et al. (2019): 72.4 ± 2.0
Reid, Pesce, Riess (2019), SH0ES: 71.1 ± 1.99

Freedman et al. (2020): 69.6 ± 1.9
Soltis, Casertano, Riess (2020): 72.1 ± 2.0
Kim, Kang, Lee, Jang (2021): 69.5 ± 4.2

Freedman (2021): 69.8 ± 1.7
Anand, Tully, Rizzi, Riess, Yuan (2021): 71.5 ± 1.8

Jones et al. (2022): 72.4 ± 3.3
Dhawan et al. (2022): 76.94 ± 6.4

Camarena, Marra (2019): 75.4 ± 1.7
Riess et al. (2019), R19: 74.03 ± 1.42

Breuval et al. (2020): 72.8 ± 2.7
Riess et al. (2020), R20: 73.2 ± 1.3

Camarena, Marra (2021): 74.30 ± 1.45
Riess et al. (2022), R22: 73.04 ± 1.04

Farren et al. (2021): 69.5-3.5
+3.0

Philcox et al. (2020), Pl (k)+CMB lensing: 70.6-5.0
+3.7

Baxter et al. (2020): 73.5 ± 5.3

Alam et al. (2020), BOSS+eBOSS+BBN: 67.35 ± 0.97
Ivanov et al. (2020), BOSS+BBN: 67.9 ± 1.1

Colas et al. (2020), BOSS DR12+BBN: 68.7 ± 1.5
D' Amico et al. (2020), BOSS DR12+BBN: 68.5 ± 2.2

Philcox et al. (2021), P+Bispectrum+BAO+BBN: 68.31-0.86
+0.83

Chen et al. (2021), P+BAO+BBN: 69.23±0.77
Zhang et al. (2021), BOSS correlation function+BAO+BBN: 68.19±0.99

Hinshaw et al. (2013), WMAP9: 70.0 ± 2.2
Henning et al. (2018), SPT: 71.3 ± 2.1

Zhang, Huang (2019), WMAP9+BAO: 68.36-0.52
+0.53

Aiola et al. (2020), WMAP9+ACT: 67.6 ± 1.1
Aiola et al. (2020), ACT: 67.9 ± 1.5
Dutcher et al. (2021), SPT: 68.8 ± 1.5

Ade et al. (2016), Planck 2015, H0 = 67.27 ± 0.66
Aghanim et al. (2020), Planck 2018+CMB lensing: 67.36 ± 0.54

Aghanim et al. (2020), Planck 2018: 67.27 ± 0.60
Pogosian et al. (2020), eBOSS+Planck mH2: 69.6 ± 1.8

Balkenhol et al. (2021), Planck 2018+SPT+ACT : 67.49 ± 0.5

Cosmic chronometers

GW relatedGW related

Lensing related,mass model dependent

HII galaxy

Tully Fisher

Masers

SNII

SBF

SNIa-Miras

SNIa-TRGBSNIa-TRGB

SNIa-Cepheid

LSS teq standard ruler

CMB lensing

No CMB, with BBN

CMB without Planck

CMB with Planck

H0 km s-1 Mpc-1

Indirect

Direct

60 65 70 75 80 85

FIG. 2. 68% CL constraint on H0 from di↵erent cosmological probes (based on Refs. [49, 50]).

2016 - 2012: towards discordance cosmology?


Hubble rate      km/s/Mpc


• CMB:


Planck 2018:  km/s/Mpc


• Baryon Acoustic Oscillations (BAO):


BOSS+eBOSS+BBN:  km/s/Mpc


                                               tension


• Supernovae + Cepheids:


SH0ES 2022:  km/s/Mpc

H0 =
·a(t0)
a(t0)

= 100 h

H0 = 67.36 ± 0.54

H0 = 67.35 ± 0.97

∼ 5σ

H0 = 73.04 ± 1.04

Riess et al. 22
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time, unlike the physical distance between them. However, this is a purely con-
ventional and rather artificial definition of distances, since we can’t see remote
objects today - they might even have disappeared. Anyway, we should not argue
about the definition of distances, because distances are not directly measurable
quantities in cosmology. We should concentrate on experimental, indirect ways
to probe them. Each experimental technique will lead to a particular definition
of distance.

In astrophysics, distances are usually measured in three ways:

• From the redshift. In principle the observed redshift of objects measures
the ratio a(t0)/a(te) plus corrections due to the local e↵ects of small-scale
inhomogeneities (peculiar velocity of the object, ...). On very large dis-
tances, one can neglect the impact of inhomogeneities and assume in first
approximation that the observed redshift is really equal to a(t0)/a(te)�1.
Then, if we know in advance the function a(t), we can identify the time
te and compute the comoving distance �(te) by integrating (c dt/a(t))
from te to t0. This method is (in first approximation) the one used by
observers trying to infer the spatial distribution of galaxies from galaxy
redshift surveys. The distance reported in pictures showing the distribu-
tion of galaxies in slices of our universe is obtained in that way. However,
it assumes an a priori knowledge of the function a(t). In many cases, this
function is precisely what one wants to measure.

• From the angular diameter of standard rulers. Surprisingly, there exist
a few objects in astrophysics and cosmology which physical size can be
known in advance, given some physical properties of these objects. They
are called standard rulers. In the next chapters we will introduce one
example of standard ruler: the sound horizon at decoupling, “observed” in
CMB anisotropies. In Euclidean space, the distance d to a spherical object
can be inferred from its physical diameter dl and its angular diameter d✓

through dl = d ⇥ d✓. In FLRW cosmology, although the geometry is
not Euclidean, we will adopt exactly this relation as one of the possible
definitions of distance. The corresponding quantity is called the angular
diameter distance dA,

dA ⌘
dl

d✓
. (3.39)

In Euclidean space, dA would be proportional to the usual Euclidean dis-
tance to the object and therefore to its redshift. In the FLRW universe,
the relation between the angular diameter distance and the redshift is
non-trivial and depends on the spacetime curvature, as we shall see in the
next subsection.

• From the luminosity of standard candles. As we have seen already with
Cepheids, there exists also objects called standard candles for which the
absolute luminosity (i.e. the total luminous flux emitted per unit of time)
can be estimated independently of its distance and apparent luminosity.
In Euclidean space, the distance could be inferred from the absolute lumi-
nosity L and apparent one l through l = L/(4⇡d

2). In cosmology, although
the geometry is not Euclidean, we will adopt exactly this relation as one of
the possible definitions of distance. The corresponding quantity is called
the luminosity distance dL,

dL ⌘

r
L

4⇡l
. (3.40)

In Euclidean space, dL would be again proportional to the usual Euclidean
distance to the object and therefore to its redshift, while in the FLRW
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Again, we would need to know the function H(z) and the value of k in order
to calculate explicitly the luminosity distance – redshift relation dL(ze). In
the limit z �! 0, the three definition of distances given in the past sections
(namely: a(t0)�, dA and dL) are all equivalent and reduce to the usual definition
of distance d in Euclidean space, related to the redshift through d = z(c/H0).
Hence, the measurement of dA(z) and dL(z) at small redshift does not bring new
information with respect to a Hubble diagram (i.e., it only allows to measure
one number H0), while measurements at high redshift depend on the spatial
curvature and the dynamics of expansion. We will see in the next chapter that
dL(z) has been measured for many supernovae of type Ia till roughly z ⇠ 2,
leading to one of the most intriguing discovery of the past years.
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that since � scales like (1 + ze), both the energy and the frequence scale like
(1 + ze)�1).
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tance:

dL = a(t0) re (1 + ze) = a(te) re (1 + ze)
2 = (1 + ze)

2
dA . (3.50)

Like dA, the luminosity distance can be written formally as a function of ze:
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✓Z
ze

0

c dz

a(t0)H(z)

◆
. (3.51)
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Foundations of the minimal cosmological model

                                wavelength           

sound horizon = distance travelled by sound wave from BB till decoupling

 :

CLASS, CAMB

 :

Physics of CMB anisotropies and LSS:


• Einstein equations + Friedmann metric:  and  


• Equations of motion:


• linearised Boltzmann  


• or linearised fluid equations (continuity, Euler)


• Thomson scattering rate  ionisation fraction  basic QED, hydrogen atom


• Initial conditions: inflation  gaussian random field with nearly scale-invariant                                                     


                                                  2-point  correlation function / power spectrum


                                        2-point correlation function / power spectrum at any later time


 many features, incl. oscillations:  (acoustic waves before  decoupling)

3 H2 = 8πG ρ δGμν = 8πG δTμν

∂t fi(xμ, pν) = C[ f1, f2, . . . ]

⇒ ⇒
⇒

⇒ cos(2πds /λ) γ − b
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Foundations of the minimal cosmological model
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CDM = 6-parameter fit 

to ~5000 independent data points

Λ

agreement of CMB and BAO with: 

• CMB/BAO with BBN and primordial 

abundances, 

• luminosity of distant SNIa,

• various probes of the Large Scale Structure…


CMB (+ BAO) probe directly: 


• density ratio of baryon/photons, 


• density ratio of non-relativistic/relativistic matter,


• angular scale of the sound horizon, 


• 2 params. for primordial spectrum, 


• optical depth to reionization


Indirectly:  ⇒ H0 ≡
·a(t0)
a(t0)

∼ 67 km/s/Mpc

Spectrum of CMB temperature anisotropies

from Planck satellite

Spectrum of CMB 
polarisation anisotropies


from Planck satellite

Spectrum of temperature x polarisation correlation

from Planck satellite

Spectrum of CMB 
gravitational lensing potential


from Planck satellite

Galaxy correlation spectrum 
from BOSS

ds ⇐

θs ⇐



/30             Hubble tension and possible theoretical solutions - J. Lesgourgues

14

Figure 11. The Hubble diagram for the Pantheon sample. The top panel shows the distance modulus for each SN; the
bottom panel shows residuals to the best fit cosmology. Distance modulus values are shown using G10 scatter model.

Given a vector of binned distance residuals of the SN
sample that may be expressed as �~µ = ~µ � ~µmodel (as
shown in Fig. 11 (bottom)) where ~µmodel is a vector of
distances from a cosmological model, then the �2 of the
model fit is expressed as

�2 = �~µT ·C�1 ·�~µ. (8)

Here we review each step of the analysis of the Pan-
theon sample and their associated systematic uncertain-
ties.

5.1. Calibration

The ‘Supercal’ calibration of all the samples in this
analysis is presented in S15. S15 takes advantage of
the sub-1% relative calibration of PS1 (Schlafly et al.
2012) across 3⇡ steradians of sky to compare photome-
try of tertiary standards from each survey. S15 measures
percent-level discrepancies between the defined calibra-
tion of each survey by determining the measured bright-
ness di↵erences of stars observed by a single survey and
PS1 and comparing this with predicted brightness dif-

8

Distances in cosmology

Angular diameter distance Luminosity distance 

3.3. LIGHT PROPAGATION IN THE FLRW UNIVERSE 27

time, unlike the physical distance between them. However, this is a purely con-
ventional and rather artificial definition of distances, since we can’t see remote
objects today - they might even have disappeared. Anyway, we should not argue
about the definition of distances, because distances are not directly measurable
quantities in cosmology. We should concentrate on experimental, indirect ways
to probe them. Each experimental technique will lead to a particular definition
of distance.

In astrophysics, distances are usually measured in three ways:

• From the redshift. In principle the observed redshift of objects measures
the ratio a(t0)/a(te) plus corrections due to the local e↵ects of small-scale
inhomogeneities (peculiar velocity of the object, ...). On very large dis-
tances, one can neglect the impact of inhomogeneities and assume in first
approximation that the observed redshift is really equal to a(t0)/a(te)�1.
Then, if we know in advance the function a(t), we can identify the time
te and compute the comoving distance �(te) by integrating (c dt/a(t))
from te to t0. This method is (in first approximation) the one used by
observers trying to infer the spatial distribution of galaxies from galaxy
redshift surveys. The distance reported in pictures showing the distribu-
tion of galaxies in slices of our universe is obtained in that way. However,
it assumes an a priori knowledge of the function a(t). In many cases, this
function is precisely what one wants to measure.

• From the angular diameter of standard rulers. Surprisingly, there exist
a few objects in astrophysics and cosmology which physical size can be
known in advance, given some physical properties of these objects. They
are called standard rulers. In the next chapters we will introduce one
example of standard ruler: the sound horizon at decoupling, “observed” in
CMB anisotropies. In Euclidean space, the distance d to a spherical object
can be inferred from its physical diameter dl and its angular diameter d✓

through dl = d ⇥ d✓. In FLRW cosmology, although the geometry is
not Euclidean, we will adopt exactly this relation as one of the possible
definitions of distance. The corresponding quantity is called the angular
diameter distance dA,

dA ⌘
dl

d✓
. (3.39)

In Euclidean space, dA would be proportional to the usual Euclidean dis-
tance to the object and therefore to its redshift. In the FLRW universe,
the relation between the angular diameter distance and the redshift is
non-trivial and depends on the spacetime curvature, as we shall see in the
next subsection.

• From the luminosity of standard candles. As we have seen already with
Cepheids, there exists also objects called standard candles for which the
absolute luminosity (i.e. the total luminous flux emitted per unit of time)
can be estimated independently of its distance and apparent luminosity.
In Euclidean space, the distance could be inferred from the absolute lumi-
nosity L and apparent one l through l = L/(4⇡d

2). In cosmology, although
the geometry is not Euclidean, we will adopt exactly this relation as one of
the possible definitions of distance. The corresponding quantity is called
the luminosity distance dL,

dL ⌘

r
L

4⇡l
. (3.40)

In Euclidean space, dL would be again proportional to the usual Euclidean
distance to the object and therefore to its redshift, while in the FLRW
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nearby SNIa:
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second derivative  ⇒ Ωk, ΩΛ
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Direct measurement of Hubble rate from standard candles
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Direct measurement of Hubble rate from standard candles

A Comprehensive Measurement of H0 from SH0ES 5

Unfortunately, SNe Ia at D  20 Mpc are rare, occurring about once per decade, with most of the few objects in this
range observed up to a century ago using photographic technology. Such observations lacked the photometric precision,
well-characterized bandpasses, and accurate determinations of host-galaxy backgrounds, SN light-curve shapes, and
SN colors to take advantage of the new standardization methods. The tendency for intrinsically brighter SNe Ia with
broader light curves to occur in (late-type) Cepheid hosts would also bias H0 lower without light-curve standardization.
A number of systematic di↵erences in the first-generation calibration of SNe Ia by Sandage et al. (2006) were quantified
by Riess et al. (2005, Table 16). These di↵erences, totaling about 20%, arose from several e↵ects which were amplified
by small sample statistics: problematic SN Ia data such as photographic photometry, highly extinguished objects, and
poorly sampled light curves; from photometric anomalies in WFPC2, such as the “long vs. short e↵ect” (Holtzman
et al. 1995) and charge-transfer e�ciency (CTE; e.g., Whitmore et al. 1999); and from limited knowledge of the slope
of the Cepheid P–L relation. The present geometric calibration of the distance to the LMC by Pietrzyński et al. (2019)
using DEBs is also 7% smaller than the value assumed by Sandage et al. (2006) to calibrate Cepheids.
The SH0ES program has been designed to improve upon past determinations of H0 by (1) extending the range

of Cepheid observations with ACS and WFC3 to reach the hosts of a large sample of “ideal” SNe Ia, free from the
preceding problems; (2) using near-infrared (NIR) observations of all Cepheids in SN Ia hosts with NICMOS and WFC3
to reduce the systematic uncertainty associated with the reddening laws for Cepheids and their hosts and the Cepheid
metallicity dependence; and (3) calibrating Cepheids with new, geometric distances tied directly with HST to the
Cepheids in SN Ia hosts to nullify zeropoint uncertainties. “Ideal” or suitable SNe Ia for calibrating H0 (given limited
HST time) were defined by Riess et al. (2005) to be (1) observed before maximum light, (2) through low interstellar
extinction (AV < 0.5 mag), (3) with the same instruments and filters as the SNe Ia in the Hubble flow (at that time
obtained by the Calán/Tololo and CfA surveys), and (4) to have typical light-curve shapes1. These characteristics are
necessary to provide low dispersion in the Hubble flow, but they applied to only three Cepheid-calibrated SNe Ia from
the first-generation projects (SNe 1981B, 1990N, and 1998aq).

Figure 1. Sources of data for distance ladder. Red block shows data from this work.

1 These color and shape requirements translate in the Pantheon SN standardization (Scolnic et al. 2018) as |c| < 0.2 and |x1| < 2
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Direct measurement of Hubble rate from standard candles

Systematics in direct  measurements?

Environnement-bias of SNIa close to cepheids, 

variations in cepheids: 

Mortsell et al. 2105.11461, 2106.09400,…

H0

A Comprehensive Measurement of H0 from SH0ES 39

A number of recent developments have tightened this constraint considerably while broadening its range. The DEB
distance for the SMC from Graczyk et al. (2020) as discussed in §4.4 provides a di↵erential measurement between the
Cepheids in the LMC and SMC which constrains the metallicity dependence. As shown in Fig. 21, this constraint alone
gives � = �0.22± 0.05, similar to the values and uncertainties found by Breuval et al. (2021) for [Fe/H], and falling
along the line that joins the other two anchors. It is one of the strongest constraints available because it comes from the
di↵erence in the DEB distances to each Cloud, a measure which has small uncertainty owing to calibration cancellation

Figure 18. Display of 67 fits in 12 categories of alternatives or extensions to the baseline as shown in Table 5.
Riess et al. 22
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How to settle the issue?

• Other standard candles: 


• Tip of Red Giant Branch (TRGB), 

• Black Holes as standard sirens (LISA, ET)


• Redshift drift (VLT, SKA)… 
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Systematics in CMB?

Unknown foregrounds, insufficient instrument 

modelling…

Small deviations from CDM with new 
ingredients


(DM, DE, MG, magnetic fields, etc.), 

or large-scale deviation from Friedmann model


Λ

Riess et al. 22

How to settle the issue?

• Other standard candles: 


• Tip of Red Giant Branch (TRGB), 

• Black Holes as standard sirens (LISA, ET)


• Redshift drift (VLT, SKA)… 
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Solving the  tension with extended cosmological models: exhaustive reviewH0

In the Realm of the Hubble tension � a Review of Solutions 30

Figure 4. Whisker plot with the 68% marginalized Hubble constant constraints for
the models of Section 4. The cyan vertical band corresponds to the H0 value measured
by R20 [2] and the light pink vertical band corresponds to the H0 value estimated
by Planck 2018 [11] in a ⇤CDM scenario. For each line, when more than one error
bar is shown, the dotted one corresponds to the Planck only constraint on the Hubble
constant, while the solid one to the di↵erent dataset combinations reported in the red
legend, in order to appreciate the shift due to the additional datasets.

of the scale factor ac ⌘ (1 + zc)�1 at which the transition occurs are, respectively [215]:

⌦�(a) =
2⌦�(ac)

(a/ac)
3(1+wn) + 1

, (2)

w�(a) = � 1 +
1 + wn

1 + (ac/a)3(1+wn)
. (3)

At early times a ! 0, the scalar field behaves as a cosmological constant with the

equation of state w�(a) ! �1, while for a � ac we have w�(a) ! wn. Hence, the

energy density is constant at early times, and decays as a�3(1+wn) when the scalar field

becomes dynamical [216]. The EDE component dilutes like matter (wn = 0) for n = 1 ,

like radiation (wn = 1/3) for n = 2, and faster than radiation for n � 3; for n ! 1, the

In the Realm of the Hubble tension � a Review of Solutions 38

Figure 6. Whisker plot with the 68% (95% if dashed) marginalized Hubble constant
constraints for the models of Section 5. The cyan vertical band shows the H0 value
measured by R20 [2] and the light pink vertical band corresponds to the H0 value
estimated by Planck 2018 [11] in a ⇤CDM scenario. For each line, when more than
one error bar is shown, the dotted one corresponds to the Planck only constraint on
the Hubble constant, while the solid one to the di↵erent dataset combinations reported
in the red legend, in order to appreciate the shift due to the additional datasets.

In the Realm of the Hubble tension � a Review of Solutions 52

Figure 8. Whisker plot with the 68% marginalized Hubble constant constraints for
the models of Section 6. The cyan vertical band shows the H0 value measured by
R20 [2] and the light pink vertical band denotes the H0 value estimated by Planck

2018 [11] in a ⇤CDM scenario. For each line, when more than one error bar is shown,
the dotted one corresponds to the Planck only constraint on the Hubble constant, while
the solid one to the di↵erent dataset combinations reported in the red legend, in order
to appreciate the shift due to the additional datasets.

Using the Planck 2015 CMB distance priors + Pantheon + BAO + Ly-↵ data, Ref. [391]

finds H0 = 71.02+1.45

�1.37
km s�1 Mpc�1 at 68% CL, solving the Hubble tension at 1.1�.

Considering a full CMB analysis for this scenario, Planck 2015 alone gives instead

H0 = 72.58+0.79

�0.80
km s�1 Mpc�1 at 68% CL [392], solving the Hubble tension within

1�, and Planck 2015 + BAO gives H0 = 71.55+0.55

�0.57
km s�1 Mpc�1 at 68% CL, in

agreement with R20 at 1.2�. This result is in agreement with Ref. [393], where CC

measurements are considered. The very same model has been updated in Ref. [394],

which finds H0 = 72.35+0.78

�0.79
km s�1 Mpc�1 at 68% CL for the Planck 2018 data, and

H0 = 72.16 ± 0.44 km s�1 Mpc�1 at 68% CL for Planck 2018 + CMB lensing + BAO

+ Pantheon + DES + R19, confirming the agreement with R20 within one standard

deviation. However, in Ref. [395] it has been argued that, while at the background level

the flat-PEDE model fits the data as well as the ⇤CDM scenario, at the perturbation

level the PEDE model can not fit the observational data in cluster scales compared to

the ⇤CDM. Extensions of this model considering neutrinos or a non-zero curvature of

the Universe can be found in Refs. [394–396].

6.1.1. Generalized Emergent Dark Energy: A generalization of the PEDE model,

including one more degree of freedom �, known as Generalized Emergent Dark Energy

In the Realm of the Hubble tension � a Review of Solutions 56

Figure 10. Whisker plot with the 68% (95% if dashed) marginalized Hubble constant
constraints for the models of Section 7. The cyan vertical band corresponds to the H0

value measured by R20 [2] and the light pink vertical band corresponds to the H0 value
estimated by Planck 2018 [11] in a ⇤CDM scenario. For each line, when more than one
error bar is shown, the dotted one corresponds to the Planck only constraint on the
Hubble constant, while the solid one to the di↵erent dataset combinations reported in
the red legend, in order to appreciate the shift due to the additional datasets.

7. Models With Extra Relativistic Degrees of Freedom

One classical extension of the standard ⇤CDM model considered for the H0 tension

resolution, is the possibility of having extra “dark” radiation at the recombination

period, usually quantified by the number of relativistic degrees of freedom, Ne↵ [403].

The radiation density ⇢r can be written as a function of the photon density ⇢�, where we

consider the ratio T⌫/T� = (4/11)1/3 between the background temperatures of neutrinos

In the Realm of the Hubble tension � a Review of Solutions 68

Figure 12. Whisker plot with the 68% (95% if dashed) marginalized Hubble constant
constraints for the models discussed throughout the Section 8.1 of the main Section 8.
The cyan vertical band corresponds to the H0 value measured by R20 [2] and the light
pink vertical band corresponds to the H0 value estimated by Planck 2018 [11] in a
⇤CDM scenario. For each line, when more than one error bar is shown, the dotted one
corresponds to the Planck only constraint on the Hubble constant, while the solid one
to the di↵erent dataset combinations reported in the red legend, in order to appreciate
the shift due to the additional datasets.
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Figure 14. Whisker plot with the 68% (95% if dashed) marginalized Hubble constant
constraints for the models discussed throughout the Sections 8.2 and 8.4 of the main
Section 8. The cyan vertical band corresponds to the H0 value measured by R20 [2]
and the light pink vertical band corresponds to the H0 value estimated by Planck

2018 [11] in a ⇤CDM scenario. For each line, when more than one error bar is shown,
the dotted one corresponds to the Planck only constraint on the Hubble constant, while
the solid one to the di↵erent dataset combinations reported in the red legend, in order
to appreciate the shift due to the additional datasets.

The coupling between the dark matter fluid and photons can be described by:

⇢̇DM + 3H⇢DM = �Q ; (81)

⇢̇� + 4H⇢� = Q , (82)

where Q = ��H⇢DM. For this scenario, where the neutrino sector is free to vary, Planck

2015 TT + CMB lensing + BAO gives H0 = 71.9± 4.0 km s�1 Mpc�1 at 68% CL [685],

solving the H0 tension within 1�. However, this result has been obtained fitting the

CMB temperature power spectrum only.

An extension of this model has been investigated in Ref. [686], considering a CPL

parameterization for the DE equation of state, obtaining H0 = 67.4± 3.9 km s�1 Mpc�1

at 68% CL for Planck 2015 + BAO, and alleviating the tension with R20 at 1.4�.

An updated analysis is instead presented in Ref. [534], where Planck 2018 + BAO

gives H0 = 67.70± 0.43 km s�1 Mpc�1 at 68% CL, showing a disagreement with R20 at

4�.
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Figure 16. Whisker plot with the 68% (95% if dashed) marginalized Hubble constant
constraints for the models of Sections 9 and 10. The cyan vertical band corresponds
to the H0 value measured by R20 [2] and the light pink vertical band corresponds
to the H0 value estimated by Planck 2018 [11] in a ⇤CDM scenario. For each line,
when more than one error bar is shown, the dotted one corresponds to the Planck

only constraint on the Hubble constant, while the solid one to the di↵erent dataset
combinations reported in the red legend, in order to appreciate the shift due to the
additional datasets.
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Figure 18. Whisker plot with the 68% (95% if dashed) marginalized Hubble constant
constraints for the models of Sections 11-14. The cyan vertical band corresponds
to the H0 value measured by R20 [2] and the light pink vertical band corresponds
to the H0 value estimated by Planck 2018 [11] in a ⇤CDM scenario. For each line,
when more than one error bar is shown, the dotted one corresponds to the Planck

only constraint on the Hubble constant, while the solid one to the di↵erent dataset
combinations reported in the red legend, in order to appreciate the shift due to the
additional datasets.

13. Physics of the critical Phenomena

Since the physics operating at late time seems to be di↵erent from the physics of early

time, yet another interesting possibility could be a phase transition in the dark sector.

The critical phenomena studied extensively the idea of a phase transition, in which

local interactions of a many-body system produce a global phase transition, if a free

parameter of the model is lowered beyond a critical point.

We refer to Figures 17 and 18 summarizing the performance of the models discussed

in this section in light of the Hubble constant tension.

13.1. Double-⇤CDM (⇤⇤CDM)

The Double� ⇤ Cold Dark Matter (⇤⇤CDM) scenario is inspired by the Ising model, a

classic model of critical phenomena describing the phase transition from para-magnet to

ferro-magnet at Curie temperature. This cosmological scenario assumes a cosmological

De Valentino et al. 2103.01183
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Model �Nparam MB
Gaussian

Tension

QDMAP

Tension
��

2 �AIC Finalist

⇤CDM 0 �19.416± 0.012 4.4� 4.5� X 0.00 0.00 X X

�Nur 1 �19.395± 0.019 3.6� 3.8� X �6.10 �4.10 X X

SIDR 1 �19.385± 0.024 3.2� 3.3� X �9.57 �7.57 X X
mixed DR 2 �19.413± 0.036 3.3� 3.4� X �8.83 �4.83 X X

DR-DM 2 �19.388± 0.026 3.2� 3.1� X �8.92 �4.92 X X

SI⌫+DR 3 �19.440+0.037
�0.039 3.8� 3.9� X �4.98 1.02 X X

Majoron 3 �19.380+0.027
�0.021 3.0� 2.9� X �15.49 �9.49 X X

primordial B 1 �19.390+0.018
�0.024 3.5� 3.5� X �11.42 �9.42 X X

varying me 1 �19.391± 0.034 2.9� 2.9� X �12.27 �10.27 X X
varying me+⌦k 2 �19.368± 0.048 2.0� 1.9� X �17.26 �13.26 X X
EDE 3 �19.390+0.016

�0.035 3.6� 1.6� X �21.98 �15.98 X X
NEDE 3 �19.380+0.023

�0.040 3.1� 1.9� X �18.93 �12.93 X X
EMG 3 �19.397+0.017

�0.023 3.7� 2.3� X �18.56 �12.56 X X
CPL 2 �19.400± 0.020 3.7� 4.1� X �4.94 �0.94 X X

PEDE 0 �19.349± 0.013 2.7� 2.8� X 2.24 2.24 X X

GPEDE 1 �19.400± 0.022 3.6� 4.6� X �0.45 1.55 X X

DM ! DR+WDM 2 �19.420± 0.012 4.5� 4.5� X �0.19 3.81 X X

DM ! DR 2 �19.410± 0.011 4.3� 4.5� X �0.53 3.47 X X

Table 1: Test of the models based on dataset Dbaseline (Planck 2018 + BAO + Pantheon), using the direct mea-
surement of Mb by SH0ES for the quantification of the tension (3rd column) or the computation of the AIC (5th
column). Eight models pass at least one of these three tests at the 3� level.

Before declaring the o�cial finalists, let us briefly comment on models that do not make it to the
final, starting with late-universe models. The CPL parameterization, our “late-universe defending
champion” only reduces the tension to 3.7�, inducing a minor improvement to the global fit. The
PEDE model noticeably degrades the �

2 of BAO and Pantheon data, leading to an overall worse
fit than ⇤CDM. Thus, according to the general rules defined at the end of the previous subsection,
we must exclude PEDE from the final. We further comment on this choice in Section 4.2 and
below. The GPEDE model, which generalises PEDE to include ⇤CDM as a limiting case, does
not pass any of the tests. This shows the danger of using only criterion 1 or 2 for models that do
not include ⇤CDM as a limit. Ideally, one should always perform a test equivalent to the �AIC
or consider models in which ⇤CDM is nested. As emphasized above, for late-time modifications of
⇤CDM, it is also important to treat the SH0ES observation as a model-independent measurement
of Mb , rather than a model-dependent measurement of H0 . We checked explicitly that using a
SH0ES likelihood on H0 rather than Mb incorrectly yields more favorable results for these late-
time models, a result consistent with the claims of Refs. [42–44, 50, 51, 53]. Finally, the models
of decaying dark matter studied here are only capable of reducing the tension from 4.4� to 4.2�,
despite only introducing two new parameters. Consequently, the �AIC criteria disfavors both
DDM models. We thus conclude that the late-time DE and dark matter decay models considered
in this work cannot resolve the Hubble tension.

Secondly, the class of models invoking extra relativistic degrees of freedom perform significantly bet-
ter than late-universe models, but a majority are not successful enough to pass our pre-determined

12

Schöneberg, Abellan, Pérez, JL, Witte, Poulin, Lesgourgues, 2107.10291, Phys. Rep. 984 (2022) 1-55
• Selection of 19 “representative models” (see later)

• Three metrics to quantify the (resolution of the) tension
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Figure 3: 68% and 95% confidence levels on ⌦m and H0 for the minimal ⇤CDM model and
our combined BAO+BBN data set under various assumptions: Left: BBN predictions taken
from PArthENoPE-standard (red), PArthENoPE-Marcucci (green), and PRIMAT (blue). Right:

Helium abundance taken from Aver et al. [46] (red), Peimbert et al. [47] (green), and Izotov
et al. [48] (blue).

uncertainties on these rates. The right panel shows the impact of taking the experimental
helium abundance measurement from the three di↵erent references listed in section 2. This
has a totally negligible impact because !b depends on deuterium much more than helium
measurements. In conclusion, we find that our results are robust and hardly a↵ected by the
most controversial aspects of BBN physics.

3.2 ⇤CDM + Ne↵ model

We now allow Ne↵ to vary in order to check whether the BAO+BBN dataset is compatible
with larger values of H0. Di↵erent physical e↵ects are now at play.

BAO data probe the ratio of the comoving sound horizon over several types of comoving
cosmological distances. For instance, in a flat universe, the BAO angular scale reads:

✓(z) =

R1
zD

cs(!b, z̃)H(z̃)�1
dz̃

R z
0 H(z̃)�1dz̃

'
R1
zD

cs(!b, z̃)
⇥
⌦r/⌦m(1 + z̃)4 + (1 + z̃)3

⇤�1/2
dz̃

R z
0 [⌦⇤/⌦m + (1 + z̃)3]�1/2

dz̃

, (3.1)

where the baryon-photon sound speed cs depends on the baryon density and on redshift. For
a fixed !b, the numerator (related to the sound horizon) depends on the redshift of equality
between radiation and matter (i.e. on ⌦m/⌦r), while the denominator (related to the angular
diameter distance) depends on the redshift of equality between matter and ⇤ (i.e. on ⌦m).
It is possible to increase Ne↵ and H0 simultaneously while keeping these two redshifts (and
both ⌦m,⌦r) fixed: thus we expect BAO data to be compatible with arbitrary values of H0

when Ne↵ fluctuates. However, the degeneracy between Ne↵ and H0 is limited by BBN data
in two main ways.

– 8 –

Sound horizon =

integral over sound speed 

from early universe till decoupling

Angular diameter distance =

integral over inverse Hubble rate 
from observation till todayredshift  = “look-back time”z
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Figure 3: 68% and 95% confidence levels on ⌦m and H0 for the minimal ⇤CDM model and
our combined BAO+BBN data set under various assumptions: Left: BBN predictions taken
from PArthENoPE-standard (red), PArthENoPE-Marcucci (green), and PRIMAT (blue). Right:

Helium abundance taken from Aver et al. [46] (red), Peimbert et al. [47] (green), and Izotov
et al. [48] (blue).

uncertainties on these rates. The right panel shows the impact of taking the experimental
helium abundance measurement from the three di↵erent references listed in section 2. This
has a totally negligible impact because !b depends on deuterium much more than helium
measurements. In conclusion, we find that our results are robust and hardly a↵ected by the
most controversial aspects of BBN physics.

3.2 ⇤CDM + Ne↵ model

We now allow Ne↵ to vary in order to check whether the BAO+BBN dataset is compatible
with larger values of H0. Di↵erent physical e↵ects are now at play.

BAO data probe the ratio of the comoving sound horizon over several types of comoving
cosmological distances. For instance, in a flat universe, the BAO angular scale reads:

✓(z) =

R1
zD

cs(!b, z̃)H(z̃)�1
dz̃

R z
0 H(z̃)�1dz̃

'
R1
zD

cs(!b, z̃)
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⌦r/⌦m(1 + z̃)4 + (1 + z̃)3

⇤�1/2
dz̃

R z
0 [⌦⇤/⌦m + (1 + z̃)3]�1/2

dz̃

, (3.1)

where the baryon-photon sound speed cs depends on the baryon density and on redshift. For
a fixed !b, the numerator (related to the sound horizon) depends on the redshift of equality
between radiation and matter (i.e. on ⌦m/⌦r), while the denominator (related to the angular
diameter distance) depends on the redshift of equality between matter and ⇤ (i.e. on ⌦m).
It is possible to increase Ne↵ and H0 simultaneously while keeping these two redshifts (and
both ⌦m,⌦r) fixed: thus we expect BAO data to be compatible with arbitrary values of H0

when Ne↵ fluctuates. However, the degeneracy between Ne↵ and H0 is limited by BBN data
in two main ways.

– 8 –

Sound horizon =

integral over sound speed 

from early universe till decoupling

Angular diameter distance =

integral over inverse Hubble rate 
from observation till todayredshift  = “look-back time”z
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Figure 3: 68% and 95% confidence levels on ⌦m and H0 for the minimal ⇤CDM model and
our combined BAO+BBN data set under various assumptions: Left: BBN predictions taken
from PArthENoPE-standard (red), PArthENoPE-Marcucci (green), and PRIMAT (blue). Right:

Helium abundance taken from Aver et al. [46] (red), Peimbert et al. [47] (green), and Izotov
et al. [48] (blue).

uncertainties on these rates. The right panel shows the impact of taking the experimental
helium abundance measurement from the three di↵erent references listed in section 2. This
has a totally negligible impact because !b depends on deuterium much more than helium
measurements. In conclusion, we find that our results are robust and hardly a↵ected by the
most controversial aspects of BBN physics.

3.2 ⇤CDM + Ne↵ model

We now allow Ne↵ to vary in order to check whether the BAO+BBN dataset is compatible
with larger values of H0. Di↵erent physical e↵ects are now at play.

BAO data probe the ratio of the comoving sound horizon over several types of comoving
cosmological distances. For instance, in a flat universe, the BAO angular scale reads:

✓(z) =

R1
zD

cs(!b, z̃)H(z̃)�1
dz̃

R z
0 H(z̃)�1dz̃

'
R1
zD

cs(!b, z̃)
⇥
⌦r/⌦m(1 + z̃)4 + (1 + z̃)3

⇤�1/2
dz̃

R z
0 [⌦⇤/⌦m + (1 + z̃)3]�1/2

dz̃

, (3.1)

where the baryon-photon sound speed cs depends on the baryon density and on redshift. For
a fixed !b, the numerator (related to the sound horizon) depends on the redshift of equality
between radiation and matter (i.e. on ⌦m/⌦r), while the denominator (related to the angular
diameter distance) depends on the redshift of equality between matter and ⇤ (i.e. on ⌦m).
It is possible to increase Ne↵ and H0 simultaneously while keeping these two redshifts (and
both ⌦m,⌦r) fixed: thus we expect BAO data to be compatible with arbitrary values of H0

when Ne↵ fluctuates. However, the degeneracy between Ne↵ and H0 is limited by BBN data
in two main ways.

– 8 –

Sound horizon =

integral over sound speed 

from early universe till decoupling

Angular diameter distance =

integral over inverse Hubble rate 
from observation till todayredshift  = “look-back time”z

Forbidden: at early time, related to density of photons, fixed by  ,

and to density of neutrinos, fixed by  

TCMB = 2.7255 K
Nν = 3
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Figure 3: 68% and 95% confidence levels on ⌦m and H0 for the minimal ⇤CDM model and
our combined BAO+BBN data set under various assumptions: Left: BBN predictions taken
from PArthENoPE-standard (red), PArthENoPE-Marcucci (green), and PRIMAT (blue). Right:

Helium abundance taken from Aver et al. [46] (red), Peimbert et al. [47] (green), and Izotov
et al. [48] (blue).

uncertainties on these rates. The right panel shows the impact of taking the experimental
helium abundance measurement from the three di↵erent references listed in section 2. This
has a totally negligible impact because !b depends on deuterium much more than helium
measurements. In conclusion, we find that our results are robust and hardly a↵ected by the
most controversial aspects of BBN physics.

3.2 ⇤CDM + Ne↵ model

We now allow Ne↵ to vary in order to check whether the BAO+BBN dataset is compatible
with larger values of H0. Di↵erent physical e↵ects are now at play.

BAO data probe the ratio of the comoving sound horizon over several types of comoving
cosmological distances. For instance, in a flat universe, the BAO angular scale reads:

✓(z) =

R1
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dz̃
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0 [⌦⇤/⌦m + (1 + z̃)3]�1/2
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, (3.1)

where the baryon-photon sound speed cs depends on the baryon density and on redshift. For
a fixed !b, the numerator (related to the sound horizon) depends on the redshift of equality
between radiation and matter (i.e. on ⌦m/⌦r), while the denominator (related to the angular
diameter distance) depends on the redshift of equality between matter and ⇤ (i.e. on ⌦m).
It is possible to increase Ne↵ and H0 simultaneously while keeping these two redshifts (and
both ⌦m,⌦r) fixed: thus we expect BAO data to be compatible with arbitrary values of H0

when Ne↵ fluctuates. However, the degeneracy between Ne↵ and H0 is limited by BBN data
in two main ways.
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Figure 3: 68% and 95% confidence levels on ⌦m and H0 for the minimal ⇤CDM model and
our combined BAO+BBN data set under various assumptions: Left: BBN predictions taken
from PArthENoPE-standard (red), PArthENoPE-Marcucci (green), and PRIMAT (blue). Right:

Helium abundance taken from Aver et al. [46] (red), Peimbert et al. [47] (green), and Izotov
et al. [48] (blue).

uncertainties on these rates. The right panel shows the impact of taking the experimental
helium abundance measurement from the three di↵erent references listed in section 2. This
has a totally negligible impact because !b depends on deuterium much more than helium
measurements. In conclusion, we find that our results are robust and hardly a↵ected by the
most controversial aspects of BBN physics.

3.2 ⇤CDM + Ne↵ model

We now allow Ne↵ to vary in order to check whether the BAO+BBN dataset is compatible
with larger values of H0. Di↵erent physical e↵ects are now at play.

BAO data probe the ratio of the comoving sound horizon over several types of comoving
cosmological distances. For instance, in a flat universe, the BAO angular scale reads:
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where the baryon-photon sound speed cs depends on the baryon density and on redshift. For
a fixed !b, the numerator (related to the sound horizon) depends on the redshift of equality
between radiation and matter (i.e. on ⌦m/⌦r), while the denominator (related to the angular
diameter distance) depends on the redshift of equality between matter and ⇤ (i.e. on ⌦m).
It is possible to increase Ne↵ and H0 simultaneously while keeping these two redshifts (and
both ⌦m,⌦r) fixed: thus we expect BAO data to be compatible with arbitrary values of H0

when Ne↵ fluctuates. However, the degeneracy between Ne↵ and H0 is limited by BBN data
in two main ways.
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“Shifted decoupling solutions’’

Figure 3: 68% and 95% confidence levels on ⌦m and H0 for the minimal ⇤CDM model and
our combined BAO+BBN data set under various assumptions: Left: BBN predictions taken
from PArthENoPE-standard (red), PArthENoPE-Marcucci (green), and PRIMAT (blue). Right:

Helium abundance taken from Aver et al. [46] (red), Peimbert et al. [47] (green), and Izotov
et al. [48] (blue).

uncertainties on these rates. The right panel shows the impact of taking the experimental
helium abundance measurement from the three di↵erent references listed in section 2. This
has a totally negligible impact because !b depends on deuterium much more than helium
measurements. In conclusion, we find that our results are robust and hardly a↵ected by the
most controversial aspects of BBN physics.

3.2 ⇤CDM + Ne↵ model

We now allow Ne↵ to vary in order to check whether the BAO+BBN dataset is compatible
with larger values of H0. Di↵erent physical e↵ects are now at play.

BAO data probe the ratio of the comoving sound horizon over several types of comoving
cosmological distances. For instance, in a flat universe, the BAO angular scale reads:
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where the baryon-photon sound speed cs depends on the baryon density and on redshift. For
a fixed !b, the numerator (related to the sound horizon) depends on the redshift of equality
between radiation and matter (i.e. on ⌦m/⌦r), while the denominator (related to the angular
diameter distance) depends on the redshift of equality between matter and ⇤ (i.e. on ⌦m).
It is possible to increase Ne↵ and H0 simultaneously while keeping these two redshifts (and
both ⌦m,⌦r) fixed: thus we expect BAO data to be compatible with arbitrary values of H0

when Ne↵ fluctuates. However, the degeneracy between Ne↵ and H0 is limited by BBN data
in two main ways.
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• sound horizon angle as seen by BAO or CMB:


Second idea: preserve overall background evolution of CDM, but anticipate the time of photon 
decoupling (increase ) and simultaneously of radiation-matter equality with larger :


 “Shifted decoupling” solutions 


Λ
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⇒
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“Shifted decoupling solutions’’

Figure 3: 68% and 95% confidence levels on ⌦m and H0 for the minimal ⇤CDM model and
our combined BAO+BBN data set under various assumptions: Left: BBN predictions taken
from PArthENoPE-standard (red), PArthENoPE-Marcucci (green), and PRIMAT (blue). Right:

Helium abundance taken from Aver et al. [46] (red), Peimbert et al. [47] (green), and Izotov
et al. [48] (blue).

uncertainties on these rates. The right panel shows the impact of taking the experimental
helium abundance measurement from the three di↵erent references listed in section 2. This
has a totally negligible impact because !b depends on deuterium much more than helium
measurements. In conclusion, we find that our results are robust and hardly a↵ected by the
most controversial aspects of BBN physics.

3.2 ⇤CDM + Ne↵ model

We now allow Ne↵ to vary in order to check whether the BAO+BBN dataset is compatible
with larger values of H0. Di↵erent physical e↵ects are now at play.

BAO data probe the ratio of the comoving sound horizon over several types of comoving
cosmological distances. For instance, in a flat universe, the BAO angular scale reads:
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where the baryon-photon sound speed cs depends on the baryon density and on redshift. For
a fixed !b, the numerator (related to the sound horizon) depends on the redshift of equality
between radiation and matter (i.e. on ⌦m/⌦r), while the denominator (related to the angular
diameter distance) depends on the redshift of equality between matter and ⇤ (i.e. on ⌦m).
It is possible to increase Ne↵ and H0 simultaneously while keeping these two redshifts (and
both ⌦m,⌦r) fixed: thus we expect BAO data to be compatible with arbitrary values of H0

when Ne↵ fluctuates. However, the degeneracy between Ne↵ and H0 is limited by BBN data
in two main ways.

– 8 –

✓(z) =
rs

rA
=

R1
zD

cs(z̃)dz̃
H(z̃)R

z

0
dz̃

H(z̃)

Assume standard thermal history (Thomson scattering, photon temperature
normalized to FIRAS)

✓(z) =
rs

rA
=

R1
zD(!b,!m,YP)

cs(!b; z̃)dz̃
H(z̃)R

z

0
dz̃

H(z̃)

Assume just radiation, matter and ⇤ (no curvature, no dynamical DE; includes
⇤CDM, ⇤CDM+Ne↵ , etc.)

H(z) = H0

⇥
⌦⇤ + ⌦m(1 + z)3 + ⌦r(1 + z)4

⇤1/2

✓(z) =
rs

rA
=

Z 1

zD(!b,!m,YP)

cs(!b; z̃)dz̃

[(1+z̃)3+ ⌦r
⌦m

(1+z̃)4]1/2
Z

z

0

dz̃⇥
⌦⇤
⌦m

+(1+z̃)3
⇤1/2

✓(z) =
rs

rA
=

Z 1

zD(!b,⌦mh2,YP)

cs(!b; z̃)dz̃⇥
(1+z̃)3+ !r

⌦mh2 (1+z̃)4
⇤1/2

Z
z

0

dz̃

[ 1�⌦m
⌦m

+(1+z̃)3]1/2

Assume standard neutrinos and BBN with Ne↵ = 3.046:
Z 1

zD(!b,⌦mh2)

cs(!b; z̃)dz̃⇥
(1+z̃)3+

1.68!�

⌦mh2 (1+z̃)4
⇤1/2

Z
z

0

dz̃

[ 1�⌦m
⌦m

+(1+z̃)3]1/2

While with free Ne↵ = 3.046:
Z 1

zD(!b,⌦mh2,Neff )

cs(!b; z̃)dz̃⇥
(1+z̃)3+

!r(Neff )

⌦mh2 (1+z̃)4
⇤1/2

Z
z

0

dz̃

[ 1�⌦m
⌦m

+(1+z̃)3]1/2

Longitudinal

rs

H(z)�1
=

Z 1

zD(!b,⌦mh2)

cs(!b; z̃)dz̃⇥
(1+z̃)3+

1.68!�

⌦mh2 (1+z̃)4
⇤1/2

1

[ 1�⌦m
⌦m

+(1+z)3]1/2

1

ΛCDM
=



/30             Hubble tension and possible theoretical solutions - J. Lesgourgues

• sound horizon angle as seen by BAO or CMB:


Second idea: preserve overall background evolution of CDM, but anticipate the time of photon 
decoupling (increase ) and compensate numerator with larger :


 “Shifted decoupling” solutions 


Λ
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“Shifted decoupling solutions’’

Figure 3: 68% and 95% confidence levels on ⌦m and H0 for the minimal ⇤CDM model and
our combined BAO+BBN data set under various assumptions: Left: BBN predictions taken
from PArthENoPE-standard (red), PArthENoPE-Marcucci (green), and PRIMAT (blue). Right:

Helium abundance taken from Aver et al. [46] (red), Peimbert et al. [47] (green), and Izotov
et al. [48] (blue).

uncertainties on these rates. The right panel shows the impact of taking the experimental
helium abundance measurement from the three di↵erent references listed in section 2. This
has a totally negligible impact because !b depends on deuterium much more than helium
measurements. In conclusion, we find that our results are robust and hardly a↵ected by the
most controversial aspects of BBN physics.

3.2 ⇤CDM + Ne↵ model

We now allow Ne↵ to vary in order to check whether the BAO+BBN dataset is compatible
with larger values of H0. Di↵erent physical e↵ects are now at play.

BAO data probe the ratio of the comoving sound horizon over several types of comoving
cosmological distances. For instance, in a flat universe, the BAO angular scale reads:

✓(z) =

R1
zD

cs(!b, z̃)H(z̃)�1
dz̃

R z
0 H(z̃)�1dz̃

'
R1
zD

cs(!b, z̃)
⇥
⌦r/⌦m(1 + z̃)4 + (1 + z̃)3

⇤�1/2
dz̃

R z
0 [⌦⇤/⌦m + (1 + z̃)3]�1/2

dz̃
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where the baryon-photon sound speed cs depends on the baryon density and on redshift. For
a fixed !b, the numerator (related to the sound horizon) depends on the redshift of equality
between radiation and matter (i.e. on ⌦m/⌦r), while the denominator (related to the angular
diameter distance) depends on the redshift of equality between matter and ⇤ (i.e. on ⌦m).
It is possible to increase Ne↵ and H0 simultaneously while keeping these two redshifts (and
both ⌦m,⌦r) fixed: thus we expect BAO data to be compatible with arbitrary values of H0

when Ne↵ fluctuates. However, the degeneracy between Ne↵ and H0 is limited by BBN data
in two main ways.
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Issue: recombination of protons + electrons and decoupling of photons = accurately modelled 
processes; atom hydrogen model, fundamental constants (fine-structure constant, electron 
mass, Thomson scattering cross-section…) -> definite prediction for  and 


• First way: string theory / runaway-dilaton-inspired models with running of the constants: 
slightly different  or  at z~1000 and z~1                                       Hart & Chluba 2020                               
(e.g.  by 0.5%: works very well)     


• Second way: large inhomogeneities on very small scales (e.g. from primordial magnetic 
fields) -> inhomogeneous recombination, average recombination time decreased 
without changing the background model                                 Jedamzik & Pogosian 2020
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• sound horizon angle as seen by BAO or CMB:


Third idea: additional contribution to  in denominator (enhanced radiation or something similar) 
and compensate with larger :


 “Early time solutions”


H(z)
h
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“Early time solutions’’

Figure 3: 68% and 95% confidence levels on ⌦m and H0 for the minimal ⇤CDM model and
our combined BAO+BBN data set under various assumptions: Left: BBN predictions taken
from PArthENoPE-standard (red), PArthENoPE-Marcucci (green), and PRIMAT (blue). Right:

Helium abundance taken from Aver et al. [46] (red), Peimbert et al. [47] (green), and Izotov
et al. [48] (blue).

uncertainties on these rates. The right panel shows the impact of taking the experimental
helium abundance measurement from the three di↵erent references listed in section 2. This
has a totally negligible impact because !b depends on deuterium much more than helium
measurements. In conclusion, we find that our results are robust and hardly a↵ected by the
most controversial aspects of BBN physics.

3.2 ⇤CDM + Ne↵ model

We now allow Ne↵ to vary in order to check whether the BAO+BBN dataset is compatible
with larger values of H0. Di↵erent physical e↵ects are now at play.

BAO data probe the ratio of the comoving sound horizon over several types of comoving
cosmological distances. For instance, in a flat universe, the BAO angular scale reads:
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where the baryon-photon sound speed cs depends on the baryon density and on redshift. For
a fixed !b, the numerator (related to the sound horizon) depends on the redshift of equality
between radiation and matter (i.e. on ⌦m/⌦r), while the denominator (related to the angular
diameter distance) depends on the redshift of equality between matter and ⇤ (i.e. on ⌦m).
It is possible to increase Ne↵ and H0 simultaneously while keeping these two redshifts (and
both ⌦m,⌦r) fixed: thus we expect BAO data to be compatible with arbitrary values of H0

when Ne↵ fluctuates. However, the degeneracy between Ne↵ and H0 is limited by BBN data
in two main ways.

– 8 –

✓(z) =
rs

rA
=

R1
zD

cs(z̃)dz̃
H(z̃)R

z

0
dz̃

H(z̃)

Assume standard thermal history (Thomson scattering, photon temperature
normalized to FIRAS)

✓(z) =
rs

rA
=

R1
zD(!b,!m,YP)

cs(!b; z̃)dz̃
H(z̃)R

z

0
dz̃

H(z̃)

Assume just radiation, matter and ⇤ (no curvature, no dynamical DE; includes
⇤CDM, ⇤CDM+Ne↵ , etc.)

H(z) = H0

⇥
⌦⇤ + ⌦m(1 + z)3 + ⌦r(1 + z)4

⇤1/2

✓(z) =
rs

rA
=

Z 1

zD(!b,!m,YP)

cs(!b; z̃)dz̃

[(1+z̃)3+ ⌦r
⌦m

(1+z̃)4]1/2
Z

z

0

dz̃⇥
⌦⇤
⌦m

+(1+z̃)3
⇤1/2

✓(z) =
rs

rA
=

Z 1

zD(!b,⌦mh2,YP)

cs(!b; z̃)dz̃⇥
(1+z̃)3+ !r

⌦mh2 (1+z̃)4
⇤1/2

Z
z

0

dz̃

[ 1�⌦m
⌦m

+(1+z̃)3]1/2

Assume standard neutrinos and BBN with Ne↵ = 3.046:
Z 1

zD(!b,⌦mh2)

cs(!b; z̃)dz̃⇥
(1+z̃)3+

1.68!�

⌦mh2 (1+z̃)4
⇤1/2

Z
z

0

dz̃

[ 1�⌦m
⌦m

+(1+z̃)3]1/2

While with free Ne↵ = 3.046:
Z 1

zD(!b,⌦mh2,Neff )

cs(!b; z̃)dz̃⇥
(1+z̃)3+

!r(Neff )

⌦mh2 (1+z̃)4
⇤1/2

Z
z

0

dz̃

[ 1�⌦m
⌦m

+(1+z̃)3]1/2

Longitudinal

rs

H(z)�1
=

Z 1

zD(!b,⌦mh2)

cs(!b; z̃)dz̃⇥
(1+z̃)3+

1.68!�

⌦mh2 (1+z̃)4
⇤1/2

1

[ 1�⌦m
⌦m

+(1+z)3]1/2

1

ΛCDM
=

+ . . . ]1/2



/30             Hubble tension and possible theoretical solutions - J. Lesgourgues

• matter power spectrum enhance

Third idea: rescale all densities equally and enhance  to get a large  today


 “Early time solutions”


• Need to increase the relic density of relativistic species around the times relevant for the CMB: 
effectively, like “adding extra neutrino-like species” (effective neutrino number ). Would need 
approximately 0.5 to 1 more…


• Issues:

• incompatible with Nucleosynthesis and primordial element abundances: extra relics to be produced 

between “Nucleosynthesis times” and “CMB times”

• Incompatible with CMB spectrum shape (scale of the peaks, enhanced Silk damping…) and matter 

power spectrum amplitude/shape, at least if extra relics are decoupled and free-streaming… 

• Baseline dataset: .  Simple “ CDM+ ” model fails!

H(z) H0

⇒

Neff

Neff = 3.1557 ± 0.0677 (68 % CL) Λ Neff
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• matter power spectrum enhance

Third idea: rescale all densities equally and enhance  to get a large  today


 “Early time solutions”


• Need to increase the expansion rate only around recombination with new particle, scalar 
field… escape early BBN constraint and late Silk damping constraint


• Possibly play with other effects on perturbations to cure CMB spectrum issues (additional 
ingredients to increase DR clustering before recombination and/or decrease DM clustering 
after recombination)

H(z) H0
⇒
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1. use a scalar field to enhance  and  for a short while around CMB decoupling time. Escapes 
Nucleosynthesis and CMB problems of Dark Radiation.


• Various Early Dark Energy models (= scalar field with a given potential) work well:                            
3 Silver medals   (and consistent with Nucleosynthesis bounds) [Kamionkowsi et al.,…]


Enhancement of  for various potentials 


(1st or 2nd order phase  transition)


• Models are very ad hoc… attempts to connect it with particle physics: axion models, Xenon 1T 
anomaly (Poulin et al.) or sterile/active neutrino mass via inverse see-saw (Niedermann and Sloth)


• Exists in “modified gravity” version, e.g. with [Braglia et al. 2021]:


• Still predictive models: future CMB polarisation observations

ρtot(z) H(z)

ρtot(z) ⇒

27

4

Figure 1. Contours of constant log10fEDE(zc) (vertical/solid) and log10zc (horizontal/dashed) as a function of the axion mass,
m, and decay constant, f . The red lines show the contours for n = 2 and the black for n = 3. Since H0 = 100h km/s/Mpc =
2.13h ⇥ 10�33 eV the mass parameter of the potential that helps to resolve the Hubble tension ranges between 10�28 eV .
m . 10�26 eV and 0.01 . f/Mpl . 1.

|Vn,��| so that

m
2
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���� (1 � cos ⇥i)
n�1 (n � 1 + n cos ⇥i)

���� ' 9H
2(zc),

(7)
showing that for a fixed ⇥i a value of m determines zc.
Since the field only starts to become dynamical at zc, the
fraction of the total energy density in the field at zc is
approximately given by

fEDE(zc) ' Vn(⇥i)

⇢tot(zc)
=

m
2
f

2

⇢tot(zc)
(1 � cos ⇥i)

n
. (8)

Eq. (7) shows m
2 / ⇢tot(zc) which implies that fEDE(zc)

is determined by f , n, and ⇥i. Additionally, the rate
at which the field dilutes, i.e., the equation of state once
the field oscillates, is simply set by n through w� ⌘ (n �
1)/(n + 1) [17].

The role of ⇥i is a little more subtle. As first discussed
in Ref. [16], once we have fixed n, zc and fEDE(zc), the
value of ⇥i controls the oscillation frequency of the back-
ground field and in turn, the e↵ective sound speed of the
perturbations. The change in the background oscillation
frequency is clearly visible in Figure 2, where we plot
the evolution of fEDE with z for various n and ⇥i, in
a model where fEDE(zc = 104) = 0.1. Note also that,
at the background level, ⇥i has a suble impact on the
redshift-asymmetry of the energy injection.

Finally we note that if the potential becomes too steep
around its minimum then it is possible for the field to
reach an attractor solution in which it will never oscil-
late. As discussed in Refs. [41, 42] if n > 5 during ra-
diation domination or n > 3 during matter domination
there exists a power-law attractor for � / t

�↵ where
↵ = 2/(2n � 2). Given that the resolution to the Hubble
tension using a canonical scalar field requires oscillations
(to make the e↵ective sound speed smaller than one [14]),
we expect n > 5 to be disfavored by the data. As we dis-
cuss in Sec. III, this is indeed what we find.
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Figure 2. The evolution of the fraction of the total energy
density in the EDE as a function of redshift for zc = 104 and
fEDE(zc) = 0.1. Note that as the initial field displacement
becomes larger the asymmetry of fEDE(z) and oscillation fre-
quency of the background field increases.

B. Linear Perturbations

Most previous work on the cosmological implications
of scalar fields used an approximate set of fluid equations
to evolve the scalar field perturbations [12, 16]. Once the
field starts to oscillate we can average over the oscillations
of the background field to produce a set of approximate
‘cycle-averaged’ fluid equations with an e↵ective sound
speed in the field’s local rest-frame, c

2
s

⌘ h�P�i/h�⇢�i,
which is both scale and time-dependent [43]. Here we do
not make this approximation and instead solve the exact
(linearized) KG equation,

��
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Vn,��

⇤
��k = �h

0
�

0
/2, (9)

where the prime denotes derivatives with respect to con-
formal time, we have written the metric potential in syn-

given by the redshift at which H = 0.2m), the mass of the trigger field mNEDE which controls the
redshift of the decay z⇤ , and the equation of state after the decay wNEDE. Following Ref. [153] we
take the e↵ective sound speed in the NEDE fluid c

2
s to be equal to the equation of state after the

decay, i.e. c2s = wNEDE . We take the flat priors on fNEDE 2 [0, 0.3], log10(mNEDE/eV) = [1.3, 3.3],
and wNEDE 2 [1/3, 1].

3.3.6. Early Modified Gravity

Motivation: Many modified gravity (MG) models, typically changing General Relativity at early
times, appear to have promising levels of success in explaining the H0 tension [148, 151, 157–160].
Here we consider one of such Early Modified Gravity (EMG) scenarios, which was introduced in
Ref. [161]. The model contains a scalar field � with quadratic non-minimal coupling (NMC) to
gravity and a small e↵ective mass induced by a quartic potential

S =

Z
d
4
x
p
�g


(M2

pl + ⇠�
2)
R

2
�

g
µ⌫

2
@µ�@⌫� � ⇤�

��
4

4

�
+ Sm. (13)

Here R is the Ricci scalar, Sm is the action for matter fields, and ⇠, � denote dimensionless
constants. For � = 0, it reduces to the case of a non-minimally coupled massless scalar field
considered in [158], while for ⇠ = 0 it reduces to Rock ’n’ Roll model of Ref. [143], which is an
example of an EDE model.

In a similar way to EDE models, the scalar field is initially frozen deep in the radiation era,
and when its e↵ective mass becomes larger than the Hubble rate, it starts to perform damped
oscillations about its minimum. However, due to the NMC parameter ⇠ � 0, the scalar field
experiences a temporary growth before rolling down the potential, producing new features in the
shape of the energy injection. In addition, the NMC predicts a weaker gravitational strength at
early times, which leads to a suppression in the matter power spectrum at small scales. In Ref.
[158], it was shown that this extra freedom introduced by ⇠ allow the model to substantially relax
the H0 tension, even when Large Scale Structure (LSS) data is included in the fit in addition to
CMB and supernovae data. Furthermore, thanks to the fast rolling of � towards the minimum,
the tight constraints on the e↵ective Newtonian constant from laboratory experiments and on
post-Newtonian parameters from Solar System measurements are automatically satisfied.

Parameters: This EMG model has three free parameters: (1) the non-minimal coupling to gravity
⇠, (2) the initial field value in units of the Planck mass �i[Mpl], and (3) a constant V0 measuring
the amplitude of the quartic potential. This constant V0 is related to � by

� =
102V0

3.156⇥ 10109
, (14)

where 3.156⇥ 10109 is the numerical value of M4
pl in units of eV4. To allow comparison with [161],

we take flat priors ⇠ 2 [0, 1], �i[Mpl] 2 [0, 0.9] and V0 2 [0.6, 3.5].
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silver medal
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Save CDM+  with new physics in dark sector (non-standard interactions, decays, etc.) 
changing the clustering properties and/or sound speed of Dark Radiation and/or Dark Matter…


2. self-interacting Dark Radiation to slow-down the particle velocity and change their clustering 
properties:  bronze medal    (provided that it gets populated after Nucleosynthesis).             


 


Aloni, Berlin, Joseph, Schmaltz & Weiner 2111.00014; Schöneberg & Abellan 2206.11276 
transform this into a  golden medal ; similarities with previous “sterile neutrinos with secrete 
interactions” of Archidiacono, Hannestad et al.


• Wess-Zumino Dark Radiation (WZDR) model of 2111.00014 :

• Interaction between massless relic fermions (DM and DR) 

mediated by eV-mass scalar (  )


• At T~1eV, scalar becomes non-relativistic, entropy release 
boosts  from ~3.3 to ~ 3.5 (precise value depends on 

 )

• Transition leaves imprint in CMB spectrum that 

compensates for increase of  

Λ Neff

eV ∼ M2
SUSY/MPl

Neff

Tdark

(Neff, H0)

28

“Early time solutions”

6

3.
2

3.
5

3.
8

4.
1

Ne�,IR

68 70 72 74

H0

3.2

3.5

3.8

4.1

N
e�

,I
R

�CDM + Ne�

SIDR

WZDR

FIG. 3: Comparison of the marginalized 1D and 2D posterior distributions for the Hubble parameter H0 and the late-time
value of the e↵ective number of neutrinos in radiation Ne↵,IR (including the Standard Model neutrino contribution) for the
⇤CDM+Ne↵ , SIDR, and WZDR models when fitting to the dataset D (not including SH0ES) in the left set of panels or D+
(including SH0ES) in the right set of panels.

preference in the data, independent of SH0ES, for a step
in an additional interacting fluid component.5

Remarkably, the preferred value for H0 in a fit to D
is shifted to larger values in the WZDR model, with
a best-fit of H0 = 69.1 km/s/Mpc, as compared to
H0 = 67.9 km/s/Mpc for SIDR, H0 = 67.7 km/s/Mpc
for ⇤CDM+Ne↵ , and H0 = 67.6 km/s/Mpc for ⇤CDM.
A similar trend is evident in the 90% C.L. ranges listed
in Table I. This immediately raises the question: can
WZDR help address the existing tension between the
⇤CDM-inferred value of H0 and the late-universe mea-
surement of H0 = (73.2 ± 1.3) km/s/Mpc by the SH0ES
collaboration?

The short answer to this question is: yes, the pres-
ence of the WZDR-step does allow for a significant re-
duction to this tension. Earlier analyses have shown
that additional free-streaming radiation can naturally al-
low for a larger value of H0 when fitting to the dataset
D+ that includes SH0ES, but only at the cost of sig-
nificantly worsening the fit to the SH0ES-independent

5
Many previous analyses have assumed that the new species of

radiation was also present during BBN, increasing the predicted

abundance of primordial helium Yp. Since that is a much earlier

era, we instead assume that the radiation is populated well af-

ter BBN, corresponding to temperatures below ⇠ 100 keV [37].

Thus, we will make comparisons between SIDR and WZDR with

this same assumption, so as not to penalize models of SIDR com-

pared to WZDR. In Table IV of Appendix B, we also show results

for SIDR models in which the energy density in interacting ra-

diation is also present during BBN.

dataset D. Making this radiation interacting (as in the
SIDR model) somewhat ameliorates the issue, but this
is still constrained by the high-` multipoles of the CMB
polarization power spectrum [12, 15, 17]. In the WZDR
model, this is compensated by the the `-dependent mod-
ifications to the CMB, allowing for additional levels of
interacting radiation.

We provide additional results of our dedicated MCMC
analysis in Fig. 3, which shows the posteriors for H0 and
the late-time value of the e↵ective number of neutrinos
in free-streaming and strongly-coupled radiation for the
⇤CDM+Ne↵ , SIDR, and WZDR models (the full set of
posteriors for each of these scenarios is provided in Ap-
pendix B). As for conventional early-universe solutions
to the Hubble tension, additional radiation is correlated
with larger values of H0, corresponding to an approxi-
mately fixed angular size of the sound horizon at recom-
bination [28]. Most notable in Fig. 3, however, is the fact
that WZDR predicts H0 and Ne↵,IR posteriors that ex-
tend out to much larger values, in the case that SH0ES is
either included (right panel) or not included (left panel)
in the analysis. We show the resulting best-fit values and
posterior ranges for the full D+ dataset in Table II.

But, of course, simply predicting a larger value of H0

is not a solution to the tension if it simply provides an
overall bad fit to the data. Recently, Ref. [10] established
a rubric for comparing models that could address this
tension with three basic measures: GT (Gaussian ten-
sion), QDMAP (di↵erence of the maximum a posteriori),
and �AIC (Akaike information criterium). The values of
these measures are provided in Table III for ⇤CDM and
the three benchmark radiation models. We now briefly

 silver medal  
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3. particular realisation of a Majoron scenario of Escudero & Witte 1909.04044, 2004.01470, 
2103.03249:  Silver medal   (and consistent with BBN bound)


• O(eV)-mass Majoron  = pseudo-Goldstone of spontaneously broken 


• small Yukawa-like couplings to active neutrinos


•  : interactions between majoron and active neutrinos (inverse neutrino decay): 


• Majoron thermalize and contribute to  , 


• active neutrinos do not free-stream


•  : Majoron decays into active neutrinos, which free-stream

ϕ U(1)L

T ∼ mϕ

Neff

T ∼ mϕ /3
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FIG. 1. Cosmological timeline illustrating the connection between low-scale leptogenesis and the majoron solution to the Hubble
tension. At early times (high temperatures), a global U(1)L symmetry is spontaneously broken, generating sterile neutrino
masses and giving rise to a pseudo-Goldstone boson: the majoron (�). Sterile neutrinos start to be sizeably produced (but
do not equilibrate) at T ⇠ 106 GeV. Then, at T ⇠ [106 � 104] GeV the CP violating oscillations of these sterile neutrinos
generate a net primordial lepton asymmetry in the Standard Model. Soon after the electroweak phase transition (at T ⇠ 130
GeV) sphalerons freeze-out and yield a final baryon asymmetry from the initial lepton asymmetry. After sphaleron freeze-out,
sterile neutrinos and majorons thermalize with the plasma, and later decouple when sterile neutrinos decay. In particular, for
⇠ GeV scale sterile neutrinos this occurs at temperatures below the QCD phase transition T . 100MeV. Finally, right before
recombination, majorons with m� ⇠ 1 eV re-thermalize with active neutrinos (⌫̄⌫ ! �) before decaying (� ! ⌫̄⌫), generating
a larger inferred cosmological value of H0.

neutrino-majoron couplings � ⇠ 10�13 [54, 55]1. This
coupling, when interpreted in the context of the type-I
seesaw favors a lepton symmetry breaking scale slightly
above the electroweak scale (vL ⇠ 1 TeV). Arguably, the
only unmotivated aspect of this proposed solution is the
apparent ad hoc contribution of �Ne↵ , preferring values
⇠ 0.5, which are in mild tension with BBN [73, 74].

Primordial Majorons from Leptogenesis. In this
work we attempt to source the additional dark radia-
tion required to resolve the H0 tension from a primordial
population of majorons. We show explicitly that these
particles can be produced from the decays of GeV-scale
sterile neutrinos in the early Universe. Coincidentally,

1 The model discussed here has, on occasion, been confused
with that of the strongly interaction neutrino solution proposed
in [44, 45]. In light of this, we take the opportunity here to
highlight the many di↵erences. First, the solution of [44, 45] re-
quires a neutrino self-interaction cross section 10 orders of mag-
nitude larger than that present in the Standard Model. This,
in turn, requires a new MeV-scale neutrinophilic boson with or-
der one couplings. These values are not motivated in neutrino
mass models, and are robustly excluded by experimental data
unless the boson interacts only with ⌧ neutrinos [70–72]. Next,
the solution requires an additional contribution of �Ne↵ ⇠ 1, a
value robustly excluded by BBN [73, 74] – see also [75, 76] for
a recent assessment of the BBN bounds and [77, 78] for models
trying to evade these constraints. Finally, the observed shift in
H0 only occurs when polarization data is not included in the
fit [44, 79–81], while the results for the majoron model discussed
here are robust to the inclusion of this dataset. Thus, while the
proposed models both involve neutrinophilic bosons, they are in
fact remarkably di↵erent.

sterile neutrinos at the GeV scale are precisely those re-
quired for a successful implementation of low-scale lep-
togenesis via sterile neutrino oscillations, i.e. ARS lepto-
genesis [82] (see also [83–85]). We verify explicitly that
symmetry breaking scales vL ⇠ (0.01 � 1) TeV required
to resolve the Hubble tension can be made fully consis-
tent with conventional ARS leptogenesis, so long as the
Higgs mixing is small enough so as to avoid thermaliz-
ing the scalar responsible for breaking lepton number,
and that the lepton number phase transition occurs at
T > 104

� 106 GeV. The scenario proposed here thus
o↵ers an intriguing connection between the H0 tension,
the neutrino mass mechanism, and the generation of the
baryon asymmetry of the Universe. Fig. 1 shows a sketch
of the thermal history, highlighting the main ingredients
of our proposal.

This manuscript is organized as follows. We begin by
introducing the well-known singlet majoron model in Sec-
tion II. In Section III we first discuss the requirements in
order to successfully produce the baryon asymmetry of
the Universe via the ARS leptogenesis mechanism, and
then compute the thermal evolution and subsequent de-
cays of the sterile neutrinos responsible for sourcing the
primordial majoron abundance. Section IV describes the
cosmological evolution of the majoron-neutrino system,
and presents the results of a MCMC performed using
Planck2018 + BAO data. We present a summary and
our conclusions in Section V. We finish in Section VI by
discussing some interesting avenues for future work, and
we refer the reader to the Appendices for various techni-
cal details.

“Early time solutions”
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Conclusions

• In terms of model-building, need to pay a high price, but reassuring that we cannot fit anything…


• Hope that one or more tension solved by systematics! Will know with better data and also new 
techniques: Tip of the Red Giants Branch (TRGB), redshift drifts (SKA, ELT), GWs as standard 
sirens (LISA, ET…)


If tension do not arise from systematics:


• Previous models: predictions for next-generation CMB/LSS: SO, CMB S4, Euclid, Rubin… (e.g. 
EDE, Majoron, shifted recombination…)


• Chance to learn about new particle physics, tests it in laboratory? (e.g. DM interactions, Majoron) 


• Revisit models beyond Friedmann? Large-scale inhomogeneity?
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Introductory material
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Solving the  tension with extended comsological models: fair comparisonH0

Schöneberg, Abellan, Pérez, JL, Witte, Poulin, Lesgourgues, 2107.10291

• Selection of 19 “representative models” (see later)

• Data sets:


• Baseline: Planck 2018 (incl. lensing) + BAO + Pantheon + SH0ES treated as 
measurement of intrinsic magnitude 


• Additional tests with Planck -> BAO+BBN or WMAP+ACT, and with RSD, CC, BAO-Lya

• Three metrics to quantify the (resolution of the) tension:


1. When considering a data set D that does not include SH0ES, what is the residual level 
of tension between the posterior on  inferred using D and the SH0ES 
measurement? 


2. How does the addition of the SH0ES measurement to the data set D impact the fit 
within a particular model M? 


3. When the data set D includes the SH0ES data on , does the fit within a particular 
model M significantly improve upon that of ΛCDM? 

MB

MB

MB

• Criterion 1: When considering a data set D that does not include SH0ES, we ask, what is the
residual level of tension between the posterior on Mb or H0 inferred using D and the SH0ES
measurement? The tension on x = H0 or x = Mb can be quantified through the “rule of
thumb di↵erence in mean” [45] or Gaussian Tension (GT), defined as

x̄D � x̄SH0ES

(�2
D + �

2
SH0ES)

1/2
, (3)

where xi and �i are the mean and standard deviation of observation i. When D includes
(excludes) supernovae data, we quantify the tension onMb (H0) usingMb = �19.2435±0.0373
(H0 = 73.2± 1.3 km/s/Mpc), with the uncertainties corresponding to the 68%CL. The goal
of this criterion is to answer question (i), namely, to quantify to what extent a model has
a posterior compatible with a high H0 given the data D, independently of SH0ES, which
represents perhaps the most optimistic definition of a successful model. Although this metric
is only strictly valid if the parameter’s posteriors are Gaussian, we adopt this “historical”
approach since the reader might be most familiar with it.
We do note however a number of shortcomings: first, this may disfavor models with a prob-
ability distribution that deviates from Gaussian, e.g. due to the presence of long tails in
the posterior7. This can happen for instance if the data set D cannot disentangle between
⇤CDM and a more complex model which has parameters that become irrelevant when others
are close to their ⇤CDM limit. As a result, the posterior is necessarily dominated by the
Gaussian ⇤CDM limit, and the easing power of the model can only show up in the afore-
mentioned tails of the probability distribution. Secondly, and perhaps even more worryingly,
this criterion does not quantify how good (or bad) the �

2 of the new model is. As a result,
a model which does not contain the ⇤CDM best fit can appear arbitrarily good. One could,
for instance, consider only ⇤CDM models with ⌦cdmh

2 fixed to 0.11. In these models the
posterior of H0 is naturally centered around8 (71.84±0.16)km/s/Mpc and the criterion would
recognize this model as a good solution to the tension (1.0�), which it is clearly not. Instead,
the likelihood di↵erence between this model and ⇤CDM is ��

2
⇡ 106 and clearly excludes

the model. Less trivial examples of this can be found in the literature; for instance, in the
case of interacting dark matter - dark radiation models, for which a theoretically motivated
lower bound on the radiation density artificially induces higher values of H0 [46–49]. Another
example is that of Phenomenological Emergent Dark Energy [PEDE] [50–53], which fixes the
late-time expansion rate by hand so as to give the locally measured value of Hubble. In
order to avoid such problems, we instead use the two additional tests listed below in order
to identify successful models.

• Criterion 2: How does the addition of the SH0ES measurement to the data set D impact the
fit within a particular model M? We compute the change in the e↵ective best-fit chi-square
�
2 = �2 lnL between the combined data set and the data set D as

��
2 = �

2
min,D+SH0ES � �

2
min,D , (4)

where we use �
2
min,SH0ES = 0. In the ⇤CDM framework, the �

2 of the combined fit to

D+SH0ES is notably worse than the sum of the separate best-fitting �
2 to D and to SH0ES,

7This is for instance the case of the “Early Dark Energy” cosmologies.
8We quote the numbers for the Dminimal data set (Planck 2018 TTTEEE + lensing + BAO).
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represents perhaps the most optimistic definition of a successful model. Although this metric
is only strictly valid if the parameter’s posteriors are Gaussian, we adopt this “historical”
approach since the reader might be most familiar with it.
We do note however a number of shortcomings: first, this may disfavor models with a prob-
ability distribution that deviates from Gaussian, e.g. due to the presence of long tails in
the posterior7. This can happen for instance if the data set D cannot disentangle between
⇤CDM and a more complex model which has parameters that become irrelevant when others
are close to their ⇤CDM limit. As a result, the posterior is necessarily dominated by the
Gaussian ⇤CDM limit, and the easing power of the model can only show up in the afore-
mentioned tails of the probability distribution. Secondly, and perhaps even more worryingly,
this criterion does not quantify how good (or bad) the �

2 of the new model is. As a result,
a model which does not contain the ⇤CDM best fit can appear arbitrarily good. One could,
for instance, consider only ⇤CDM models with ⌦cdmh

2 fixed to 0.11. In these models the
posterior of H0 is naturally centered around8 (71.84±0.16)km/s/Mpc and the criterion would
recognize this model as a good solution to the tension (1.0�), which it is clearly not. Instead,
the likelihood di↵erence between this model and ⇤CDM is ��

2
⇡ 106 and clearly excludes

the model. Less trivial examples of this can be found in the literature; for instance, in the
case of interacting dark matter - dark radiation models, for which a theoretically motivated
lower bound on the radiation density artificially induces higher values of H0 [46–49]. Another
example is that of Phenomenological Emergent Dark Energy [PEDE] [50–53], which fixes the
late-time expansion rate by hand so as to give the locally measured value of Hubble. In
order to avoid such problems, we instead use the two additional tests listed below in order
to identify successful models.

• Criterion 2: How does the addition of the SH0ES measurement to the data set D impact the
fit within a particular model M? We compute the change in the e↵ective best-fit chi-square
�
2 = �2 lnL between the combined data set and the data set D as

��
2 = �

2
min,D+SH0ES � �

2
min,D , (4)

where we use �
2
min,SH0ES = 0. In the ⇤CDM framework, the �

2 of the combined fit to

D+SH0ES is notably worse than the sum of the separate best-fitting �
2 to D and to SH0ES,

7This is for instance the case of the “Early Dark Energy” cosmologies.
8We quote the numbers for the Dminimal data set (Planck 2018 TTTEEE + lensing + BAO).
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reflecting the fact that the data sets are in tension. Since we are comparing the �
2 values

within a given model, there is no change in the number of model parameters, and the tension
can simply be expressed as Tension=

p
��2 in units of �. This tension metric is identical to

the QDMAP (for “di↵erence of the maximum a posteriori”) metric discussed in Ref. [45].
This criterion attempts to answer the somewhat more modest question (ii) introduced above,
namely, whether one can obtain a good fit to all data in a given model. Moreover, it naturally
generalizes the commonly used criterion discussed in point 1 to the case of non-Gaussian
posteriors. Indeed, for any Gaussian posterior, it is equivalent to that criterion. For ⇤CDM,
for example, the contours are very Gaussian, and this generalization returns a tension of 4.5�
instead of 4.4� in the case of criterion 1. However, the square root of Equation (4) is much
better at capturing the long probability tails of the posteriors.9 Yet, this criterion has two
potential problems: First, similarly to criterion 1, it does not quantify the intrinsic success
of a model. Second, it is sensitive to the e↵ect of over-fitting (i.e. a model with arbitrarily
large number of parameters could fit any features better than ⇤CDM), which usually requires
Bayesian methods to compute Occam’s razor factors. For this reason, we also consider a third
criterion, which attempts to quantify the intrinsic success of a model and to penalize overly
complex models.

• Criterion 3: When the data set D includes the SH0ES likelihood (or, equivalently, a SH0ES
driven prior on Mb or H0), does the fit within a particular model M significantly improve
upon that of ⇤CDM? In order to assess the extent to which the fit is improved, we compute
the Akaike Information Criterium (AIC) of the extended model M relative to that of ⇤CDM,
defined as

�AIC = �
2
min,M � �

2
min,⇤CDM + 2(NM �N⇤CDM) , (5)

where NM stands for the number of free parameters of the model. Importantly, this met-
ric attempts to penalize models which introduce new parameters that do not subsequently
improve the fit. Thus, the ability of a model M to resolve the tension at a significant level
despite having more parameters can be assessed through �AIC, with more negative values
indicating larger model success. While this metric does indicate whether a model is favored
compared to ⇤CDM for the combined data set, it does not quantify whether this improvement
stems from improving the Hubble tension or from simply fitting better other data sets such
as Planck data. This criterion is thus especially useful if applied together with criterion 1 or 2
above. The penalty of 2NM to the �AIC is certainly not perfect. It can be circumvented by
simply fixing model parameters to their best-fit in order to reduce the penalty. Furthermore,
it is not always clear that it correctly estimates and penalises the e↵ect of over-fitting. In fact,
several better Bayesian estimators have been proposed in the literature [45, 54–56], including
the Bayes factor ratio [57], or the related “suspiciousness” [58]. These approaches are usually
computationally expensive (unless one uses the Savage-Dickey density ratio [59]), and the
result depends on the choice of priors on the parameters of the extended model. The �AIC
criterion o↵ers the advantage of being numerically cheap and prior independent. In the spirit
of setting easy benchmarks, the �AIC applies a penalty that is particularly simple to apply
to any model and that certainly provides an approximate metric to gauge the relevance of
extra parameters. We leave an investigation of model comparison based on aforementioned
Bayesian statistics to future work.

9In practice, in nearly all cases we find . 10% di↵erence compared to criterion 1, with the exception of the
EDE and NEDE models, which due to the highly non-Gaussian nature of their posterior perform better with this
generalized criterion.
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where   x ≡ MB
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Figure 1: ��
2 (Test 2) and �AIC (Test 3) of the various models considered in this work, colored in the same way

as in Fig. 2. We additionally display the thresholds that have to be reached as purple dashed lines, and the regions
of successful models as a purple region.

thresholds. Self-Interacting Dark Radiation [SIDR], Self-interacting Dark Radiation scattering on
Dark Matter [DR-DM], and Free-streaming plus self-interacting Dark Radiation [mixed DR], all
improve upon the “early-universe defending champion”, that is, free-streaming DR (for all three
criteria). However, none of them reduces the tension below the ⇠ 3.2� level. Perhaps the most
surprising case is that of Self-interacting neutrinos plus free-streaming Dark Radiation [SI⌫+DR],
which has long been claimed as a promising solution to the Hubble tension, but performs worse
on �AIC and QDMAP than the benchmark of free-streaming DR. It may also sound surprising
that the DR-DM model does not perform significantly better than the SIDR model (the latter
model passing the �AIC criterion). We emphasize that in several previous papers, the success of
this model was boosted by a lower prior on the amount of DR that excluded ⇤CDM as a limit,
a situation comparable to that of PEDE. The only model which successfully passes both criteria
is that of the Majoron, which reduces the tension to the level of ⇠ 2.9� and shows a significant
improvement to the fit. It is perhaps interesting to point out that this is the only model in this
categorization which invokes a non-trivial evolution of H(z). It is thus in some ways more similar
to Early Dark Energy than to the other Dark Radiation models presented here.
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Goodness of fit


# of parameters

High tension


Low tension

Schöneberg, Abellan, Pérez, JL, Witte, Poulin, Lesgourgues, 2107.10291

Planck 2018 (incl. lensing) + BAO + Pantheon + SH0ES

19 models


