# **Precision Timing Detectors**

#### at System **Hadron Colliders**

**PRISMA+** Colloquium

Mainz

Creen

menize

Invenire uncter secons

Pertex

Paritioning

System

enter

Paritioning

Adi Bornheim Caltech 11.05.2022

## **Hadron Colliders**

Tool of choice at the "energy frontier" in particle physics.

 Discovery reach driven by CM energy, high luminosity important too.
At LHC : Also precision physics, HI physics,



Technology implies that "luminous region" has macroscopic dimensions.

 At LHC : Particle collisions spread out ove a region of about 20 cm - 180 ps.







#### HL-LHC & Phase 2

- HL-LHC is the high luminosity extension of the current LHC program.
  - Start data taking in ~2028, lasting about 10 years.
  - Main feature in increase in the luminosity by up to factor 10, from around 10<sup>34</sup> to 10<sup>35</sup>
  - Pile up : 160 200 simultaneous proton collisions every 25 ns
- Detector upgrade program for HL-LHC :
  - Enable HL-LHC physics goals
  - Increase granularity, data throughput, radiation hardness
  - Improve efficiency of data exploitation with modern technology



#### **CMS Detector & Phase 2 upgrades**



- 15 m / 50 ns tall, 23 m / 77 ns long
- Calorimeters will have precision timing
- Dedicated MIP timing detector
- Trigger will have (some) precision timing information



#### Timing Opportunities at HL-LHC

### 

#### New physics reach

0.

#### Improved reconstruction





Adi Borneheim - Precision Timing Detectors at Hadron Colliders

#### High pile up event: ~100 PU





## **PU mitigation with timing**



- At high PU, density of tracks in space increases wrong assignment of low-pT tracks to vertices.
- Time tagging tracks, enable 4D reconstruction of vertices.
- Assign tracks and physics objects to their proper vertices, enhancing reconstruction.
- Utilizing timing from MTD, not yet from calorimeters.
- Not yet utilizing advanced reconstruction techniques.



#### HH production sensitivity (sigmas) at 3 ab <σ,> <**σ**,> <**σ**,> <sup>1</sup>Channel No MTD 35 ps 50 ps 70 ps bbbb 0.95 0.94 0.93 0.89 bbττ 1.3 1.58 1.48 1.44 bbyy 1.7 1.85 1.83 1.81 bbWW 0.53 0.579 0.576 0.53(\*)bbZZ 0.38 0.423 0.418 0.38(\*) Combined 2.71 2.63 2.57 2.4 Luminosity gain +20% +26% +14%



### **Improved Reconstruction**

• Improved particle ID, extending usable range to higher pT compared to Tracker.



11.05.2022



## Impact on HI physics



- Physics application of PID in Heavy Ion physics : Measurement of v2.
- Extended acceptance from MTD



• MTD will allow to derive the  $v_2$  of charm baryons and to measure precisely the N<sub>q</sub>-scaling of  $v_2$  in the charm quark sector: 3

$$\mathbf{v_2(\Lambda_c)} = \frac{3}{2} \mathbf{v_2(D^0)}?$$



### **Long Lived Particles**

- Long lived particles (LLPs) are an area of intense activity on searches at LHC.
- Long live times can be due to :



Feeble coupling to SM (Higgs portal to hidden sectors)



Scale suppression (Gauge mediated SUSY)







Phase space suppression (SUSY)







Adi Bornheim - Precision Timing Detectors at Hadron Conuers



For good time resolution, need:

- fast rise time (t<sub>rise</sub>) ⇒ primary signal rise time (scintillation : LYSO ~30 ps, Silicon sensors ~1ns)
- 2. low Signal-to-Noise (DU/U)  $\Rightarrow$  primary signal amplitude : LYSO 30k photons/MeV (1.07 MeV/mm MIP), Si sensors ~30k e/h pairs in 300  $\mu$  for a MIP
- 3. more time samples (n<sub>samples</sub>)
- 4. signal integrity matching timing needs (pulse shapes, linearity, etc.)



#### Sensor Technology

- Photo sensors :
  - PMT : ~ns rise time, very good S/N
  - SiPM/APD : Rapid technology evolution \_
  - **MCP-PMT : Fast pulses** \_
  - **Cherenkov light**
  - Streak camera : sub ps \_
  - **Pump-probe technology : fs**
- Semi-conductor sensors :
  - Silicon : Very common in HEP
  - CdTe : Large primary signal
- Gas based sensors :
  - **Micromegas : Micro fabrication**
- Advanced sensors :
  - **TIPSY**, Quantum Dots, Nano-wires
- But : HEP detectors are complex systems, more than just sensors.















Adi Bornheim - Precision Tin

# Precision timing with scintillators

- Scintillators have several features ideal for timing : Uniform, large raw signal yield, fast, very radiation hard.
- Effect of the scintillation photon arrival at the photo detector we refer to as Optical Transit Time Spread.



Time evolution of a shower from photon in CMS ECAL PbWO crystal (25 cm long).



# Timing Performance of CMS ECAL (

20

CMS Preliminary - Run1



**շ**( t<sub>1</sub> - t₂ ) [ns]

10-1

**Results from pp collision data at LHC :** 

- Electron showers from Z $\rightarrow$ ee decay  $\Delta t_{TOF}$  : ~270 ps, single channel : ~190 ps
- W/o path length correction : ~380 ps
- Constant term of resolution : ~20 ps in test beam, ~70 ps in situ (same clock).

10

10

 $10^{2}$ 

 $\sigma(t_1 - t_2) = \frac{N}{\Lambda - t_2} \oplus \sqrt{2} \overline{C}$ 

 $\overline{C} = 0.020 \pm 0.004 \text{ ns}$ 

ndf = 173 / 169

N = 35.1± 0.2 ns

10

Studies on jet timing vertex resolution suggest very promising performance.

E in EB [GeV]

E in EE [GeV]

 $A_{eff} / \sigma_n$ 

**CMS 2008** 

 $\sigma(t_1-t_2)[ns]$ 

10

10<sup>2</sup>





## **CMS ECAL Phase 2 Timing**



- Phase 2 upgrade of ECAL will feature precision timing readout :
  - 30 ps time resolution for high energy clusters.
- Information available at L1 trigger.
- Achieve by replacing front end electronics, dedicated ASIC.
  - Upgrade of electronics was necessary to cope with trigger rates.
- Improved pulse shape allows better suppression of intrinsic noise of photo detector.





#### **Silicon Shower Timing**





## **HGCAL** Timing



- CMS endcap replacement HGCAL will feature precision timing capabilities.
- HGCAL : High Granularity Calorimeter Silicon/Scintillator "pixels"
- Cell size 0.5/1.0 cm, >6m channels, 640 m<sup>2</sup> (Si); 240k channels, 350 m<sup>2</sup> (Scint)



### **The CMS Barrel Timing Layer**



#### BTL: LYSO bars + SiPM readout:

- TK / ECAL interface: |η| < 1.45</li>
- · Inner radius: 1148 mm (40 mm thick)
- Length: ±2.6 m along z
- Surface ~38 m<sup>2</sup>; 332k channels
- Fluence at 4 ab<sup>-1</sup>: 2x10<sup>14</sup> n<sub>eq</sub>/cm<sup>2</sup>



#### **BTL technology choice – SiPM/LYSO :**

- Timing performance <20 ps with MIPs in LYSO/SiPM demonstrated.</p>
- Radiation hardness established at the required level.
- Extensive experience with SiPM in CMS & LYSO in HEP & PET
- Cost effective mass market components

11.05.2022



### **Design constraints**



- Time resolution 30-40 ps at the start of HL-LHC, <60 ps up to 3000 fb<sup>-1</sup>.
  - Requires additional measures to maintain EOL performance.
- Radiation levels for BTL after 3000 fb<sup>-1</sup> :
  - Fluence  $1.65 1.9 \times 10^{14} n_{eq}/cm^2$ , Dose : 18-32 kGy
- Maintenance free operation inside the tracker cold volume.
  - Requirement to run SiPMs below -30 C to limit dark count rate (DCR).
- Cover ~38 m<sup>2</sup> of area at the outer circumference of the CMS tracker.
- Schedule constraints of HL-LHC :





## **MTD Barrel Sensor**



- Maximize slew rate to optimize performance.
- LYSO crystals as scintillator
  - Excellent radiation tolerance
  - Bright (40k ph/MeV)
  - Fast rise time O(100ps), decay time ~40 ns
- Silicon Photomultipliers as photo-sensors
  - Compact, insensitive to magnetic fields, fast
  - For un-irradiated SiPMs, smaller pixels lower DCR.
  - For irradiated SiPMs, testing larger pixels.
  - High dynamic range, rad tolerant
  - Photo Detection efficiency : 20-40%
- High aspect ratio geometry :
  - Enhance light collection efficiency (~5 %)
  - Minimize SiPM area / Crystal area
  - Reduce power consumption
  - Better timing performance







### Sensor geometry choice

- Scintillation light measured with a pair of Silicon Photomultipliers (SiPMs), one at each end of the crystal bar
  - Minimize impact point position dependency
  - Minimization of active area and power budget
  - Maximization of resolution ( $\sqrt{2}$  improvement)
  - Determination of track position with O(mm) resolution





# Further Design Improvements



- Two handles to mitigate impact of SiPMs dark count rate (DCR) due to large radiation budgets :
  - Reduce temperature
  - Annealing of SIPMs
- Added Thermoelectric Coolers (TEC) coupled to SiPMs :
  - Reduce operational temperature from -35 °C (CO<sub>2</sub>) to -45 °C (CO2 + TEC).
  - Allow annealing in situ during detector maintenance at +40 °C





#### **DCR Mitigation with the BTL ASIC**

- Dedicated readout ASIC (TOFHIR) is being developed for BTL.
  - Derived from TOFPET ASIC developed for PET applications.
- Key feature is a noise suppression filter :
  - Inverted and delayed pulse subtract from the input pulse
  - Restores baseline at the rising edge of the pulse.
- Improves time resolution by about a factor 2 at EOL.





# BTL Performance in Test Beam (P)

- Test beam to test resolution and uniformity of LYSO crystals
- 120 GeV protons beam.
- Silicon tracker telescope to measure proton position and Micro Channel Plate-PMT (MCP-PMT) used as reference time
- Two different SIPMs tested (HBK and FBK). Box at 25°C
- Layout allowing rotation of crystals vs direction of beam
- Recent test beams at PSI and CERN with TOFHIR readout and irradiated SiPMs, analysis ongoing.



11.05.2022



# **BTL Timing Measurement**



- In FNAL test beam shown, timing extracted from the leading edge of SiPM pulse.
- At low thresholds, timing resolution improves with increasing threshold due to larger S/N.
- At larger thresholds, timing resolution deteriorates as fluctuations on the arrival time of the Nth photon add more jitter.
- In case of BTL, minimum varies as DCR add noise. Optimal threshold in the range of 50 photo electrons.
  - Note : ~160k scintillation photons, ~9k PE





#### **Time resolution**



• Estimated as  $\sigma_{t_{average}}$  and  $\sigma_{t_{diff}}/2$  where

- 
$$\Delta t_{bar} = t_{average} - t_{MCP} = (t_{left} + t_{right})/2 - t_{MCP}$$
 and  $\sigma_{t_{average}} = \sqrt{\sigma_{\Delta t_{bar}}^2 - \sigma_{t_{MCP}}^2}$ 

- $t_{diff} = t_{left} t_{right}$
- Resolution for MIP below 30 ps
- Improves with increased light output and, for sufficiently high thresholds, scales with the inverse of the square root of amplitude



Aur Bornnenn - Frecision riming Detectors at Hadron Colliders



## **Sensor Uniformity**



- In the detector, particles will cross LYSO bars at broad range of impact angles depending on their pT.
  - LYSO bar thickness varies along eta in three groups (2.4, 3.0, 3.75 mm) to equalize effective path length.
- Uniform response and resolution along the bar :
  - Effect of gaps negligible if < 200  $\mu$ m, expect gap ~ 80  $\mu$ m for final bar arrays





# **BTL Layout & Design**

- BTL attached to inner wall of Tracker Support Tube
- Cold volume shared with Tracker
- BTL Segmentation :
- 72 trays (36 in φ × 2 in η)
- 331k readout channels, 165k LYSO bars, organized in 10368 modules, 6 Readout Units per tray.
- Tray dimensions : 250 x 18 x 2.5 cm
- Module dimensions : 51x57 mm<sup>2</sup>





#### BTL tray, transvers (phi) cross section





### **The CMS Endcap Timing Layer**

#### Endcap Timing Layer (ETL):

- Low Gain Avalanche Diodes (LGADs) with ASIC readout
- $1.6 < |\eta| < 3.0$
- Total surface of ~ 14 m<sup>2</sup>
- Fluence at 3 ab<sup>-1</sup>: up to 1.7x10<sup>15</sup>n<sub>eq</sub>/cm<sup>2</sup>



#### ETL technology choice – LGAD :

- Very resilient against radiation
- Typically 30 ps time resolution per timing layer
- Employing technology from tracking detecors

11.05.2022



# Timing with LGAD



#### LGAD technology:

- p<sup>+</sup> gain layer implanted underneath n++ electrode
  - High located electric field (E > 300 kV/cm)
  - charge multiplication
  - Moderate internal gain 10 30 to maximize signal/noise ratio
- Sensor Requirements:
  - Pad size of few mm<sup>2</sup> determined by occupancy and read-out electronics (pad capacitance ~ 3 – 4 pF)
  - Gain and breakdown uniformity
  - Low leakage current
  - Provide large and uniform charge, > 8 fC when new and > 5 fC at the highest irradiation fluence
  - No-gain distance between adjacent pads < 50 μm
- The final sensor:
- 16x16 pad array with 1.3x1.3 mm<sup>2</sup> pads



Intrinsic limitation : Landau fluctuations in the signal creation process :

11.05.2022

Adi Bornheim - Precision Timing Detectors at Hadron Colliders

E filed Traditional Silicon Diode





## **LGAD Performance**



- Laboratory setups in Torino and FNAL based on a Sr<sup>90 β-source</sup>
- Sensor performances are benchmarked using very fast low noise electronics
- Both FBK and HPK sensors achieve a time resolution < 40 ps up to 2.5x10<sup>15</sup> n<sub>eq</sub>/cm<sup>2</sup>
  - With both the latest FBK and HPK production, ETL able to avoid performance degradation even in its innermost part
  - Results might change with ELT ASIC. Additional resolution contribution from
- ASIC, discussed later





## ETROC



Endcap Timing Layer Read-Out Chip (ETROC) is the ETL read-out ASIC

- Time resolution < 50 ps per single hit
- Power budget: 1W/chip, 3mW/channel

Three prototype version before the full-size 16x16 chip:

- ETROC0 : single analog channel
- ETROC1 : full front-end with TDC and 4x4 clock tree
- ETROC2 : design in progress: full functionality + full size

#### Test beam results with ETROC1 meet specs





11.05.2022





- Embedded in neutron moderator in front of HGCAL, 200 Kg, thickness 42 mm, out radius about 1.2 m, 8M channels.
- Radiation level up to >10<sup>15</sup>
- Two layers of LGAD, achieving a combined 30 ps BOL, <60 ps EO



Radiation fluence expected in ETL, in red the region >  $1 \times 10^{15} n_{eg}/cm^2$ 



33



## Summary



- Hadron colliders continue to be prominent tools in particle physics
  - Detectors need to evolve to harvest physics potential
- Timing will have high impact on the HL-LHC physics program
  - TOF for particle ID, 4D reconstruction, LLP signatures
  - Enhance statistical significance of Higgs analysis by reducing effective pile-up
- CMS timing upgrade well advanced :
  - Transitioning from last prototype rounds to pre-series stage.
  - Design choices and concepts confirmed in lab and beam tests.
  - Detector production scheduled to start in 2023.









# Backup

