

Atomic and nuclear clocks for testing fundamental physics

Ekkehard Peik

Time and Frequency Department PTB, Braunschweig, Germany

PRISMA Kolloquium, Uni Mainz, 15.06.2022

Ekkehard Peik: short scientific CV

1987: Diploma at LMU München, Max-Planck-Institut für Quantenoptik, supervisor: H. Walther First observation of Coulomb crystals of laser-cooled ions in a Paul trap

1993: PhD at LMU, MPQ, supervisor: H. Walther

Trapping and cooling of In^+ , first laser excitation of a J=0 \rightarrow 0 transition in a single trapped In^+ ion

1994-1996: Postdoc at Laboratoire Kastler Brossel, ENS, Paris, Group of C. Salomon and C. Cohen-Tannoudji

Sub-recoil laser cooling, Bloch oscillations of atoms in an optical lattice

1996-2001: Ludwig-Maximilians-Universität München (Habilitation 1999) and Max-Planck-Institut für Quantenoptik

Optical frequency measurement in a single trapped In⁺ ion with a femtosecond frequency comb (Groups of H. Walther and T. Hänsch)

Ekkehard Peik: short scientific CV

PTB Braunschweig: Time and Frequency Department 2001: Scientific Staff 2003: Group Leader Optical clocks with trapped Ions Since 2007: Department Head

Research: Yb⁺ optical clock, Th-229 nuclear clock, Fundamental tests with clocks

PTB Braunschweig and Berlin:

- National Metrology Institute (NMI)
- Federal Ministry of Economics (BMWK)
- 250 Mio. € annual budget, plus third party funding
- Approx. 2100 staff including 110 PhD students and 140 apprentices
- 600 scientific papers per year

Atomic clocks and fundamental physics

Optical clock with a single laser-cooled ion in a Paul trap

The ion trap provides long interaction and coherence times

Combined with laser cooling: Lamb-Dicke confinement of a single ion

Hans Dehmelt

high spectral resolution, excellent control of systematic shifts

quantum noise limited stability

Motivation:

Primary atomic clocks: Redefinition of the SI second in ≈2030 Clock-based searches for "new physics"

PIB Clock ensemble in PTB's clock hall

Outline of the talk:

- Atomic optical clock with trapped ¹⁷¹Yb⁺
- Search for "new physics": variations of fundamental constants
- (Towards a) nuclear optical clock with ²²⁹Th³⁺

Two Clock Transitions in ¹⁷¹Yb⁺

Advantages of ¹⁷¹Yb⁺: - nuclear spin ½: non-degenerate (F=0,m=0) ground state - two different optical clock transitions, two microwave transitions

Investigated at: NPL, PTB, JPL, ILP, ... for clocks;

U. Maryland, IonQ, Honeywell, Siegen, Mainz, Erlangen, Ulm, Sussex ... for QIP etc.

Quadrupole Transition (E2): S-D

- natural linewidth: 3 Hz
- syst. uncertainty $\approx 3 \times 10^{-17}$

Octupole Transition (E3): S-F

- nHz natural linewidth
- resolution limited by clock laser / interaction time
- smaller shifts through external fields than E2
- light shift from clock laser: controlled in generalized Ramsey schemes
- syst. uncertainty $\approx 2 \times 10^{-18}$

Radiative lifetime of the Yb⁺ F_{7/2} state

Linked to the strength and natural linewidth of the S-F electric octupole transition.

PIB

Radiative lifetime of the Yb⁺ F_{7/2} state

Measurement based on coherent excitation of the E3 transition.

Radiative lifetime and transition matrix element:

Resonant Rabi frequency:

The laser field also induces a quadratic Stark shift:

The ratio $\xi = \Omega^2 / \Delta \nu_{QS}$ is independent from E_0 , contains the matrix element and differential polarizability.

Experimental result: ξ=30.3(9) Hz

 $\Delta \alpha$ from light shift measurements in multiple positions in the laser beam.

ansition.

$$\tau \propto 1/|V_{eg}|^2$$

 $\Omega = 2\pi E_0 |V_{eg}|/h$
 $\Delta \nu_{QS} = E_0^2 \Delta \alpha_{eg}(\nu_0)/(2h)$

Radiative lifetime of the Yb⁺ F_{7/2} state

R. Lange, A. A. Peshkov, N. Huntemann, Chr. Tamm, A. Surzhykov, E. Peik, Phys. Rev. Lett. **127**, 213001 (2021)

E3 clock comparison

- six-month-long comparison
- two clocks on the E3 transition
- different experimental setups
- statistical uncertainty of 2.1 × 10⁻¹⁸

Yb1 Yb2 $\nu_{1-2}/\nu_0 = 2.8 \ (4.2) \times 10^{-18}$. 10⁻¹⁶ Allan deviation 10⁻¹⁷

 10^{2}

averaging time (s)

 10^{4}

10⁶

10

10⁰

Two Clock Transitions in ¹⁷¹Yb⁺

- E2 transition frequency is much more sensitive than E3 to field-induced systematic shifts and can be used as an in-situ sensor for perturbations of the E3 clock frequency
- ✓ E3 transition frequency has much larger relativistic contributions than E2. This can be used in fundamental tests: Constancy of the fine structure α (Local Position Invariance)

clock transitions	E2	E3	
transition	electric quadrupole	electric octupole	
natural linewidth	3 Hz	nHz	
external perturbations quadrupole shift (in ea ₀ ²) 2nd order Zeeman shift (in mHz/μT ²)	sensitive 1.95(1) ÷ 52.14(3) ÷	insensitive -0.0297(5) -2.082(2)	
α sensitivity coefficient	0.88	-5.95	
E		Rhue Rev. A 68, 022506 (2002)	

E2: Chr. Tamm *et al.*, Phys. Rev. A **89**, 023820 (2014) E3: N. Huntemann *et al.*, Phys. Rev. Lett. **116**, 063001 (2016) α (E2): V. A. Dzuba et al., Phys. Rev. A 68, 022506 (2003) α (E3): V. A. Dzuba and V. V. Flambaum, Phys. Rev. A 77, 012515 (2008)

Physikalisch-Technische Bundesanstalt
Braunschweig and Berlin

National Metrology Institute

E3/E2 clock comparison + LPI

V. V. Flambaum et al., Can. J. Phys. 87, 25 (2009)

Physikalisch-Technische Bundesanstalt
Braunschweig and Berlin

E3/E2 clock comparison + LPI

Physikalisch-Technische Bundesanstalt
Braunschweig and Berlin

National Metrology Institute

Yb+(E3) vs Cs clock comparison

- repeated measurements since 2017
- Yb1(E3) and two caesium fountains

$$\nu_{\rm E3} = 642\,121\,496\,772\,645.10(8)$$
 Hz
 $u_{\rm E3}/\nu_{\rm E3} = 1.3 \times 10^{-16}$

 most accurate determination of an optical transition frequency

Yb+(E3) vs Cs clock comparison

- repeated measurements since 2010
- Yb1(E3) and two caesium fountains
- test of LPI

- Cs hyperfine transition sensitive to changes in
 - $\alpha \longrightarrow \text{from E3/E2 ratio}$

$$\mu = m_p/m_e$$

 X_q (strong interact. param.) \longrightarrow from [2], small contribution

$$\frac{1}{\mu}\frac{\mathrm{d}\mu}{\mathrm{d}t} = -8(36) \times 10^{-18}/\mathrm{yr}$$

~ factor of 2 improvement [3]

Nuclear Clock:

Oscillator that is frequency-stabilized to a nuclear (γ -ray) transition

Motivation:

<u>Higher precision</u>: In many of the advanced optical clocks (trapped ion and optical lattice) fieldinduced shifts make a dominant contribution to the uncertainty budget. These can be reduced in a nuclear clock.

<u>Higher stability</u>: In a Mößbauer solid state nuclear clock, many absorbers may be interrogated (>10¹⁰ instead of \approx 10⁰ (ion) or \approx 10⁴ (lattice)).

<u>Higher frequency:</u> \rightarrow higher stability. EUV or even X-ray transitions may be used when suitable radiation sources become available.

Low-energy transition in Th-229 as a reference for a nuclear clock

accessible for laser excitation at ≈ 150 nm

Advantage of the nuclear over the atomic clock: (nearly) free choice of a suitable electronic state for the interrogation of the nuclear resonance.

E. Peik, Chr. Tamm, Europhys. Lett. 61, 181 (2003)K. Beeks et al., Nat. Rev. Phys. 3, 238 (2021)

High sensitivity of a Th-229 nuclear clock for violations of the equivalence principle

- Transition frequency is sensitive to the strong interaction (in addition to electromagnetism)
- Coulomb- and strong- contributions (MeV scale) cancel in the transition energy Enhanced sensitivity to variations of fundamental constants:
 V. Flambaum, Phys. Rev. Lett. 97, 092502 (2006)
- Bound system of massive particles (n, p) at high energies
 Enhanced effect of LLI violation:
 V. Flambaum, Phys. Rev. Lett. 117, 072501 (2016)

8-eV VUV generation: Four wave (difference) mixing principle

- Near-resonantly driving of 2-photon transition in noble gas.
- Inversion symmetry of free atom requires decay with two photons.
- Supplying one decay photon with v_{IR} yields fourth photon with $v_{VUV} = 2v_{UV} v_{IR}$.
- Several gases can be employed in FWM systems, e.g., Xe, Kr, Hg, ...
- Two-photon transition in Xe at 2 x 250 nm is suitable for VUV tunability from 167 nm to 148 nm, i.e. 7.42 eV to 8.38 eV.

8-eV VUV generation: Four wave (difference) mixing principle

- Tuning over the range 7.9 eV to 8.3 eV requires laser beams at 250 nm and 610-759 nm.
- Third order process needs high intensity to achieve suitable efficiency.
- Pulsed lasers (~10 ns, 30 Hz repetition rate) best compromise between VUV pulse energy (>10¹³ photons/pulse) and Fourier transform limited bandwidth (<1 GHz).
- Our setup:
 - Two cw ring lasers as seed: 750 nm Ti:Sa laser, 610-759 nm tunable dye laser.
 - Pulsed dye amplifiers (~60 mJ/pulse, 30 Hz repetition rate).
 - Third harmonic generation to achieve 250 nm for two-photon transition.

FWM laser system at PTB

VUV beam visualization on Ce:YAG phosphor

- Relative power measurements with Cu-based photo-electron detector.
- Absolute measurements with pyro-electric power meter show E_{pulse} > 5 µJ.

VUV Beam Line

VUV laser excitation of Th+

- Estimation of upper limit for the VUV linewidth based on resonance enhanced ionization of Th⁺.
- First excitation step using ECDL at 402 nm, second and third step VUV to continuum.
- Background free fluorescence detection of Th²⁺ ions.
- Linewidth can be estimated from front edge of the ionization feature to be < 2 GHz.

National Metrology Institute

"Roadmap" in frequency uncertainty for the Th-229 nuclear transition

PTB Working Groups: Optical Clocks with Trapped Ions / Nuclear Laser Spectroscopy

<u>Yb⁺ clocks</u> N. Huntemann		<u>Th-229</u> M. Okhapkin		Theory M. Safronova (U. Delaware)
R. Lange		J. Thielking		M. Kozlov
B. Lipphardt		G. Zitzer		S. Porsev
Chr. Tamm		J. Tiedau		
M. Steinel		K. Zhang		A. Surzhykov
M. Filzinger		P. Glowacki	now: U. Poznan	R.A. Müller
C. Sanner	now: JILA	DM. Meier	now: VW	S.AL. Schulz
M. Abdel Hafiz	now: U. Franc	che Comté		A.A. Peshkov
Hu Shao	now: CAS			
J. Zhang	now: NYU			

Funding: DFG, EURAMET, EU H2020

Physikalisch-Technische Bundesanstalt Braunschweig und Berlin

EMRP European Metrology Research Programme

■ Programme of EURAMET

The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union

Horizon 2020 European Union funding for Research & Innovation

European Research Council

Established by the European Commission

