

Probing phase transitions in the early universe with gravitational waves

Mark Hindmarsh

Helsinki Institute of Physics & Dept of Physics, University of Helsinki

and

Department of Physics & Astronomy, University of Sussex

PRISMA+ Colloquium 25. toukokuuta 2022

A brief career

- Home town: Cambridge, UK
 - Early interest in the universe...
- Physics at Oxford
- PhD at Imperial College (with Tom Kibble)
 - Turned into interest in the early universe
- Postdocs at Los Alamos, Newcastle, Cambridge
- 5-year research fellowship at Sussex -> lectureship 1998
- 2012 sabbatical at University of Helsinki -> visiting professor
- Since 2018: 80% at Helsinki, 20% Sussex
- Lots of good fortune on the way ...

Phase transitions in the early Universe

- At very high temperatures and pressures, the state of matter in the Universe changes
 - T_c ~ 100 MeV (1 ms) QCD
 - $T_{c} \simeq 100 \; GeV$ (10 ps) Electroweak
 - T_c >> 100 GeV new symmetries, interactions?
- Departures from equilibrium and homogeneity (-> shear stress)
 - First order phase transition: relativistic condensation or `fizz' Steinhardt (1982)
 - First or second order: formation of topological defects
 Kibble (1976)
 - First order: baryon asymmetry
 Sakharov 68; Kuzmin, Rubakov, Shaposhnikov (1985)
- First order phase transitions can produce GWs Witten (1984), Hogan (1986)

Electroweak transition: 100 GeV, 10 ps

- Perturbative: weakly first order transition Kirzhnitz, Linde (1972,4)
- But: SM is not weakly coupled at high T Linde (1980)
- Non-perturbative techniques:
 - Dimensional reduction to 3D effective field theory + 3D lattice
 Kajantie, Laine, Rummukainen, Shaposhnikov (1995,6)
 - SU(2)-Higgs on 4D lattice Czikor, Fodor, Heitger (1998)
- SM transition at m_h ≈ 125 GeV is a cross-over
 a supercritical fluid

Temperature

• Search for 1st order transition is a search for physics beyond SM

Little bangs in the Big Bang

- 1st order transition by nucleation of bubbles of low-*T* phase Langer 1969, Coleman 1974, Linde 1983
- Nucleation rate/volume p(t) rapidly increases below T_c
- Expanding bubbles generate pressure waves in hot fluid
- Universal "fizz"
- Gravitational wave production
- Spectrum has information about phase transition

Steinhardt (1982); Hogan (1983,86); Gyulassy et al (1984); Witten (1984)

Gravitational waves ... Mark Hindmarsh

Fluid kinetic energy

MH, Huber, Rummukainen, Weir (2013,5,7) Cutting, MH, Weir (2018,9)

Gravitational wave spectrum

NASA

Laser Interferometer Space Antenna

- Launch mid 2030s
- 4-year mission (up to 10 years)
- 2.5M km arms
- Science objectives:
 - White dwarves
 - Black holes
 - Galaxy mergers
 - Extreme gravity
 - TeV-scale early Universe
- Other missions: DECIGO, Taiji, Tianqin

Phases of a phase transition

- 1. Bubble nucleation and expansion
- 2. Collision

1

- 3. Acoustic
- 4. Non-linear (shocks, turbulence)

 $\tau_{\rm nl} \sim L_f/\bar{U}_f$

 $L_{\rm f}$ – fluid flow length scale $U_{\rm f}$ – RMS fluid velocity

3 4 'exponential' nucleation rate/volume p(t) $p(t) = p_n e^{\beta(t-t_n)}$ $au_{\rm co} = \beta^{-1}$

 β – transition rate parameter β > *H* for successful transition

Guth, Weinberg 1983; Enqvist et al 1992; Turner, Weinberg, Widrow 1992;

Review: MH, Lüben, Lumma, Pauly 2021

GWs from an early universe phase transition

Assume rapid transtion, $\beta >> H$, neglect expansion of universe

- Ingredients for theory: Ignatius et al (1994), Kurki-Suonio, Laine (1996)
 - Higgs field $-\ddot{\phi} + \nabla^2 \phi \frac{\partial V}{\partial \phi} = \eta W (\dot{\phi} + V^i \partial_i \phi)$ $V(T, \phi)$ equation of state

 - $\eta(T, \phi, W)$ field-fluid coupling (models friction)
 - Relativistic fluid

$$\dot{E} + \partial_i (EV^i) + P[\dot{W} + \partial_i (WV^i)] - \frac{\partial V}{\partial \phi} W(\dot{\phi} + V^i \partial_i \phi) = \eta W^2 (\dot{\phi} + V^i \partial_i \phi)^2$$
$$\dot{Z}_i + \partial_j (Z_i V^j) + \partial_i P + \frac{\partial V}{\partial \phi} \partial_i \phi = -\eta W (\dot{\phi} + V^j \partial_j \phi) \partial_i \phi.$$

- *E* energy density, Z_i momentum density, V_i velocity, *W* γ -factor
- Discretisation

Wilson & Matthews (2003)

Different approach: Brandenburg, Engvist, Olesen (1996); Giblin, Mertens (2013)

 $V_T(\phi)$

 $V_T(\phi_m)$

 $V_{T}(0)$

 $T < T_c$

 $\pmb{\phi}_{\mathsf{b}}$

 ϕ

 $\phi_{\rm m}$

- Metric perturbation (GW strain)

 $\ddot{u}_{ij} -
abla^2 u_{ij} = 16\pi G T_{ij}$ $\tilde{h}_{ij}(\mathbf{k}) = \Lambda_{ij,kl}^{TT} u_{kl}(\mathbf{k})$ Garcia-Bellido, Figueroa, Sastre (2008)

Connection to fundamental theory

- Scalar hydrodynamics $-\ddot{\phi} + \nabla^2 \phi \frac{\partial V}{\partial \phi} = \eta W (\dot{\phi} + V^i \partial_i \phi)$
- Scalar effective potential $V(\phi, T)$ —
- Scalar-fluid coupling $\eta(\phi, T, \gamma)$ ——

Phase transition parameters :

 T_n = nucleation temperature g_{eff} = effective d.o.f. in plasma $\alpha \sim$ (latent heat)/(thermal energy) c_s = sound speed(s) β = transition rate

 v_w = bubble wall speed

Simulations, Modelling

 $H_n(T_n, g_{eff})$ (Hubble rate)

 $K(v_w, \alpha, c_s)$ (kinetic energy fraction)

equilibrium, quasi-eqm. (T_{n} , α , β , c_{s} , g_{eff})

non-equilibrium (v_w)

 $R_*(\beta, v_w)$ (mean bubble separation)

GW parameters : Ω_p = peak amplitude f_p = peak frequency σ_i = shape parameters

Phase transitions at weak coupling

- Phase transition in weakly coupled gauge theories: (Kirzhnits 1972, Kirzhnits & Linde 1972)
- Free energy density of plasma depends on
 - Temperature T
 - Particle masses m_i()
- High *T*: reduce free energy by forcing Higgs ϕ to zero
- Electroweak transition: $T_c \approx v_{EW} \approx 100 \text{ GeV} (10^{15} \text{ K})$
- High *T* (>> m_i(φ)):

$$V_T(\phi) = \frac{1}{2}A(T^2 - T_0^2)\phi^2 - \frac{1}{3}ET\phi^3 + \frac{1}{4}\phi^4$$

• Non-abelian gauge theories (T > 0): simple methods failLinde 1980

Potential barrier from cubic term in perturbative high-T expansion. First order transition?

• Much recent work on $V(\phi, T)$ in Standard Model + extra Higgs

Anderson et al 2018; Gorda et al 2019; Niemi et al 2019, 2021; Kainulainen et al 2019; Niemi, Schicho, Tenkanen 2021

Phase transitions at strong coupling and holography

 Holography: a (4 + n)D gravity theory defines a quantum field theory in 4D Witten 1998, Maldacena 1998

Holographic effective action for transition rates

Ares, Henriksson, MH, Hoyos, Jokela 2022

Bottom-up model

$$S_{\text{non-reg}} = \frac{2}{\kappa_5^2} \int \mathsf{d}^5 x \sqrt{-g} \left(\frac{\mathcal{R}}{4} - \frac{1}{2} \partial_\mu \phi \partial^\mu \phi - V(\phi) \right) + \frac{1}{\kappa_5^2} \int_{\partial \mathcal{M}} \mathsf{d}^4 x \sqrt{-\gamma} d^4 x \sqrt{-\gamma} d^4$$

- From the holographic generating functional W[J]
 - Effective potential: $V(\psi) = \int J d\psi$ Hertog, Horowitz 2002
- From low-momentum expansion of 2-point function $\langle \psi \psi \rangle = \delta \psi / \delta J$ Son, Starinets 2002 - Kinetic term: $Z(\psi) (\nabla \psi)^2$
- Allows standard computation of transition rate eta
- Avoids need to find solutions in 5D theory
- Future: wall speed
- Application: strongly-coupled Standard Model extensions

Hydrodynamic simulations of phase transitions

- 2015: 1M hrs CSC, Finland
- 2015/6: 17M CPU-hours Tier-0 PRACE
- 4200³ lattice on 24k cores
- Output: GW power spectrum (fraction GW energy density per log wavenumber)

 $\frac{d\Omega_{\rm gw}}{d\ln k} = \frac{1}{\rho_{\rm c}} \frac{d\rho_{\rm gw}}{d\ln k} = \frac{1}{12H^2} \frac{k^3}{2\pi^2} P_{\dot{h}}(k)$

• *P* - Plane wave spectral density

 $\langle \dot{\tilde{h}}_{ij}(\mathbf{k})\dot{\tilde{h}}_{ij}(\mathbf{k'})\rangle = P_{\dot{h}}(k)(2\pi)^3\delta(\mathbf{k}-\mathbf{k'})$

Transition strength: $\alpha = 0.0046$ Wall speed: $v_w = 0.44$

Mean bubble spacing $R_* = 2000/T_c$

Generic features:

- "Domed" peak at *kR*^{*} ~ 10
- Approx *k*⁻³ spectrum at high *k*

Hindmarsh, Huber, Rummukainen, Weir 2017

Towards a model: relativistic combustion

Gravitational waves ... Mark Hindmarsh

GWs from first order phase transitions: parameters

- Parameters of transition:
 - $-T_n$ = Temperature at nucleation
 - $-\beta$ = transition rate (= d log p / dt)
 - v_w = Bubble wall speed
 - α = (Potential energy release)/(Heat energy)
 - $-c_s$ = sound speed
- Derived parameters:
 - $r_* = (bubble centre spacing R_*)/Hubble length$
 - K = fluid kinetic energy fraction

Steinhardt '84 Espinosa et al 2010

Giese et al 2020

- Fluid kinetic energy makes GWs
 - Energy release via self-similar solutions

GWs from phase transitions: Sound shell model

- Gaussian velocity field from weighted addition of self-similar sound "shells" $v_q(t_i)$ MH 2017, MH, Hijazi 2019
- Two length scales:
 - Bubble spacing R_{*}
 - Shell width $R_* |v_w c_s| / c_s$
- Double broken power law
 - $P_{gw} \sim k^9, k^1, k^{-3}$
- Amplitude proportional to:
 - Bubble spacing
 - Shear stress lifetime
 - (Kinetic energy)²
- Similar: bulk flow model (real space)

Jinno, Konstandin, Rubira 2020

Sound shell model vs. simulations P_{qw}

- Solid: ideal self-similar sound shell
- Dash: evolving sound shell at peak collision time in 1+1D scalar hydro
- Simulations: simultaneous nucleation of bubbles

MH et al in prep

Gravitational waves ... Mark Hindmarsh

Nonlinearities 1: Kinetic energy & GW suppression

0.3000

0.2500

-0.2000

-0.1500

 $\begin{array}{l} T^{\rm Max} = 0.341 \, T_c \\ T^{\rm Min} = 0.170 \, T_c \end{array}$

 $tT_{c} = 1110$

- **Deflagrations**: heat up fluid in front
- Pressure in front of wall increases, walls slow down
- Formation of hot droplets
- Less transfer into kinetic energy, more into heat.
- Include GW suppression factor as a numerical parameter (right)
- Also: nucleation suppression, boosts signal

Al-Ajmi, MH (in prep)

Nonlinearities 2: Vorticity and turbulence

- Deflagrations
- Interaction between bubbles/shells generates vorticity
- Vorticity significant for slow walls in strong transitions
- Generation by later shock collision? Pen, Turok 2016

 ω/T_{c}

- Small in 2D sims
- Larger, longer simulations needed Auclair et al 2022

Weir, 2020

MΗ

Cutting,

Nonlinearities 3: Shocks and kinetic energy decay

- Shocks develop from any sound wave
- Energy spectrum: k^{-2} at high k (any dimension)
- D=2 modelling can be applied to D=3
- KE decay, length scale growth: power laws
- GW spectrum: Intermediate slope change: k⁹ to k^{5.5}

GW power spectra in the SSM

• Sound shell model predictions, acceptable accuracy for

- near-linear flows ($\alpha \le 0.3$); fast walls: $v_w > 0.4$; sub-Hubble bubble separations ($r_* << 1$)

Foregrounds in stochastic signal

After detected objects (e.g. massive black hole binaries) are removed from signal:

- Unresolved white dwarf binaries in our galaxy (~ 20 million)
- Unresolved extra-galactic compact binaries
 - Mostly stellar origin black hole binaries ("LIGO-type")
- What can we hope to see?

Signal-to-noise ratios (LISA)

- Signal-to-noise ratio ρ (t_{obs} = 4 years)
- "Worst case" galactic binary foreground
 - (NB annual variation aids removal)
- "LISA science requirements" instrument noise

 $\rho^{2}(\vec{\theta}) = t_{\rm obs} \int df \left(\frac{\Omega_{\rm gw}(f;\vec{\theta})}{\Omega_{\rm noise}(f)}\right)^{2}$

Signal-to-noise ratios (LISA)

- Signal-to-noise ratio ρ (t_{obs} = 4 years)
- Perfect removal of GB foreground
- "LISA science requirements" instrument noise

$$\rho^{2}(\vec{\theta}) = t_{\rm obs} \int df \left(\frac{\Omega_{\rm gw}(f;\vec{\theta})}{\Omega_{\rm noise}(f)}\right)^{2}$$

Observability of PT parameters: Fisher analysis

f [Hz]

A theory skeleton in the cupboard

- Is nucleation theory correct?
 - ³He A/B transition rate puzzle

Kaul Kleinert 1980, Bailin, Love 1980, Leggett 1984, Tye Wohns 2011

Cahn/Hilliard, Langer theory of nucleation rate:

$$\frac{\Gamma}{\mathcal{V}} = \frac{\sqrt{V_T''(0)}}{\pi} \left[\frac{\det(-\vec{\nabla}^2 + V_T''(0))}{|\det'(-\vec{\nabla}^2 + V_T''(\bar{\phi}))|} \right]^{1/2} \left(\frac{\beta E_{\rm c}}{2\pi} \right)^{3/2} e^{-\beta E_{\rm c}} \\
E_{\rm c} - \text{energy of critical droplet/bubble}$$

- ³He A/B theory prediction: $\beta E_c \simeq 10^6$
- Lab: metastable ³He A lasts hours/days.
- QUEST-DMC (Sussex, Royal Holloway UL, Lancaster) aims to resolve the puzzle

Future challenges: hydrodynamics

- Realistic equations of state
 - Sound speed is important
- Non-linear evolution of fluid
 - Longitudinal/compression modes
 - Kinetic energy suppression
 - Shocks, wave turbulence
 - Transverse/rotational modes
 - Vorticity generation
 - Turbulence
 - Turbulence less efficient at producing GWs? Roper Pot et al 2019
 - New! GWs from freely decaying turbulence in relativistic fluid

Vorticity, strong transition Cutting, MH, Weir 2019

Dahl, MH, Rummukainen, Weir (2022)

Future challenges: theory

- Scalar effective potential $V(\phi, T)$
 - Non-perturbative methods:
 - Dimensional reduction Gould et al 2019, Croon et al 2020, Gould, Tenkanen, Lee 2021, Niemi et al 2020
 - Functional renormalization group
 - Strongly interacting fields
 - Lattice + Polyakov
 - Holography
- Scalar-fluid coupling $\eta(\phi, T, v)$ & wall speed
 - Perturbative estimates for SM and MSSM
 - Holography Attems et al 2017, Bigazzi et al 2021, Janik et al 2021, Bea et al 2021
- Connection to phenomenology (e.g. λ_{hhh}) Caprini et al 2019;, Kozaczuk et al 2015;
- Probing hidden sectors Schwaller 2015; Jaeckel, Khoze, Spannowsky 2016; Addazi et al 2017, 2018; Baldes 2017; Croon, Sanz, White 2018, ...

Huang et al 2020, Reichert et al 2021

Ares et al 2020, 2021

Einhorn et al 2020,

Moore, Prokopec 1994 John, Schmidt 2000 Laurent & Cline 2020

Ellis, Lewicki, No 2018; Fairbain et al 2019

Conclusions

- LISA and other missions will probe physics of Higgs transition from mid-2030s
 - Measure/constrain phase transition parameters
 - Wall speed likely to be best determined
 - Parameters from underlying particle physics models
 - Wall speed the hardest (non-equilibrium)
- Towards accurate calculations of GW power spectrum from parameters
 - Non-linear evolution (turbulence, shocks) not well understood yet
- Ambition: make GWs as good a probe of the electroweak era as CMB is for the decoupling era

