

ALP-SMEFT Interference

Theorie Palaver Mainz

Anne Galda

in collaboration with Matthias Neubert, Sophie Renner

q_R Q_L

Outline

Well-motivated candidates for

 \rightarrow A contribution to $a_{\mu}^{exp} - a_{\mu}^{SM} = 4.2\sigma$

The solution of the strong CP-problem [Peccei, Quinn (1977); Weinberg (1978); Wilczek (1978)]

[1]

[1] https://indico.cern.ch/event/484258/attachments/1213724/1771273/HTJCX.pdf (20/11/2021)

Anne Galda ((JGU Mainz)
--------------	-------------

Theorie Palaver

Assume an ALP a that is

- classically shift symmetric $(a \rightarrow a + c)$ a gauge singlet
- a pseudoscalar

• massive with mass ma

most general Lagrangian:

[H. Georgi, D. B. Kaplan, L. Randall: Phys.Lett.B 169 (1986) 73-78]

$$\mathcal{L}_{ALP}^{D \leq 5} = \frac{1}{2} (\partial_{\mu} a) (\partial^{\mu} a) - \frac{m_{a,0}^{2}}{2} a^{2} + \frac{\partial^{\mu} a}{f} \sum_{F} \bar{\Psi}_{F} \boldsymbol{c}_{F} \gamma_{\mu} \Psi_{F}$$

$$+ c_{GG} \frac{\alpha_{s}}{4\pi} \frac{a}{f} G_{\mu\nu}^{a} \tilde{G}^{\mu\nu,a} + c_{WW} \frac{\alpha_{2}}{4\pi} \frac{a}{f} W_{\mu\nu}^{A} \tilde{W}^{\mu\nu,A} + c_{BB} \frac{\alpha_{1}}{4\pi} \frac{a}{f} B_{\mu\nu} \tilde{B}^{\mu\nu}$$

Assume an ALP a that is

- classically shift symmetric $(a \rightarrow a + c)$ a gauge singlet
- a pseudoscalar

• massive with mass ma

most general Lagrangian:

[H. Georgi, D. B. Kaplan, L. Randall: Phys.Lett.B 169 (1986) 73-78]

$$\mathcal{L}_{ALP}^{D\leq5} = \frac{1}{2} (\partial_{\mu}a)(\partial^{\mu}a) - \frac{m_{a,0}^{2}}{2}a^{2} + \frac{\partial^{\mu}a}{f} \sum_{F} \bar{\Psi}_{F} \boldsymbol{c}_{F} \gamma_{\mu} \Psi_{F}$$
$$+ c_{GG} \frac{\alpha_{s}}{4\pi} \frac{a}{f} G_{\mu\nu}^{a} \tilde{G}^{\mu\nu,a} + c_{WW} \frac{\alpha_{2}}{4\pi} \frac{a}{f} W_{\mu\nu}^{A} \tilde{W}^{\mu\nu,A} + c_{BB} \frac{\alpha_{1}}{4\pi} \frac{a}{f} B_{\mu\nu} \tilde{B}^{\mu\nu}$$

kinetic and mass term

Assume an ALP a that is

- classically shift symmetric $(a \rightarrow a + c)$ a gauge singlet
- a pseudoscalar massive with mass m_a

coupling to chiral fermion multiplets F

 c_F : hermitian matrices in generation space \hookrightarrow allow for flavor off-diagonal couplings

Anne Galda (JGU Mainz)

qn QL

Theorie Palaver

Assume an ALP a that is

- classically shift symmetric $(a \rightarrow a + c)$ a gauge singlet
- a pseudoscalar

• massive with mass ma

most general Lagrangian:

[H. Georgi, D. B. Kaplan, L. Randall: Phys.Lett.B 169 (1986) 73-78]

$$\mathcal{L}_{ALP}^{D \le 5} = \frac{1}{2} (\partial_{\mu} a) (\partial^{\mu} a) - \frac{m_{a,0}^{2}}{2} a^{2} + \frac{\partial^{\mu} a}{f} \sum_{F} \bar{\Psi}_{F} \boldsymbol{c}_{F} \gamma_{\mu} \Psi_{F}$$
$$+ c_{GG} \frac{\alpha_{s}}{4\pi} \frac{a}{f} G_{\mu\nu}^{a} \tilde{G}^{\mu\nu,a} + c_{WW} \frac{\alpha_{2}}{4\pi} \frac{a}{f} W_{\mu\nu}^{A} \tilde{W}^{\mu\nu,A} + c_{BB} \frac{\alpha_{1}}{4\pi} \frac{a}{f} B_{\mu\nu} \tilde{B}^{\mu\nu}$$

coupling to gauge fields $G_{\mu\nu,a}$, $W_{\mu\nu}$, $B_{\mu\nu}$

 $\tilde{G}^{\mu\nu,a} = \frac{1}{2} \epsilon^{\mu\nu\alpha\beta} G^a_{\alpha\beta}$: dual field strength tensor

Anne Galda (JGU Mainz)

Theorie Palaver

Alternative Form of the Effective Lagrangian

Assume an ALP a that is

- classically shift symmetric $(a \rightarrow a + c)$ a gauge singlet
- a pseudoscalar

• massive with mass ma

alternative form of the Lagrangian:

[M. Bauer, et al.: arXiv:2012.12272]

$$\begin{split} \mathcal{L}_{\mathrm{ALP}}^{D\leq 5} &= \frac{1}{2} \left(\partial_{\mu} a \right) \left(\partial^{\mu} a \right) - \frac{m_{a,0}^2}{2} a^2 \\ &- \frac{a}{f} \left(\bar{Q}_L \phi \, \hat{\mathbf{Y}}_{d} \, d_R + \bar{Q}_L \tilde{\phi} \, \hat{\mathbf{Y}}_{u} \, u_R + \bar{L} \phi \, \hat{\mathbf{Y}}_{e} \, e_R + \mathrm{h.c.} \right) \\ &+ C_{GG} \frac{a}{f} \, G_{\mu\nu}^a \tilde{G}^{\mu\nu,a} + C_{BB} \frac{a}{f} \, B_{\mu\nu} \tilde{B}^{\mu\nu} + C_{WW} \frac{a}{f} \, W_{\mu\nu}^A \tilde{W}^{\mu\nu,A} \end{split}$$

⇒ effective Higgs-Fermion-Fermion-ALP vertex!

$$\hat{\mathbf{Y}}_{\boldsymbol{d}} = i(\mathbf{Y}_{\boldsymbol{d}} \, \boldsymbol{c}_d - \boldsymbol{c}_Q \, \mathbf{Y}_{\boldsymbol{d}}), \qquad C_{\text{GG}} = \frac{\alpha_s}{4\pi} \left[c_{\text{GG}} + \frac{1}{2} \text{Tr}(\boldsymbol{c}_d + \boldsymbol{c}_u - 2\boldsymbol{c}_Q) \right] \text{etc.}$$

ALP-SMEFT Interference

virtual ALP exchange induces UV-divergent one-loop graphs,

first studied in the case of $(g-2)_{\mu}$

[Marciano, Masiero, Paradisi, Passera (2016); Bauer, Neubert, Thamm (2017)]

~ 1/\epsilon

requires local dimension-6 operators as counterterms!

 \hookrightarrow generated **independently of the ALP-mass** at Λ !

ALP-SMEFT Interference

virtual ALP exchange induces UV-divergent one-loop graphs,

first studied in the case of $(g-2)_{\mu}$

[Marciano, Masiero, Paradisi, Passera (2016); Bauer, Neubert, Thamm (2017)]

~ 1/e

 \hookrightarrow generated independently of the ALP-mass at Λ !

basic idea: SM is the IR limit of the full theory. [Buchmüller, Wyler (1986)] → describe the UV theory in terms of higher dimensional SM operators

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \frac{1}{\Lambda} \mathcal{L}_5 + \frac{1}{\Lambda^2} \mathcal{L}_6 + \dots = \sum_{d} \frac{1}{\Lambda^{d-4}} \sum_{i=1}^{n_d} C_i^{(d)}(\mu) Q_i^{(d)}(\mu)$$

qR QL

basic idea: SM is the IR limit of the full theory. [Buchmüller, Wyler (1986)] → describe the UV theory in terms of higher dimensional SM operators

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \frac{1}{\Lambda} \mathcal{L}_{5} + \frac{1}{\Lambda^{2}} \mathcal{L}_{6} + \dots = \sum_{d} \frac{1}{\Lambda^{d-4}} \sum_{i=1}^{n_{d}} C_{i}^{(d)}(\mu) Q_{i}^{(d)}(\mu)$$

all possible Operators of dimension d

qR QL

basic idea: SM is the IR limit of the full theory. [Buchmüller, Wyler (1986)] → describe the UV theory in terms of higher dimensional SM operators

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \frac{1}{\Lambda} \mathcal{L}_{5} + \frac{1}{\Lambda^{2}} \mathcal{L}_{6} + \dots = \sum_{d} \frac{1}{\Lambda^{d-4}} \sum_{i=1}^{n_{d}} C_{i}^{(d)}(\mu) Q_{i}^{(d)}(\mu)$$
Wilson coefficients

qR QL

basic idea: SM is the IR limit of the full theory. [Buchmüller, Wyler (1986)] \hookrightarrow describe the UV theory in terms of higher dimensional SM operators

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \frac{1}{\Lambda} \mathcal{L}_5 + \frac{1}{\Lambda^2} \mathcal{L}_6 + \dots = \sum_{d} \frac{1}{\Lambda^{d-4}} \sum_{i=1}^{n_d} \frac{C_i^{(d)}(\mu)}{C_i^{(d)}(\mu)} Q_i^{(d)}(\mu)$$

a QL

5/37

Rectorization Scale μ is arbitrary! \hookrightarrow non-observable quantity

$$\frac{\mathrm{d}\mathcal{L}_{\mathrm{EFT}}}{\mathrm{d}\log\mu} = \frac{\mathrm{d}}{\mathrm{d}\log\mu} \sum_{d} \frac{1}{\Lambda^{d-4}} \sum_{i=1}^{n_d} C_i^{(d)}(\mu) Q_i^{(d)}(\mu) \stackrel{!}{=} \mathbf{0}$$

qn 🖉 QL

Factorization Scale μ is arbitrary! \hookrightarrow non-observable quantity

 $\frac{d\,C_i(\mu)}{d\log\mu}\,Q_i(\mu)\,+\,C_i(\mu)\,\frac{d\,Q_i(\mu)}{d\log\mu}\,=\,0$

RG Evolution Equation:

$$\frac{d\,C_i(\mu)}{d\log\mu}=\gamma_{ji}\,(\mu)\,C_j(\mu)$$

q_R $\stackrel{\phi}{\sim}$ Q_L

minimal dimension-6 basis: 59 operators

[Grzadkowski, Iskrzynski, Misiak, Rosiek (2010)]

	X^3	φ^6 and φ		$\varphi^4 D^2$		$\psi^2 \varphi$		$\psi^2 \varphi^3$]		
Q_G	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	Q_{φ}	($(\varphi^{\dagger}\varphi)^{3}$		$Q_{e\varphi}$		$(\varphi^{\dagger}\varphi)($	$\sigma^{\dagger} \varphi)(\bar{l}_p e_r \varphi)$			
$Q_{\widetilde{G}}$	$f^{ABC} \widetilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$	$Q_{\varphi \Box}$	$(\varphi^{\dagger}\varphi$	$(\varphi^{\dagger}\varphi)\Box(\varphi^{\dagger}\varphi)$		$Q_{u\varphi}$	($(\varphi^{\dagger}\varphi)(\bar{q}_{p}u_{r}\widetilde{\varphi})$				
Q_W	$\varepsilon^{IJK}W^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$	$Q_{\varphi D}$	$(\varphi^{\dagger}D^{\mu}\varphi)$	$\left arphi ight ^{\star} \left(arphi^{\dagger} D_{\mu} arphi ight) \; \right $		$Q_{d\varphi}$		$(\varphi^{\dagger}\varphi)($	$\bar{q}_p d_r \varphi)$			
$Q_{\widetilde{W}}$	$\varepsilon^{IJK}\widetilde{W}^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$			(<i>LL</i>)		$(\bar{L}L)$	L) $(\bar{R}R)(\bar{R}R)$)		$(\bar{L}L)(\bar{R}R)$	
	$X^2 \varphi^2$		$\psi^2 J$	$Q_{ll} \qquad (\bar{l}_p \gamma_\mu l_r) (\bar{l}_s \gamma^\mu l_t)$		$_{\mu}l_{r})(\bar{l}_{s}\gamma^{\mu}l_{t})$ Q_{ee} $(\bar{e}_{p}\gamma_{\mu}e_{r})$		$\bar{e}_s \gamma^{\mu} e_t$)	Q_{le}	$(\bar{l}_p \gamma_\mu l_r)(\bar{e}_s \gamma^\mu e_t)$		
0.0	$(a^{\dagger} (a G^A G^{A \mu \nu}))$	0.11	(\bar{l},σ^{μ})	$Q_{qq}^{(1)}$	$(\bar{q}_p \gamma_p)$	$(\bar{q}_s \gamma^{\mu})(\bar{q}_s \gamma^{\mu})$	q_t)	Q_{uu}	$(\bar{u}_p \gamma_\mu u_r)($	$\bar{u}_s \gamma^{\mu} u_t$)	Q_{lu}	$(l_p \gamma_\mu l_r)(\bar{u}_s \gamma^\mu u_t)$
¢φG	$\varphi \varphi G_{\mu\nu}G$	Sew	(****	$Q_{qq}^{(3)}$	$(\bar{q}_p \gamma_\mu \tau)$	$(q_r)(\bar{q}_s\gamma^{\mu})$	$\tau^{I}q_{t}$)	Q_{dd}	$(d_p \gamma_\mu d_r)($	$d_s \gamma^{\mu} d_t)$	Q_{ld}	$(l_p \gamma_\mu l_r)(d_s \gamma^\mu d_t)$
$Q_{arphi \widetilde{G}}$	$\varphi^{\intercal}\varphi G^{A}_{\mu u}G^{A\mu u}$	Q_{eB}	$(l_p\sigma)$	$Q_{lq}^{(1)}$	$(\bar{l}_p \gamma_p$	$(\bar{q}_s \gamma^{\mu} q_s)$	q_t)	Q_{eu}	$(\bar{e}_p \gamma_\mu e_r)(r)$	$\bar{u}_s \gamma^{\mu} u_t)$	Q_{qe}	$(\bar{q}_p \gamma_\mu q_r)(\bar{e}_s \gamma^\mu e_t)$
$Q_{\varphi W}$	$\varphi^{\dagger}\varphiW^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uG}	$(\bar{q}_p \sigma^{\mu\nu})$	$Q_{lq}^{(3)}$	$(\bar{l}_p \gamma_\mu \tau)$	$(\bar{q}_s\gamma^\mu)$	$\tau^{I}q_{t}$	Q_{ed}	$(\bar{e}_p \gamma_\mu e_r)(e_p \gamma_\mu e_r)$	$\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{u}_s \gamma^\mu u_t)$
$Q_{\varphi \widetilde{W}}$	$\varphi^{\dagger} \varphi \widetilde{W}^{I}_{\mu \nu} W^{I \mu \nu}$	Q_{uW}	$(\bar{q}_p \sigma^{\mu \nu})$					$Q_{ud}^{(1)}$	$(\bar{u}_p \gamma_\mu u_r)($	$\bar{d}_s \gamma^{\mu} d_t)$	$Q_{qu}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{u}_s \gamma^\mu T^A u_t)$
$Q_{\varphi B}$	$\varphi^{\dagger}\varphiB_{\mu u}B^{\mu u}$	Q_{uB}	$(\bar{q}_p \sigma')$					$Q_{ud}^{(8)}$	$(\bar{u}_p \gamma_\mu T^A u_r)($	$\bar{d}_s \gamma^\mu T^A d_t)$	$Q_{qd}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{d}_s \gamma^\mu d_t)$
$Q_{\alpha\widetilde{B}}$	$\varphi^{\dagger}\varphi \widetilde{B}_{\mu\nu}B^{\mu\nu}$	Q_{dG}	$(\bar{q}_p \sigma^{\mu\nu})$								$Q_{qd}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (d_s \gamma^\mu T^A d_t)$
0	AT THE WI DWY	0	(= -m	$(\bar{L}R)(\bar{R}L)$ and		d(LR)(I	LR)			B-viol	ating	
$Q_{\varphi WB}$	$\varphi^{\mu} \varphi^{\nu} \varphi^{\mu} W_{\mu\nu} D^{\mu\nu}$	Q_{dW}	$(q_p o^{-r})$	Q_{ledq} (\bar{l}_p^j)		$(\bar{d}_s q_t^j)$		Q_{duq}	ε	$e^{\alpha\beta\gamma}\varepsilon_{jk}\left[\left(d_{p}^{\alpha}\right)\right]$	$^{T}Cu_{r}^{\beta}$	$\left[(q_s^{\gamma j})^T C l_t^k\right]$
$Q_{\varphi \widetilde{W}B}$	$\varphi^{\dagger} \tau^{I} \varphi W^{I}_{\mu\nu} B^{\mu\nu}$	Q_{dB}	$(\bar{q}_p \sigma')$	$Q_{quqd}^{(1)}$	$(1)_{quqd}$ $(\bar{q}_p^j u_r) \varepsilon_{jk} (\bar{q}_s^k d_t)$		l_t)	Q_{qqu}	ε	$^{\alpha\beta\gamma}\varepsilon_{jk}\left[\left(q_{p}^{\alpha j}\right)\right]$	$^{T}Cq_{r}^{\beta k}$	$\left[(u_s^{\gamma})^T C e_t \right]$
				$Q_{quqd}^{(8)}$	$(\bar{q}_p^j T^A u$	$(\bar{q}_s^k) \varepsilon_{jk} (\bar{q}_s^k)$	$\Gamma^A d_t$)	Q_{qqq}	$\varepsilon^{\alpha\beta}$	$\varepsilon_{jn}\varepsilon_{km}\left[\left(q_p^{\alpha}\right)\right]$	$^{j})^{T}Cq_{r}^{\beta}$	$^{Bk}][(q_s^{\gamma m})^T C l_t^n]$
				$Q_{lequ}^{(1)}$	$(\bar{l}_p^j e$	$_{r})\varepsilon_{jk}(\bar{q}_{s}^{k}u)$	t)	Q_{duu}		$\varepsilon^{\alpha\beta\gamma}\left[(d_p^\alpha)^T\right.$	Cu_r^{β}	$[(u_s^{\gamma})^T Ce_t]$
				$Q_{lequ}^{(3)}$	$(\bar{l}_p^j \sigma_{\mu\nu} e_j)$	$r)\varepsilon_{jk}(\bar{q}_s^k\sigma)$	$^{\mu\nu}u_t)$					

ALP-SMEFT Interference

consistent treatment of the $1/\epsilon$ poles: embedding of the ALP model in SMEFT via

$$\mathcal{L}_{\rm eff} = \mathcal{L}_{\rm SM} + \mathcal{L}_{\rm ALP} + \mathcal{L}_{\rm SMEFT}$$

ALP contributes source terms to the D = 6 SMEFT Wilson coefficients

$$\frac{d}{d \ln \mu} C_i^{\text{SMEFT}} - \gamma_{ji}^{\text{SMEFT}} C_j^{\text{SMEFT}} = \frac{S_i}{(4\pi f)^2} \quad \text{for } \mu < 4\pi f$$

[AG, Neubert, Renner: 2105.01078]

 \hookrightarrow SMEFT Wilson coefficients are generated at the scale $\Lambda = 4\pi f$ independent of the ALP mass!

Anne Galda (JGU Mainz)

Theorie Palaver

qr QL

qr QL

Consider a redundant basis of D = 6 SM-operators.

Three different classes of operators:

blue: operator NOT present in Warsaw basis

qr QL

Theorie Palaver

Some example diagrams ...

qn 🖉 QL

Some example diagrams ...

q_R Q_L

q_R Q_L

 Single fermion current

 $\psi^2 X D$
 $\psi^2 D^3$
 $\psi^2 H^3$
 $\psi^2 H^2 D$
 $\psi^2 H D^2$

q_R Q_L

 Single fermion current

 $\psi^2 X D$
 $\psi^2 D^3$
 $\psi^2 X H$
 $\psi^2 H^3$
 $\psi^2 H^2 D$
 $\psi^2 H D^2$

qn 🖞 🔍

4-fermion operators

 $(\bar{L}L)(\bar{L}L)$ $(\bar{R}R)(\bar{R}R)$ $(\bar{L}L)(\bar{R}R)$ $(\bar{L}R)(\bar{R}L)$ $(\bar{L}R)(\bar{L}R)$ B-violating

Example: Classes X^3 and $X^2 D^2$

Anne Galda (JGU Mainz)

Theorie Palaver

Example: Classes X^3 and $X^2 D^2$

Anne Galda (JGU Mainz)

Theorie Palaver

What about
$$\ \widehat{Q}_{G,1} = \left(D_
ho G_{\mu
u}
ight)^a \left(D^
ho G^{\mu
u}
ight)^a$$
 ?

related via the **Bianchi identity** $D_{\alpha} G_{\beta\gamma} + D_{\gamma} G_{\alpha\beta} + D_{\beta} G_{\gamma\alpha} = 0$ to the Weinberg- and the $\hat{Q}_{G,2}$ -operator via

$$2g_sQ_G+\widehat{Q}_{G,1}-2\widehat{Q}_{G,2}=0$$
 .

qr QL

Theorie Palaver

$$\mathcal{A}(gg(g)) = -\frac{1}{\Lambda^2} \frac{C_{GG}^2}{\epsilon} \left[4 g_s \langle Q_G \rangle + \frac{4}{3} \langle \hat{Q}_{G,2} \rangle - 2 m_a^2 \langle G_{\mu\nu}^a G^{\mu\nu,a} \rangle \right] + \text{finite}$$

To cancel the $1/\epsilon$ terms, the bare Wilson coefficients must contain

$$C_{G,0}
i rac{4g_s}{(4\pi f)^2} C_{GG}^2 \left(rac{1}{\epsilon} + \ln rac{\mu^2}{M^2} + \dots
ight)$$

M: characteristic mass scale of the UV theory

 $\ln\mu^2$: generic for one-loop diagrams in dimensional regularization

Thus, after removing the pole: $\frac{d}{d \ln \mu} C_G(\mu) \ni \frac{8g_s}{(4\pi f)^2} C_{GG}^2$

$$\frac{d}{d \ln \mu} C_i^{\text{SMEFT}} - \gamma_{ji}^{\text{SMEFT}} C_j^{\text{SMEFT}} = \frac{S_i}{(4\pi f)^2} \quad \text{for } \mu < 4\pi f$$

$$\implies$$
 $S_G = 8g_s C_{GG}^2$

$$\mathcal{A}(gg(g)) = -\frac{1}{\Lambda^2} \frac{C_{GG}^2}{\epsilon} \left[4 g_s \langle Q_G \rangle + \frac{4}{3} \langle \hat{Q}_{G,2} \rangle - 2 m_a^2 \langle G_{\mu\nu}^a G^{\mu\nu,a} \rangle \right] + \text{finite}$$

To cancel the $1/\epsilon$ terms, the bare Wilson coefficients must contain

$$C_{G,0}
i rac{4g_s}{(4\pi f)^2} C_{GG}^2 \left(rac{1}{\epsilon} + \ln rac{\mu^2}{M^2} + \dots
ight)$$

M: characteristic mass scale of the UV theory

 $\ln\mu^2$: generic for one-loop diagrams in dimensional regularization

Thus, after removing the pole: $\frac{d}{d \ln \mu} C_G(\mu) \ni \frac{8g_s}{(4\pi f)^2} C_{GG}^2$

$$\frac{d}{d \ln \mu} C_i^{\text{SMEFT}} - \gamma_{ji}^{\text{SMEFT}} C_j^{\text{SMEFT}} = \frac{S_i}{(4\pi f)^2} \quad \text{for } \mu < 4\pi f$$

$$\implies$$
 $S_G = 8g_s C_{GG}^2$

Anne Galda (JGU Mainz)

qr QL

Theorie Palaver

Example:
$$\widehat{Q}_{G,2} = (D^{\rho}G_{\rho\mu})^a (D_{\omega}G^{\omega\mu})^a$$

need the SM equation of motion

$$D_{\rho} \, G^{\rho\mu,a} = - \, g_s \, (\bar{Q}_L \, \gamma^\mu \, t^a \, Q_L + \bar{u}_R \, \gamma^\mu \, t^a \, u_R + \bar{d}_R \, \gamma^\mu \, t^a \, d_R)$$

ан 🖉 Ос

$$\begin{split} \hat{Q}_{G,2} &= g_s^2 \left(\bar{Q}_L \gamma^{\mu} t^a \, Q_L + \bar{u}_R \gamma^{\mu} t^a \, u_R + \bar{d}_R \gamma^{\mu} t^a \, d_R \right)^2 \\ &= g_s^2 \left[\frac{1}{4} \left(\left[Q_{qq}^{(1)} \right]_{prrp} + \left[Q_{qq}^{(3)} \right]_{prrp} \right) - \frac{1}{2N_c} \left[Q_{qq}^{(1)} \right]_{pprr} + \frac{1}{2} \left[Q_{uu} \right]_{prrp} - \frac{1}{2N_c} \left[Q_{uu} \right]_{pprr} \right. \\ &+ \frac{1}{2} \left[Q_{dd} \right]_{prrp} - \frac{1}{2N_c} \left[Q_{dd} \right]_{pprr} + 2 \left[Q_{qu}^{(8)} \right]_{pprr} + 2 \left[Q_{ud}^{(8)} \right]_{pprr} + 2 \left[Q_{ud}^{(8)} \right]_{pprr} \right] \end{split}$$

Contribution to purely fermionic operators!

Anne Galda (JGU Mainz)

Theorie Palaver

January 18, 2022

man mann

Transformation to the Warsaw Basis

Operator class	Warsaw basis	Way of	generation				
Purely bosonic				Single fermion current			
X^3	yes	direct	—	$\psi^2 X D$	no	—	
X^2D^2	no	direct		$\psi^2 D^3$	no	_	
X^2H^2	yes	direct	_	$\psi^2 X H$	ves	direct	_
XH^2D^2	no			 a/-2 U 3	J	direct	FOM
H^{6}	yes	_	EOM	ψ 11	yes	unect	EOM
H^4D^2	yes		EOM	$\psi^2 H^2 D$	yes	direct	EOM
H^2D^4	no	—		$\psi^2 H D^2$	no	—	

4-fermion operators			
$(\bar{L}L)(\bar{L}L)$	yes	_	EOM
$(\bar{R}R)(\bar{R}R)$	yes	_	EOM
$(\bar{L}L)(\bar{R}R)$	yes	direct	EOM
$(\bar{L}R)(\bar{R}L)$	yes	direct	
$(\bar{L}R)(\bar{L}R)$	yes	direct	—
B-violating	yes	_	

Anne Galda (JGU I	Mainz)
--------------	-------	--------

ALP-SMEFT Interference

	Operator Q	Source Term D
Q_G	$g_3 f^{abc} G^{\nu,a}_{\mu} G^{\rho,b}_{\nu} G^{\mu,c}_{\rho}$	$8\left(\alpha_s \frac{\lambda_{GR}}{\delta \pi}\right)^2$
$Q_{\hat{G}}$	$g_3 f^{abc} \tilde{G}^{\nu,a}_{\mu} G^{\rho,b}_{\nu} G^{\mu,c}_{\rho}$	0
Q_W	$g_2\epsilon^{IJK}W_{\mu}^{\ \nu,I}W_{\nu}^{\ \rho,J}W_{\rho}^{\ \mu,K}$	$8 \left(\alpha_2 \frac{\alpha_{WW}}{6\pi} \right)^2$
Q_W	$g_2 \epsilon^{IJK} \tilde{W}^{\nu,I}_{\mu} W^{\rho,J}_{\nu} W^{\mu,K}_{\rho}$	0
Q _{¢G}	$g_3^* \phi^\dagger \phi G_{\mu\nu}^* G^{\mu\nu,0}$	0
Que	$a_{i}^{2} \phi^{\dagger} \phi W^{I} W^{\mu\nu,I}$	$-2\left(\alpha_{2}\frac{\partial \mu_{R}}{\partial \mu_{R}}\right)^{2}$
Qui	97 01 0 W1 W100.1	- (4#) 0
Qoll	$g_1^2 \phi^{\dagger} \phi B_{\mu\nu} B^{\mu\nu}$	$-2\left(\alpha_1 \frac{d_{HB}}{d_{H}}\right)^2$
$Q_{o\bar{H}}$	$g_1^2 \phi^{\dagger} \phi \tilde{B}_{\mu\nu} B^{\mu\nu}$	0
$Q_{\phi WB}$	$g_1g_2 \phi^{\dagger} \sigma^I \phi W^I_{\mu\nu} B^{\mu\nu}$	$-4\left(\alpha_2 \frac{z_{WW}}{4\pi}\right)\left(\alpha_1 \frac{z_{DR}}{4\pi}\right)$
$Q_{g\bar{W}B}$	$g_1g_2 \phi^{\dagger} \sigma^I \phi \bar{W}^I_{\mu\nu} B^{\mu\nu}$	0
$Q_{\phi \Box}$	$(\phi^{\dagger}\phi)\Box(\phi^{\dagger}\phi)$	$g_{1}^{2} \frac{8}{3} \mathcal{Y}_{\phi}^{2} \left(\alpha_{1} \frac{z_{BB}}{4\pi} \right)^{d} + 2 g_{2}^{2} \left(\alpha_{2} \frac{z_{WW}}{4\pi} \right)^{d}$
0.n	$(\phi^{\dagger}D_{-}\phi)^{*}(\phi^{\dagger}D^{\mu}\phi)$	$a^2 \gg V^2 (\alpha, \delta m)^2$
	Operator Q	Source Term D
Q_{eW}	$g_2 (\tilde{L}^i_L \sigma^{\mu\nu} e^j_R) \tau^I \phi W^I_{\mu\nu}$	$-2i \left[\hat{Y}_{e}\right]^{ij} \left(\alpha_{2} \frac{\tilde{\alpha}_{EW}}{4\pi}\right)$
Q_{eB}_{ij}	$g_1(\bar{L}^i_L\sigma^{\mu\nu}e^j_R)\phiB_{\mu\nu}$	$-2i(\mathcal{Y}_L + \mathcal{Y}_e)[\hat{\mathbf{Y}}_e]^{ij}\left(\alpha_1 \frac{\hat{\epsilon}_{BR}}{4\pi}\right)$
Q_{uG}	$g_3 (\tilde{Q}^i_L \sigma^{\mu\nu} t^s u^j_R) \tilde{\phi} G^0_{\mu\nu}$	$-4i \left[\hat{Y}_{u}\right]^{ij} \left(\alpha_{s} \frac{\delta_{OO}}{4\pi}\right)$
Q_{uW}	$g_2 \left(\bar{Q}^i_L \sigma^{\mu\nu} u^j_R \right) \tau^I \bar{\phi} W^I_{\mu\nu}$	$-2i \left[\hat{Y}_{u}\right]^{ij} \left(\alpha_{2} \frac{\delta_{WW}}{4\pi}\right)$
Q_{uB}	$g_1 (\bar{Q}_L^i \sigma^{\mu\nu} u_R^j) \tilde{\phi} B_{\mu\nu}$	$-2i(\mathcal{Y}_Q + \mathcal{Y}_u)[\hat{\mathbf{Y}}_u]^{ij}\left(\alpha_1 \frac{\delta_{BB}}{4\pi}\right)$
Q_{47}	$g_3 (\bar{Q}^i_L \sigma^{\mu\nu} t^a d^j_R) \phi G^a_{\mu\nu}$	$-4i \left[\hat{Y}_{d} \right]^{ij} \left(\alpha_{s} \frac{daa}{4\pi} \right)$
Qay	$g_2 (\bar{Q}_L^i \sigma^{\mu\nu} d_R^j) \tau^I \phi W^I_{\mu\nu}$	$-2i [\hat{Y}_d]^{ij} \left(\alpha_2 \frac{\hat{\alpha}_{WW}}{4\pi} \right)$
Q_{dB}_{11}	$g_1 (\bar{Q}_L^i \sigma^{\mu\nu} d_R^j) \phi B_{\mu\nu}$	$-2i(\mathcal{Y}_Q + \mathcal{Y}_d)[\hat{Y}_d]^{ij}\left(\alpha_1 \frac{\tilde{\epsilon}_{Q,R}}{4\pi}\right)$
Qes	$(\phi^{\dagger}\phi) (\tilde{L}_{L}^{i}e_{R}^{j}\phi)$	$-2[\hat{\mathbf{Y}}_{s}^{-}\hat{\mathbf{Y}}_{s}^{\dagger}\hat{\mathbf{Y}}_{s}^{\dagger}]^{ij} - \frac{1}{2}[\hat{\mathbf{Y}}_{s}^{-}\hat{\mathbf{Y}}_{s}^{\dagger}\mathbf{Y}_{s}^{\dagger}]^{ij} - \frac{1}{2}[\mathbf{Y}_{s}^{-}\hat{\mathbf{Y}}_{s}^{\dagger}\hat{\mathbf{Y}}_{s}^{\dagger}]^{ij} + \frac{4}{3}g_{2}^{2}\left(\alpha_{2}\frac{\delta g_{2}}{\delta x}\right)^{2}[\mathbf{Y}_{s}]^{ij}$
$Q_{u\phi}_{ij}$	$(\phi^{\dagger}\phi) (\bar{Q}_{L}^{i}u_{R}^{j}\bar{\phi})$	$-2[\hat{Y}_{u}Y_{u}^{\dagger}\hat{Y}_{u}]^{ij} - \frac{1}{2}[\hat{Y}_{u}\hat{Y}_{u}^{\dagger}Y_{u}]^{ij} - \frac{1}{2}[Y_{u}\hat{Y}_{u}^{\dagger}\hat{Y}_{u}]^{ij} + \frac{1}{2}g_{2}^{2}\left(\alpha_{2}\frac{4g_{2}}{4g}\right)^{2}[Y_{u}]^{ij}$
Q_{ds}	$(\phi^{\dagger}\phi) (\bar{Q}_{L}^{i}d_{R}^{j}\phi)$	$-2 \left[\hat{Y}_{d} \left[\hat{Y}_{d}^{\dagger} \left[\hat{Y}_{d} \right]^{(j)} - \frac{1}{2} \left[\hat{Y}_{d} \left[\hat{Y}_{d}^{\dagger} \right] Y_{d} \right]^{(j)} - \frac{1}{2} \left[Y_{d} \left[\hat{Y}_{d}^{\dagger} \left[\hat{Y}_{d} \right]^{(j)} + \frac{4}{3} g_{2}^{2} \left(\alpha_{2} \frac{\delta_{BB}}{\delta_{d}} \right)^{2} \left[Y_{d} \right]^{(j)} \right]$
$Q_{\phi L}^{(1)}$	$(\phi^{\dagger}i\overleftrightarrow{D}_{\mu}\phi)(L_{L}^{i}\gamma^{\mu}L_{L}^{j})$	$\frac{1}{4} \left[\hat{\mathbf{Y}}_{c} \hat{\mathbf{Y}}_{c}^{\dagger} \right]^{ij} + \frac{16}{3} g_{1}^{2} \mathcal{Y}_{\phi} \mathcal{Y}_{L} \left(\alpha_{1} \frac{\bar{c}_{BR}}{4\pi} \right)^{2} \delta_{ij}$
$Q_{\phi L}^{(3)}$	$(\phi^{\dagger}i\overleftrightarrow{D}^{I}_{\mu}\phi)(\bar{L}^{i}_{L}\sigma^{I}\gamma^{\mu}L^{j}_{L})$) $\frac{1}{4} [\hat{\mathbf{Y}}_e \hat{\mathbf{Y}}_e^{\dagger}]^{ij} + \frac{4}{3} g_2^2 \left(\frac{z_{WW}}{4\pi}\right)^2 \delta_{ij}$
$Q_{\uparrow\uparrow}$	$(\phi^{\dagger}i\overleftrightarrow{D}_{\mu}\phi)(\bar{e}^{i}_{R}\gamma^{\mu}e^{j}_{R})$	$-\frac{1}{2}\left[\hat{\mathbf{Y}}_{e}^{\dagger}\hat{\mathbf{Y}}_{e}\right]^{ij}+\frac{16}{3}g_{1}^{2}\mathcal{Y}_{e}\mathcal{Y}_{\phi}\left(\alpha_{1}\frac{\varepsilon_{BB}}{4\pi}\right)^{2}\delta_{ij}$
$Q_{\phi Q}^{(1)}$	$(\phi^{\dagger}i\overleftrightarrow{D}_{\mu}\phi)(\ddot{Q}_{L}^{i}\gamma^{\mu}Q_{L}^{j})$	$\frac{1}{4} [\hat{Y}_{d} \hat{Y}_{d}^{\dagger}]^{ij} - \frac{1}{4} [\hat{Y}_{u} \hat{Y}_{u}^{\dagger}]^{ij} + \frac{16}{3} \mathcal{Y}_{\phi} \mathcal{Y}_{Q} g_{1}^{2} \delta_{ij} \left(\alpha_{1} \frac{z_{BR}}{4\pi} \right)^{2}$
$Q_{\phi Q}^{(3)}$	$(\phi^{\dagger}i\overleftrightarrow{D}^{I}_{\mu}\phi)(\ddot{Q}^{i}_{L}\sigma^{I}\gamma^{\mu}Q^{j}_{L}$) $\frac{1}{4} [\hat{Y}_d \hat{Y}_d^{\dagger}]^{ij} + \frac{1}{4} [\hat{Y}_u \hat{Y}_u^{\dagger}]^{ij} + \frac{4}{3} g_2^2 \delta_{ij} \left(\alpha_2 \frac{z_{min}}{4\pi} \right)^2$
$Q_{\phi a}_{ii} = (\phi^{\dagger}i\overleftrightarrow{D}_{\mu}\phi)(\bar{u}_{R}^{i}\gamma^{\mu}u_{R}^{j})$		$\frac{1}{2} \left[\hat{Y}_{u}^{\dagger} \hat{Y}_{u} \right]^{ij} + \frac{16}{3} g_{1}^{2} \mathcal{Y}_{\phi} \mathcal{Y}_{u} \delta_{ij} \left(\alpha_{1} \frac{\delta_{BE}}{4\pi} \right)^{2}$
Q _{od}	$(\phi^{\dagger}i\overleftrightarrow{D}_{\mu}\phi)(\bar{d}_{R}^{i}\gamma^{\mu}d_{R}^{j})$	$-\frac{1}{2} [\hat{Y}_{d}^{\dagger} \hat{Y}_{d}]^{ij} + \frac{16}{3} g_{1}^{2} \mathcal{Y}_{\theta} \mathcal{Y}_{u} \delta_{ij} \left(\alpha_{1} \frac{\xi_{BR}}{4\pi} \right)^{2}$
$Q_{++} + h$	c. $i(\hat{\sigma}^{\dagger}D_{\alpha}\hat{\sigma})(\hat{u}_{\alpha}^{\dagger}\gamma^{\mu}d_{\alpha}^{\prime})$	$- \hat{Y}_{i}^{\dagger}\hat{Y}_{i} ^{ij}$

	Operator Q		Source Term D
$Q_{\substack{LL}{ijkl}}$	$(\bar{L}^i_L\gamma_\mu L^j_L)(\bar{L}^k_L\gamma^\mu L^l_L)$	$\frac{8}{3}g_1^2 \mathcal{Y}_L^2$	$\left(\alpha_1 \frac{\delta_{BR}}{4\pi}\right)^2 \delta_{ij}\delta_{kl} + \frac{2}{3}g_2^2 \left(\alpha_2 \frac{\delta_{BR}}{4\pi}\right)^2 \left(2\delta_{il}\delta_{jk} - \delta_{ij}\delta_{kl}\right)$
$Q_{QQ}^{(1)}$	$(\bar{Q}^i_L \gamma_\mu Q^j_L) (\bar{Q}^k_L \gamma^\mu Q^l_L)$	$\frac{8}{3}g_1^2 \mathcal{Y}_Q^2$	$\left(\frac{\delta_{BR}}{4\pi}\right)^2 \delta_{ij}\delta_{kl} + \frac{2}{3}g_5^2 \left(\alpha_s \frac{\delta_{DG}}{4\pi}\right)^2 \left(\delta_{il}\delta_{jk} - \frac{2}{N_c}\delta_{ij}\delta_{kl}\right)$
$Q_{QQ}^{(3)}$	$(\bar{Q}^i_L\gamma_\mu\sigma^IQ^j_L)(\bar{Q}^k_L\gamma^\mu\sigma^IQ^j_L)$	(L) ² / ₃	$g_3^2 \left(\alpha_s \frac{\xi_{GSZ}}{4\pi}\right)^2 \delta_{kl} \delta_{jk} + \frac{2}{3} g_d^2 \delta_{ij} \delta_{kl} \left(\alpha_2 \frac{\xi_{GSZ}}{4\pi}\right)^2$
$Q_{LQ}^{(1)}$	$(\bar{L}^i_L\gamma_\mu L^j_L)(\bar{Q}^k_L\gamma^\mu Q^l_L)$		$\frac{16}{3}g_1^2 \mathcal{Y}_Q \mathcal{Y}_L \delta_{ij} \delta_{kl} \left(\alpha_1 \frac{\tilde{\epsilon}_{RR}}{4\pi}\right)^2$
$Q_{LQ}^{(3)}$	$(\bar{L}^i_L\gamma_\mu\sigma^IL^j_L)(\bar{Q}^k_L\gamma^\mu\sigma^IQ$	5	$\frac{4}{3}g_2^2 \delta_{ij}\delta_{kl} \left(\alpha_2 \frac{d_{WW}}{4\pi}\right)^2$
Q_{ijkl}	$(\tilde{e}_R^i \gamma_\mu e_R^j) (\tilde{e}_R^k \gamma^\mu e_R^l)$		$\frac{8}{3}g_1^2 \mathcal{Y}_e^2 \delta_{ij}\delta_{kl} \left(\alpha_1 \frac{\xi_{BB}}{4\pi}\right)^2$
Q_{ijkl}	$(\bar{u}_R^i \gamma_\mu u_R^j) (\bar{u}_R^k \gamma^\mu u_R^l)$	${}^8_{3}g^2_1\mathcal{Y}^2_u\delta$	$_{ij}\delta_{kl}\left(\frac{\delta_{kR}}{4\pi}\right)^2 + \frac{4}{3}g_3^2\left(\delta_{kl}\delta_{jk} - \frac{1}{N_c}\delta_{ij}\delta_{kl}\right)\left(\alpha_s\frac{\delta_{GG}}{4\pi}\right)^2$
Q_{dd}_{ijkl}	$\left(\bar{d}_R^i \gamma_\mu d_R^j \right) \left(\bar{d}_R^k \gamma^\mu d_R^l \right)$	${}^8_3 g_1^2 \mathcal{Y}_d^2 \delta$	$_{ij}\delta_{kl}\left(\frac{\delta_{dlk}}{4\pi}\right)^2 + \frac{4}{3}g_3^2\left(\delta_{kl}\delta_{jk} - \frac{1}{N_c}\delta_{ij}\delta_{kl}\right)\left(\alpha_s\frac{\delta_{cll}}{4\pi}\right)^2$
Q_{ijkl}	$(\bar{e}_R^i \gamma_\mu e_R^j) (\bar{u}_R^k \gamma^\mu u_R^l)$		$\frac{16}{3}g_1^2 \mathcal{Y}_e \mathcal{Y}_u \delta_{ij}\delta_{kl} \left(\alpha_1 \frac{\hat{c}_{BR}}{4\pi}\right)^2$
Q_{st}	$(\vec{e}_R^i \gamma_\mu e_R^j) (\vec{d}_R^k \gamma^\mu d_R^l)$		$\frac{16}{3}g_1^2 \mathcal{Y}_e \mathcal{Y}_d \delta_{ij}\delta_{kl} \left(\alpha_1 \frac{ig_{RR}}{4\pi}\right)^2$
$Q_{ud}^{(1)}$	$(\bar{u}^i_R\gamma_\mu u^j_R)(\bar{d}^k_R\gamma^\mu d^l_R)$		$\frac{16}{3}g_1^2 \mathcal{Y}_u \mathcal{Y}_d \delta_{ij}\delta_{kl} \left(\alpha_1 \frac{\delta_{BR}}{4\pi}\right)^2$
$Q^{(8)}_{ijkl}$	$\left(\bar{u}^i_R\gamma_\mut^a u^j_R\right)\left(\bar{d}^b_R\gamma^\mut^ad^l_R$)	$\frac{16}{3}g_3^2 \delta_{ij}\delta_{kl} \left(\alpha_s \frac{\delta_{GG}}{4\pi}\right)^2$
$Q_{\frac{1}{12}de}$	$(L_L^i \gamma_\mu L_L^j) (\bar{e}_R^k \gamma^\mu e_R^l)$	ΓŶ,	$[a_{l}^{\dagger}]^{il} [\hat{Y}_{e}^{\dagger}]^{kj} + \frac{16}{3} g_{1}^{2} \mathcal{Y}_{L} \mathcal{Y}_{e} \delta_{ij} \delta_{kl} \left(\alpha_{1} \frac{\hat{c}_{mn}}{4\pi} \right)^{2}$
$Q_{L_{R}}$	$(\tilde{L}^i_L\gamma_\mu L^j_L)(\bar{u}^k_R\gamma^\mu u^l_R)$		$\frac{16}{3}g_1^2 \mathcal{Y}_L \mathcal{Y}_u \delta_{ij}\delta_{kl} \left(\alpha_1 \frac{z_{RR}}{4\pi}\right)^2$
$Q_{L_{ijk}^{A}}$	$(\bar{L}^i_L\gamma_\mu L^j_L)(\bar{d}^k_R\gamma^\mu d^l_R)$		$\frac{16}{3}g_1^2 \mathcal{Y}_L \mathcal{Y}_d \delta_{ij}\delta_{kl} \left(\alpha_1 \frac{\tilde{\epsilon}_{BB}}{4\pi}\right)^2$
Q_{Qe}_{ijkl}	$(\bar{Q}^i_L \gamma_\mu Q^j_L) (\bar{e}^k_R \gamma^\mu e^l_R)$		$\frac{16}{3}g_1^2 \mathcal{Y}_Q \mathcal{Y}_c \delta_{ij}\delta_{kl} \left(\alpha_1 \frac{\bar{c}_{RR}}{4\pi}\right)^2$
$Q_{Q_{W}}^{(1)}$	$(\bar{Q}^i_L\gamma_\mu Q^j_L)(\bar{u}^k_R\gamma^\mu u^l_R)$	$\frac{1}{N_c}$	\hat{Y}_{u} ⁱⁱ $[\hat{Y}_{u}^{\dagger}]^{kj} + \frac{16}{3} g_{1}^{2} \mathcal{Y}_{u} \mathcal{Y}_{Q} \delta_{ij} \delta_{kt} \left(\alpha_{1} \frac{\bar{\epsilon}_{RR}}{4\pi}\right)^{2}$
$Q_{Q_{N}}^{(8)}$	$(\tilde{Q}^i_L \gamma_\mu t^a Q^j_L) (\tilde{u}^k_R \gamma^\mu t^a u^j_L)$	0 :	$2[\hat{Y}_u]^{il}[\hat{Y}_u^{\dagger}]^{kj} + \frac{16}{3}g_3^2 \delta_{ij}\delta_{kl} \left(\alpha_s \frac{\varepsilon_{max}}{4\pi}\right)^2$
$Q^{(1)}_{Qd}$	$(\bar{Q}^i_L \gamma_\mu Q^j_L) (\bar{d}^i_R \gamma^\mu d^i_R)$	*	
$Q_{Qu}^{(8)}_{ijkl}$	$(\bar{Q}^i_L \gamma_\mu t^a Q^j_L) (\bar{d}^k_R \gamma^\mu t^a d^l_R)$	ð	Nearly the
			1 A /
0	perator Q	Source Te	warsaw ba
(\bar{L}_{L}^{i})	e_R^j) $(\bar{d}_R^k Q_L^l)$	$-2 [\hat{Y}_{c}]^{ij}$	
$(\bar{Q}_L^{i,m} u$	$_{R}^{j}$) $\epsilon_{mn}(\bar{Q}_{L}^{k,n} d_{R}^{l})$	$-2[\hat{\pmb{Y}}_{\!\!u}]^{ij}$	sourced by
$(\bar{Q}_L^{i,m} t^a u)$	${}^{j}_{R}$) $\epsilon_{mn} (\bar{Q}_{L}^{k,n} t^{a} d_{R}^{l})$	0	at one-loo

the whole v basis is d by the ALP loop order!

Anne Galda (JGU Mainz)

 $(\bar{L}_L^{i,m}\,e_R^j)\,\epsilon_{mn}\,(\bar{Q}_L^{k,n}\,u_R^l)$

 $(\bar{L}_{L}^{i,m}\sigma_{\mu\nu} e_{R}^{j}) \epsilon_{mn} (\bar{Q}_{L}^{k,n}\sigma^{\mu\nu} u_{R}^{l})$

 $2\,[\hat{\pmb{Y}}_{c}]^{ij}\,[1]$

0

Contributions to the β -Functions

$$\mathcal{A}(gg(g)) = -\frac{C_{GG}^2}{\epsilon} \left[4g_s \langle Q_G \rangle + \frac{4}{3} \langle \widehat{Q}_{G,2} \rangle - \underbrace{m_a^2} G^a_{\mu\nu} G^{\mu\nu,a} \rangle \right] + \text{finite}$$

 \hookrightarrow divergent terms contribute to the Z-factors $G^{a}_{\mu,0} = Z^{1/2}_{G} G^{a}_{\mu}$

$$\delta Z_G = \frac{8m_a^2}{(4\pi f)^2} \frac{C_{GG}^2}{\epsilon} \qquad \text{ enters in } \qquad \alpha_{s,0} = \mu^{2\epsilon} Z_{\alpha_s} \alpha_s$$
$$Z_{\alpha_s} = Z_{\bar{q}qg}^2 Z_q^{-2} Z_G^{-1}$$

with
$$\frac{\mathrm{d}\alpha_s}{\mathrm{d}\ln\mu} \equiv -2\alpha_s\beta^{(3)}(\{\alpha^i\})$$
$$\beta^{(3)}(\{\alpha_i\}) = \beta^{(3)}_{\mathrm{SM}}(\{\alpha_i\}) + \frac{8m_a^2}{(4\pi f)^2}C_{GG}^2$$

Anne Galda (JGU Mainz)

qR QL

Theorie Palaver

UV Running of the Dipole Coefficients

$$\begin{split} \mathcal{L}_{\text{SMEFT}} \supset & C_{\boldsymbol{u}\boldsymbol{B}}^{\boldsymbol{i}\boldsymbol{j}} \bar{Q}^{i} \tilde{\phi} \, \sigma_{\mu\nu} B^{\mu\nu} u_{R}^{j} + C_{\boldsymbol{d}\boldsymbol{B}}^{\boldsymbol{j}\boldsymbol{j}} \bar{Q}^{i} \phi \, \sigma_{\mu\nu} B^{\mu\nu} d_{R}^{j} + C_{\boldsymbol{e}\boldsymbol{B}}^{\boldsymbol{j}\boldsymbol{j}} \bar{L}^{i} \phi \, \sigma_{\mu\nu} B^{\mu\nu} e_{R}^{j} \\ &+ C_{\boldsymbol{u}\boldsymbol{W}}^{\boldsymbol{i}\boldsymbol{j}} \bar{Q}^{i} \tau_{A} \tilde{\phi} \, \sigma_{\mu\nu} W_{A}^{\mu\nu} u_{R}^{j} + C_{\boldsymbol{d}\boldsymbol{W}}^{\boldsymbol{i}\boldsymbol{j}} \bar{Q}^{i} \tau_{A} \phi \, \sigma_{\mu\nu} W_{A}^{\mu\nu} d_{R}^{j} \\ &+ C_{\boldsymbol{e}\boldsymbol{W}}^{\boldsymbol{i}\boldsymbol{j}} \bar{L}^{i} \tau_{A} \phi \, \sigma_{\mu\nu} W_{A}^{\mu\nu} e_{R}^{j} \\ &+ C_{\boldsymbol{u}\boldsymbol{G}}^{\boldsymbol{i}\boldsymbol{j}} \bar{Q}^{i} \tilde{\phi} \, \sigma_{\mu\nu} G_{a}^{\mu\nu} t_{a} u_{R}^{j} + C_{\boldsymbol{d}\boldsymbol{G}}^{\boldsymbol{j}\boldsymbol{j}} \bar{Q}^{i} \phi \, \sigma_{\mu\nu} G_{a}^{\mu\nu} t_{a} d_{R}^{j} \end{split}$$

Wilson coefficients
$$C_{fV}^{ij}$$
: 3 × 3 matrices in generation space

$$\begin{split} \mathcal{L}_{\text{SMEFT}} \supset & C_{\boldsymbol{u}\boldsymbol{B}}^{\boldsymbol{i}\boldsymbol{j}} \bar{\boldsymbol{\phi}} \, \boldsymbol{\sigma}_{\mu\nu} \boldsymbol{B}^{\mu\nu} \boldsymbol{u}_{R}^{\boldsymbol{j}} + C_{\boldsymbol{d}\boldsymbol{B}}^{\boldsymbol{j}\boldsymbol{j}} \bar{\boldsymbol{Q}}^{\boldsymbol{i}} \boldsymbol{\phi} \, \boldsymbol{\sigma}_{\mu\nu} \boldsymbol{B}^{\mu\nu} \boldsymbol{e}_{R}^{\boldsymbol{j}} \\ &+ C_{\boldsymbol{u}\boldsymbol{W}}^{\boldsymbol{i}\boldsymbol{j}} \bar{\boldsymbol{Q}}^{\boldsymbol{i}} \boldsymbol{\tau}_{A} \tilde{\boldsymbol{\phi}} \, \boldsymbol{\sigma}_{\mu\nu} \boldsymbol{W}_{A}^{\mu\nu} \boldsymbol{u}_{R}^{\boldsymbol{j}} + C_{\boldsymbol{d}\boldsymbol{W}}^{\boldsymbol{i}\boldsymbol{j}} \bar{\boldsymbol{Q}}^{\boldsymbol{i}} \boldsymbol{\tau}_{A} \boldsymbol{\phi} \, \boldsymbol{\sigma}_{\mu\nu} \boldsymbol{W}_{A}^{\mu\nu} \boldsymbol{d}_{R}^{\boldsymbol{j}} \\ &+ C_{\boldsymbol{e}\boldsymbol{W}}^{\boldsymbol{i}\boldsymbol{j}} \bar{\boldsymbol{L}}^{\boldsymbol{i}} \boldsymbol{\tau}_{A} \boldsymbol{\phi} \, \boldsymbol{\sigma}_{\mu\nu} \boldsymbol{W}_{A}^{\mu\nu} \boldsymbol{d}_{R}^{\boldsymbol{j}} \\ &+ C_{\boldsymbol{e}\boldsymbol{W}}^{\boldsymbol{i}\boldsymbol{j}} \bar{\boldsymbol{L}}^{\boldsymbol{i}} \boldsymbol{\tau}_{A} \boldsymbol{\phi} \, \boldsymbol{\sigma}_{\mu\nu} \boldsymbol{W}_{A}^{\mu\nu} \boldsymbol{e}_{R}^{\boldsymbol{j}} \\ &+ C_{\boldsymbol{u}\boldsymbol{G}}^{\boldsymbol{i}\boldsymbol{j}} \bar{\boldsymbol{\phi}} \, \boldsymbol{\sigma}_{\mu\nu} \boldsymbol{G}_{\boldsymbol{a}}^{\mu\nu} \boldsymbol{t}_{a} \boldsymbol{u}_{R}^{\boldsymbol{j}} + C_{\boldsymbol{d}\boldsymbol{G}}^{\boldsymbol{i}\boldsymbol{j}} \bar{\boldsymbol{Q}}^{\boldsymbol{i}} \boldsymbol{\phi} \, \boldsymbol{\sigma}_{\mu\nu} \boldsymbol{G}_{\boldsymbol{a}}^{\mu\nu} \boldsymbol{t}_{a} \boldsymbol{d}_{R}^{\boldsymbol{j}} \end{split}$$

Wilson coefficients C_{fV}^{ij} : 3 × 3 matrices in generation space

quark-sector dipole operator

$$\begin{split} \mathcal{L}_{\text{SMEFT}} \supset & C_{\boldsymbol{u}\boldsymbol{B}}^{\boldsymbol{i}\boldsymbol{j}} \bar{Q}^{i} \tilde{\phi} \, \sigma_{\mu\nu} \boldsymbol{B}^{\mu\nu} \boldsymbol{u}_{R}^{j} + C_{\boldsymbol{d}\boldsymbol{B}}^{\boldsymbol{j}\boldsymbol{j}} \bar{Q}^{i} \phi \, \sigma_{\mu\nu} \boldsymbol{B}^{\mu\nu} \boldsymbol{d}_{R}^{j} + C_{\boldsymbol{e}\boldsymbol{B}}^{\boldsymbol{i}\boldsymbol{j}} \bar{L}^{i} \phi \, \sigma_{\mu\nu} \boldsymbol{B}^{\mu\nu} \boldsymbol{e}_{R}^{j} \\ &+ C_{\boldsymbol{u}\boldsymbol{W}}^{\boldsymbol{i}\boldsymbol{j}} \bar{Q}^{i} \tau_{A} \tilde{\phi} \, \sigma_{\mu\nu} \boldsymbol{W}_{A}^{\mu\nu} \boldsymbol{u}_{R}^{j} + C_{\boldsymbol{d}\boldsymbol{W}}^{\boldsymbol{i}\boldsymbol{j}} \bar{Q}^{i} \tau_{A} \phi \, \sigma_{\mu\nu} \boldsymbol{W}_{A}^{\mu\nu} \boldsymbol{d}_{R}^{j} \\ &+ C_{\boldsymbol{e}\boldsymbol{W}}^{\boldsymbol{i}\boldsymbol{j}} \bar{L}^{i} \tau_{A} \phi \, \sigma_{\mu\nu} \boldsymbol{W}_{A}^{\mu\nu} \boldsymbol{e}_{R}^{j} \\ &+ C_{\boldsymbol{u}\boldsymbol{G}}^{\boldsymbol{i}\boldsymbol{j}} \bar{Q}^{i} \tilde{\phi} \, \sigma_{\mu\nu} \boldsymbol{G}_{a}^{\mu\nu} t_{a} \boldsymbol{u}_{R}^{j} + C_{\boldsymbol{d}\boldsymbol{G}}^{\boldsymbol{i}\boldsymbol{j}} \bar{Q}^{i} \phi \, \sigma_{\mu\nu} \boldsymbol{G}_{a}^{\mu\nu} t_{a} \boldsymbol{d}_{R}^{j} \end{split}$$

Wilson coefficients
$$C_{fV}^{ij}$$
: 3 × 3 matrices in generation space

$$\frac{q_R}{\bigvee_{V}} V = W$$

quark-sector dipole operator

$$\begin{split} \mathcal{L}_{\text{SMEFT}} \supset & C_{\boldsymbol{u}\boldsymbol{B}}^{\boldsymbol{i}\boldsymbol{j}} \bar{Q}^{i} \tilde{\phi} \, \sigma_{\mu\nu} B^{\mu\nu} u_{R}^{j} + C_{\boldsymbol{d}\boldsymbol{B}}^{\boldsymbol{j}\boldsymbol{j}} \bar{Q}^{i} \phi \, \sigma_{\mu\nu} B^{\mu\nu} d_{R}^{j} + C_{\boldsymbol{e}\boldsymbol{B}}^{\boldsymbol{j}\boldsymbol{j}} \bar{L}^{i} \phi \, \sigma_{\mu\nu} B^{\mu\nu} e_{R}^{j} \\ &+ C_{\boldsymbol{u}\boldsymbol{W}}^{\boldsymbol{i}\boldsymbol{j}} \bar{Q}^{i} \tau_{A} \tilde{\phi} \, \sigma_{\mu\nu} W_{A}^{\mu\nu} u_{R}^{j} + C_{\boldsymbol{d}\boldsymbol{W}}^{\boldsymbol{i}\boldsymbol{j}} \bar{Q}^{i} \tau_{A} \phi \, \sigma_{\mu\nu} W_{A}^{\mu\nu} d_{R}^{j} \\ &+ C_{\boldsymbol{e}\boldsymbol{W}}^{\boldsymbol{i}\boldsymbol{j}} \bar{L}^{i} \tau_{A} \phi \, \sigma_{\mu\nu} W_{A}^{\mu\nu} e_{R}^{j} \\ &+ C_{\boldsymbol{u}\boldsymbol{G}}^{\boldsymbol{i}\boldsymbol{j}} \bar{Q}^{i} \tilde{\phi} \, \sigma_{\mu\nu} G_{a}^{\mu\nu} t_{a} u_{R}^{j} + C_{\boldsymbol{d}\boldsymbol{G}}^{\boldsymbol{j}\boldsymbol{j}} \bar{Q}^{i} \phi \, \sigma_{\mu\nu} G_{a}^{\mu\nu} t_{a} d_{R}^{j} \end{split}$$

Wilson coefficients
$$C_{fV}^{ij}$$
: 3 × 3 matrices in generation space

$$\bigvee_{V \neq V}^{q_R} \bigvee_{Q_L}^{Q_L} V = g$$

quark-sector dipole operator

UV Evolution in the presence of an ALP

quark-sector:

$$\begin{aligned} \mathbf{S}_{qB} &= 2 \, g_1 \, C_{BB} \, (\mathcal{Y}_Q + \mathcal{Y}_q) (\mathbf{Y}_q \mathbf{c}_q - \mathbf{c}_Q \, \mathbf{Y}_q) \\ \mathbf{S}_{qW} &= g_2 \, C_{WW} \, (\mathbf{Y}_q \mathbf{c}_q - \mathbf{c}_Q \, \mathbf{Y}_q) \\ \mathbf{S}_{qG} &= 4 \, g_s \, C_{GG} \, (\mathbf{Y}_q \mathbf{c}_q - \mathbf{c}_Q \, \mathbf{Y}_q) \end{aligned}$$

q = u, d

Anne Galda (JGU Mainz)

Theorie Palaver

UV Evolution in the presence of an ALP

quark-sector:

$$\begin{aligned} \mathbf{S}_{qB} &= 2 \, g_1 \, C_{BB} \, (\mathcal{Y}_Q + \mathcal{Y}_q) (\mathbf{Y}_q \mathbf{c}_q - \mathbf{c}_Q \, \mathbf{Y}_q) \\ \mathbf{S}_{qW} &= g_2 \, C_{WW} \, (\mathbf{Y}_q \mathbf{c}_q - \mathbf{c}_Q \, \mathbf{Y}_q) \\ \mathbf{S}_{qG} &= 4 \, g_s \, C_{GG} \, (\mathbf{Y}_q \mathbf{c}_q - \mathbf{c}_Q \, \mathbf{Y}_q) \end{aligned}$$

q = u, d

Anne Galda (JGU Mainz)

Theorie Palaver

UV Evolution in the presence of an ALP

quark-sector:

$$\begin{aligned} \mathbf{S}_{qB} &= 2 \, g_1 \, C_{BB} \, (\mathcal{Y}_Q + \mathcal{Y}_q) (\mathbf{Y}_q \mathbf{c}_q - \mathbf{c}_Q \, \mathbf{Y}_q) \\ \mathbf{S}_{qW} &= g_2 \, C_{WW} \, (\mathbf{Y}_q \mathbf{c}_q - \mathbf{c}_Q \, \mathbf{Y}_q) \\ \mathbf{S}_{qG} &= 4 \, g_s \, C_{GG} \, (\mathbf{Y}_q \mathbf{c}_q - \mathbf{c}_Q \, \mathbf{Y}_q) \end{aligned}$$

q = u, d

Anne Galda (JGU Mainz)

Theorie Palaver

mixing between the dipole Wilson coefficients: [E. Jenkins et al: arXiv: 1310.4838, 1312.2014]

 \hookrightarrow QCD-effects mix C_{qG} , C_{qW} and C_{qB}

Anne Galda (JGU Mainz)

Theorie Palaver

mixing between the dipole Wilson coefficients: [E. Jenkins et al: arXiv: 1310.4838, 1312.2014]

28/37

Mixing with other SMEFT coefficients

[E. Jenkins et al: arXiv: 1310.4838, 1312.2014]

generated for instance via:

Anne Galda (JGU Mainz)

 → The ALP generates more SMEFT operators that mix into the evolution of the 4-fermion operators! E.g.:

$$\frac{d}{d \ln \mu} C_{QuQd}^{(1)} \propto \begin{cases} + \dots \\ \text{since these coefficients themselves} \\ \text{mix with more SMEFT operators!} \end{cases}$$

 \Rightarrow Nearly the whole SMEFT operator basis mixes into the evolution of the Wilson coefficients of the dipole operators!

Chromo-magnetic and chromo-electric dipole moments:

$$\mathcal{L}_{\rm eff} = \hat{\mu}_q \, \frac{g_3}{2m_q} \, \bar{q} \, \sigma_{\mu\nu} G_a^{\mu\nu} \, t_a \, q + i \, \hat{d}_q \, \frac{g_3}{2m_q} \bar{q} \, \sigma_{\mu\nu} \gamma_5 G_a^{\mu\nu} \, t_a q \,,$$

top quark:

q. , OL

$$\hat{\mu}_t = -\frac{y_t v^2}{\Lambda^2} \Re e \, C_{uG}^{33} \,, \qquad \hat{d}_t = -\frac{y_t v^2}{\Lambda^2} \Im m \, C_{uG}^{33} \,,$$

Neglecting contributions $\propto \alpha_1$, α_2 and y_i with $i \neq t$:

$$\frac{d}{d\ln\mu} C_{uG}^{33} = \frac{S_{uG}^{33}}{(4\pi f)^2} + \left(\frac{15\,\alpha_t}{8\pi} - \frac{17\alpha_s}{12\pi}\right) C_{uG}^{33} + \frac{9\alpha_2}{4\pi} y_t (C_G + iC_{\tilde{G}}) + \frac{g_s y_t}{4\pi^2} (C_{HG} + iC_{H\tilde{G}})$$

Relevant source terms:

$$S_{uG}^{33} = 4g_s y_t c_{tt} C_{GG}$$
 and $S_G = 8g_s C_{GG}^2$
 \hookrightarrow both real-valued!

Anne Galda (JGU Mainz)

Chromo-magnetic and chromo-electric dipole moments:

$$\mathcal{L}_{\rm eff} = \hat{\mu}_q \, \frac{g_3}{2m_q} \, \bar{q} \, \sigma_{\mu\nu} G_a^{\mu\nu} \, t_a \, q + i \, \hat{d}_q \, \frac{g_3}{2m_q} \bar{q} \, \sigma_{\mu\nu} \gamma_5 G_a^{\mu\nu} \, t_a q \,,$$

top quark:

q_R Q_L

$$\hat{\mu}_t = -\frac{y_t v^2}{\Lambda^2} \Re e \, C^{33}_{uG} \,, \qquad \hat{d}_t = -\frac{y_t v^2}{\Lambda^2} \Im m \, C^{33}_{uG} \,$$

$$\frac{d}{d \ln \mu} \Im m C_{\mu G}^{33} = 0$$

 \rightarrow no contribution to $\hat{d}_t!$

Anne Galda (JGU Mainz)

Theorie Palaver

Chromo-magnetic and chromo-electric dipole moments:

$$\mathcal{L}_{\rm eff} = \hat{\mu}_q \, \frac{g_3}{2m_q} \, \bar{q} \, \sigma_{\mu\nu} G_a^{\mu\nu} \, t_a \, q + i \, \hat{d}_q \, \frac{g_3}{2m_q} \bar{q} \, \sigma_{\mu\nu} \gamma_5 G_a^{\mu\nu} \, t_a q \,,$$

top quark:

q. , OL

$$\hat{\mu}_t = -\frac{y_t v^2}{\Lambda^2} \Re e \, C^{33}_{uG}, \qquad \hat{d}_t = -\frac{y_t v^2}{\Lambda^2} \Im m \, C^{33}_{uG}$$

$$\frac{d}{d \ln \mu} \, \mathfrak{Re} \, C_{uG}^{33} = \left(\frac{15\alpha_t}{8\pi} - \frac{17\alpha_s}{12\pi} \right) \, \mathfrak{Re} \, C_{uG}^{33} + \frac{9\alpha_s}{4\pi} \, y_t \, C_G + \frac{g_s \, y_t}{4\pi^2} \, C_{HG} + \frac{S_{uG}^{33}}{(4\pi f)^2} \\ \frac{d}{d \ln \mu} \, C_G = \frac{15\,\alpha_s}{4\pi} \, C_G + \frac{S_G}{(4\pi f)^2} \\ \frac{d}{d \ln \mu} \, C_{HG} = \left(\frac{3\alpha_t}{2\pi} - \frac{7\alpha_s}{2\pi} \right) \, C_{HG} + \frac{g_s \, y_t}{4\pi^2} \, \mathfrak{Re} \, C_{uG}^{33}$$

 $\Lambda = 4\pi f$: scale of global symmetry breaking

Anne Galda (JGU Mainz)

Theorie Palaver

Chromo-magnetic and chromo-electric dipole moments:

$$\mathcal{L}_{\rm eff} = \hat{\mu}_q \, \frac{g_3}{2m_q} \, \bar{q} \, \sigma_{\mu\nu} G_a^{\mu\nu} \, t_a \, q + i \, \hat{d}_q \, \frac{g_3}{2m_q} \bar{q} \, \sigma_{\mu\nu} \gamma_5 G_a^{\mu\nu} \, t_a q \,,$$

top quark:

q_R Q_L

$$\hat{\mu}_t = -\frac{y_t v^2}{\Lambda^2} \Re e \, C_{uG}^{33} \,, \qquad \hat{d}_t = -\frac{y_t v^2}{\Lambda^2} \Im m \, C_{uG}^{33} \,,$$

$$\frac{d}{d \ln \mu} \Re e C_{uG}^{33} = \left(\frac{15\alpha_t}{8\pi} - \frac{17\alpha_s}{12\pi}\right) \Re e C_{uG}^{33} + \frac{9\alpha_s}{4\pi} y_t C_G + \frac{g_s y_t}{4\pi^2} C_{HG} + \frac{S_{uG}^{33}}{(4\pi f)^2}$$

$$\frac{d}{d \ln \mu} C_G = \frac{15\alpha_s}{4\pi} C_G + \frac{S_G}{(4\pi f)^2}$$

$$\frac{d}{d \ln \mu} C_{HG} = \left(\frac{3\alpha_t}{2\pi} - \frac{7\alpha_s}{2\pi}\right) C_{HG} + \frac{g_s y_t}{4\pi^2} \Re e C_{uG}^{33}$$
not sourced directly

To lowest logarithmic order: [AG, Neubert, Renner: 2105.01078]

$$\hat{\mu}_{t} \approx -\frac{8 m_{t}^{2}}{(4\pi f)^{2}} \left[c_{tt} C_{GG} \ln \frac{4\pi f}{m_{t}} - \frac{9\alpha_{s}}{4\pi} C_{GG}^{2} \ln^{2} \frac{4\pi f}{m_{t}} \right]$$
$$\approx -(5.87 c_{tt} C_{GG} - 1.98 C_{GG}^{2}) \times \left[\frac{1 \text{ TeV}}{f} \right]^{2} \sum_{\substack{c_{tt}: \text{ ALP-top coupling} \\ \text{below EWSB}}}$$

for $m_t(m_t) = 163.4 \,\text{GeV}, \, \alpha_s(m_t) = 0.1084 \text{ and } f = 1 \,\text{TeV}$

Combined with experimental bounds from CMS (2019) this gives:

$$-0.68 < (c_{tt} C_{GG} - 0.34 C_{GG}^2) \times \left[\frac{1 \text{ TeV}}{f}\right]^2 < 2.38 \quad (95\% \text{ CL})$$

Comparable to the strongest bounds following from collider and flavor physics for $m_a > 1$ GeV!

q_R Q_L

In this talk, we have ...

- ✓ seen the ALP Lagrangian and an alternative form for the coupling to the SM
- \checkmark analyzed the effects of an ALP on the D = 6 SMEFT operators
- \checkmark solved the RG equation of $C_{\mu G}^{33}$ to lowest logarithmic order
 - → model independent framework for studying virtual ALP contributions to precision measurements

Open Tasks:

Get an exact solution to the RG evolution equations by solving them numerically.

The ALP generates SMEFT operators above the weak scale by means of inhomogeneous source terms.

Thank You!