

Towards a quantum toolbox for (anti-)proton precision measurements in Penning traps

Christian Ospelkaus

Coupled trap Institut für Quantenoptik, Leibniz Universität Hannover Physikalisch-Technische Bundesanstalt, Braunschweig

Ai-iMittin with withit i it it it. Laser ports

Beryllium trap

- Studied physics in Bonn (1996–2001)
 - Excursion into plasma physics
 - Numerical mathematics
 - Diploma thesis at Univ. Fribourg with Antoine Weis "Measurement of the forbidden tensor polarizability in ¹³³Cs"
- PhD in Hamburg (with K. Sengstock, 2002–2006)
 - Fermi-Bose mixtures in 3D optical lattices (with Silke Ospelkaus)

Postdoc in Boulder (with D.J. Wineland, 2007–2010)

Trapped ions, quantum information processing

2010: Professor for experimental quantum optics (Hannover/PTB)

Trapped ions in a nutshell

BSE PBIQ

Cellin .

"We never experiment with just one

atom or molecule. In thought-experiments we sometimes assume that we do; this invariably entails ridiculous consequences. " *Erwin Schrödinger, 1952*

THE PENNING TRAP

The Penning trap

Hans Dehmelt

- Laser cooling, state manipulation and detection are key tools in AMO physics experiments
- Photons carry momentum and spontaneous emission provides irreversibility
- First demonstrations of laser cooling
 - Boulder (Penning trap), Heidelberg (Paul trap), 1978
- Ground state cooling
 - Boulder (1989)
- Key enabling step for qubits and clocks!
- Little use of laser cooling in Penning traps since (compared to Paul traps)!

THE (ANTI-)PROTON

Testing CPT symmetry

Symmetries

mostly symmetric

symmetrized

Symmetries and the Standard Model

Beyond the Standard Model

CPT?

Baryogenesis?

(Lorentz invariance?)

(Matter-Antimatter imbalance in the universe)

Dark matter? Quantum gravity?

Matter – antimatter comparison

Particles and antiparticles have:

Same mass

Same charge (except for sign)

Same lifetime

Same magnetic moment (g-factor)

$$\vec{\mu} = g \frac{q\hbar}{2m} \vec{s}$$

10

It's a double frequency measurement!

Measuring motional frequencies

645240 645250 645260 645270 645280 Frequency (Hz)

Amplitude (dBV)

[Plots for the axial movement of an antiproton: Smorra et al., EPJ-ST (2015)]

Hans Dehmelt

Measuring the Larmor frequency

BSE PBIQ

Spin state detection

THE BASE-HANNOVER PENNING TRAP

A hybrid quantum system

D. J. Wineland *et al.*, J. Res. NIST **103**, 259 (1998)
D. J. Heinzen and D. J. Wineland, PRA **42**, 2977 (1990)

17

BSE PBIQ

Step-by-step implementation of the required tools in a cryogenic Penning trap system

SF

Step-by-step implementation of the required tools in a cryogenic Penning trap system

fluorescence detection

Step-by-step implementation of the required tools in a cryogenic Penning trap system

M. Niemann et al., Measurement Science and Technology 31, 035003 (2019)

Doppler cooling and detection

optimised cooling: $\Delta v_D = 35.5(10)$ MHz T = 24.0(7) mK

What's difficult about cooling?

Particle number reduction

After one month of technical upgrades, lab book entry: *"Today the laser system optimization has been completed. After that, I check the trap and the old ion was still in the trap. " 08/16/21*

Ground state cooling?

Stimulated Raman transitions PBIQ $----P_{3/2}$

$$|m_{J} = +1/2\rangle = |\uparrow\rangle$$

$$S_{1/2}$$

$$|m_{J} = -1/2\rangle = |\downarrow\rangle$$

$$140 \text{ GHz @ 5T}$$

Stimulated Raman transitions

BSE PBIQ

140 GHz @ 5T

- Collaboration with
 - Menlo Systems
 - G. Cerullo
 - M. Marangoni
 - C. Manzoni
 - ► U. Morgner

Stimulated Raman transitions

S. Hannig et al., RSI **89**, 013106 (2018) J. Mielke et al., J. Phy. B: At. Mol. Opt. Phys. **54**, 195402 (2021)

Dν

||

140 GHz

Stimulated-Raman carrier transitions

BSE PBIQ

Stimulated-Raman sideband transitions

Stimulated-Raman sideband spectroscopy

 T_{z}

$$= \frac{m \lambda^{2} \Delta v_{D}^{2}}{8 \ln 2 k_{B}} = (3.1 \pm 0.4) \text{ mK} \qquad T_{Z} = (2.9 \pm 0.4) \text{ mK}$$

$$\bar{n}_{Z} \approx \frac{k_{B} T_{Z}}{h v_{Z}} \approx 150 \qquad @ v_{Z} \approx 700 \text{ kHz} \qquad \bar{n}_{Z} \approx 80$$

Motional ground state cooling

Unpublished

Motional ground state cooling

Unpublished

This is just the beginning!

(only two experiments worldwide can do this...)

A hybrid quantum system

D. J. Wineland *et al.*, J. Res. NIST **103**, 259 (1998)
D. J. Heinzen and D. J. Wineland, PRA **42**, 2977 (1990)

39

- BASE AT geometry: 2d = 3.6 mm $\omega = 2\pi \cdot 890 \text{ kHz}$ $\tau_{ex} = 76 \text{ ms}$ 1.35 mm distance
- Small" trap: 2d = 0.8 mm $\omega = 2\pi \cdot 4 \text{ MHz}$ $\tau_{ex} = 3.7 \text{ ms}$ 0,3 mm distance
- Scaling:
 exchange time $\tau_{ex} \sim d^3$ heating rate $\sim d^4$
- Bump: 3 meV

Potential shown for p / ${}^{9}\text{Be}^{+}$ combination because it is more challenging

Short-terms goals:

- adiabatic transport in the motional ground state
- coupling of two ⁹Be⁺ ions

- Mid-terms goals:
 - Coupling of a proton and a single ⁹Be⁺ ion

Sympathetic ground state cooling

Motional ground state cooling Coulomb interaction A. A. A. A. 175 mm Cornejo-Garcia et al., NJP **23**, 073045 (2021) \overrightarrow{B}

Smorra et al., EPJ-ST 224, 3055 (2015)

BSE PBLO

Quantum logic spectroscopy

BSE PIBIQ

Quantum logic readout

Teaser: Relation to quantum computing

Open PhD and PD positions

QVLS-Q1, BMBF ATIQ and BMBF MIQRO quantum processor projects

PhD students Chloë Allan-Ede Julia-Aileen Coenders Markus Duwe Sebastian Halama Eike Iseke Christian Joohs Lukas Kilzer Nila Krishnakumar Hardik Mendpara Rodrigo Munoz Niklas Orlowski Johannes Mielke **Tobias Pootz** Nicolás Pulido Florian Ungerechts

Postdocs Amado Bautista-Salvador Juan-Manuel Cornejo Timko Dubielzig Friederike Giebel Brigitte Kaune Niels Kurz Ludwig Krinner Teresa Meiners Celeste Torkzaban Undergrads Frederik Schmidt Emma Vandrey Yannik Hermann

Alumni Henning Hahn Giorgio Zarantonello Malte Niemann

Staff

Jacob Stupp Konstantin Thronberens

Humboldt / Mercator fellow Ralf Lehnert (Indiana University, Bloomington)

VolkswagenStiftung

OUANTUM

micro OC

GEFÖRDERT VOM

