"Kination" GW signatures & spinning axions

Peera Simakachorn

with Yann Gouttenoire (Tel Aviv U.), Géraldine Servant (DESY & U.Hamburg)

> based on 2108.10328, 2110.xxxx (130+ pages)

Mainz, 26.10.2021

QUANTUM UNIVERSE

USTER OF EXCELLENCE

DER FORSCHUNG | DER LEHRE | DER BILDUNG

Take-home messages:

Gravitational waves (GW) as probe of early universe and new physics at high energies.

Non-standard cosmological histories (from BSM physics) induce observable GW signatures.

Kination era enhances primordial GW background.

Models of spinning axions generate naturally kination after matter-domination era and leads to observable "GW peak".

Gravitational waves as probe of early-universe & new physics

Gravitational waves as probe of early-universe & new physics

GW is powerful and unique probe

of the pre-Big-Bang-Nucleosynthesis (BBN) era T > MeV

GW interacts feebly and propagates freely in the early universe:

dark age

reheating,

$$\frac{\Gamma_{\rm GW}(T)}{H(T)} \sim \frac{G^2 T^5}{T^2/M_{\rm pl}} = \left(\frac{T}{M_{\rm pl}}\right)^3$$

Future prospect of GW experiments

Future prospect of GW experiments

Some main sources of primordial gravitational waves

Short-lasting (localized at some frequency) first-order phase transition explosion of particles (e.g. preheating or audible axion) **Long-lasting** (spanning over many frequencies) quantum fluctuation from primordial inflation network of topological defects (e.g. cosmic strings)

Some main sources of primordial gravitational waves

Some main sources of primordial gravitational waves

Energy density of GW (red-shift as radiation)

 $\left(\frac{a_{\text{prod}}}{a_{\text{today}}}\right)^4 \xrightarrow{\text{red-shift factor}} \text{BSM of } \\ \begin{array}{c} \textcircled{\text{cosmic evolution}} \end{array} \\ \begin{array}{c} (\textbf{cosmic evolution}) \end{array} \\ \begin{array}{c} \textbf{cosmology} \end{array}$ \Rightarrow BSM of $\rho_{\rm today}^{\rm GW} = \rho_{\rm prod}^{\rm GW}$ Primordial GW tells us about... its production mechanism \Rightarrow BSM of particle physics 10^{-6} LIGO **FIRAS** fraction of energy density in GW **Cosmological history** 10^{-8} $= \Omega_{\rm GW} h^2$ **LISA** ριχιε 10^{-10} $h^2(\rho_{\rm GW}/\rho_c)_{\rm today}$ 10x Voyage 205 10^{-12} 5 **y**rs cosmic strings. 10 yrs iteBIRD 10^{-14} 20 yrs **First-order** 10^{-16} phase transition primordial inflation

> 10^{-19} 10^{-14} 10^{-9} 10^{-4} 10^{6} 10

Energy density of GW (red-shift as radiation)

fraction of energy density in GW

Non-standard cosmological histories induce GW signatures.

Standard cosmological history

today

Overview: Cosmic archeology with GW

Overview: Cosmic archeology with GW

Kination enhances primordial GW.

The simplest kination era

equation-of-state:
$$\omega_{\phi} = P_{\phi}/\rho_{\phi} = \frac{E_{\text{kinetic}} - E_{\text{potential}}}{E_{\text{kinetic}} + E_{\text{potential}}}$$

Larger than radiation if $\omega_{\phi} > 1/3$, $\rho_{\phi} \propto a^{-3(1+\omega_{\phi})}$
Largest $\omega_{\phi} = 1$, when $E_{\text{kinetic}} \gg E_{\text{potential}}$

A scalar field dominates the universe with large kinetic energy, so-called "Kination" era. ($\rho_{\phi} \propto a^{-6}$) [Spokoiny 1993, Joyce, 1997]

> Examples: scalar quickly moves after the slow-roll inflation. Naturally, kination era is at high-energy scales after inflation

Fraction of energy density in GW today $\Omega_{\rm GW,0} = \left(\frac{\rho_{\rm GW,prod}}{\rho_{\rm tot,0}}\right) \left(\frac{a_{\rm prod}}{a_0}\right)^4 = \left(\frac{\rho_{\rm GW,prod}}{\rho_{\rm tot,prod}}\right) \left(\underbrace{\frac{\rho_{\rm tot,prod}}{\rho_{\rm tot,0}}}_{\rm constant}\right) \left(\underbrace{\frac{\alpha_{\rm prod}}{\alpha_0}}_{\rm constant}\right)^4$

Inflationary GW

Cosmic-string GW:

scale-invariant tensor perturbation $(\rho_{\rm GW}/\rho_{\rm tot})_{\rm prod} = {\rm constant}$

(with rescaling scale factor a/a_0)

 $ho_{\rm GW} \propto
ho_{\rm string-network} \propto
ho_{\rm tot}$ in the so-called "scaling regime"

Larger ρ_{tot} during kination \Rightarrow Enhancement in GW spectrum Ω_{GW}

Total energy density

From the perspective of the future-planned experiments, an intermediate and low-scale kination era is very interesting.

Peaked GW signature from intermediate kination era

Probing intermediate kination with GW.

Model-independent: intermediate kination scenario

are characterized by

(given the spontaneous symmetry-breaking scale f_a)

- 1. **kination energy scale** $E_{\text{KD}} = \sqrt{\dot{\theta}f_a}$ (the spinning speed of axion $\dot{\theta}$ when kination starts)
- 2. the duration of kination era $N_{\text{KD}} = \log(a_{\text{start}}/a_{\text{end}})$ (related to the beginning of the matter era)

Why GW peaked signature?

Assuming $\rho_{\rm GW} \propto \rho_{\rm total}$ at production e.g. cosmic strings and inflation

A peak corresponds to $E_{\rm KD}$, why?

Peak at

 $\frac{\rho_{\rm tot,non-st}}{\rho_{\rm tot,non-st}}$

 $\rho_{\rm tot,st}$

Larger $\rho_{\rm tot}$, larger GW amplitude, compared to the standard cosmology.

at the beginning of kination $E_{\rm KD}$.

Signature in inflationary GW: "Peak"

Peak frequency: $f_{\text{peak}} \approx 10 \text{ Hz} \left(\frac{E_{\text{KD}}}{10^8 \text{ GeV}}\right) \left[\frac{\exp(N_{\text{KD}}/2)}{10}\right]$ Peak amplitude:

$$\Omega_{\text{peak}} h^2 \approx 10^{-12} \left(\frac{E_{\text{inf}}}{1.6 \times 10^{16} \text{ GeV}} \right)^4 \left[\frac{\exp(2N_{\text{KD}})}{10^4} \right]$$

Detectability ET & CE ~ 10^{6-9} GeV LISA ~ 10^{2-5} GeV

High-frequency (HF) experiments for large $E_{\rm KD}$

Global cosmic strings symmetry breaking scale $\simeq \eta$

33

Inflation + global cosmic strings

String network formed at energy scale η continuously produces loops which decay into GW (and also particles.) E.g. Axionic strings from PQ symmetry breaking with $\eta \sim f_a$. Peak amplitude from global strings: $\Omega_{\text{peak}}^{\text{glob}}h^2 \approx 10^{-14} \left(\frac{\eta}{10^{15} \text{ GeV}}\right)^4 \left[\frac{\exp(2N_{\text{KD}})}{10^4}\right] \log^3(\cdots)$ amplitude controlled by inflation: $E_{inf} \uparrow global-string: \eta$ $\Omega_{\rm GW} h^2$ Fixed peak separation ET SKA LISA combined $f_{\rm inf}/f_{\rm glob} = \mathcal{O}(10^{-2})$ [≈]107_{GeV} global-string [for loops' size: $(0.1)H^{-1}$] 10⁻¹² inflation With $E_{inf} \sim 10^{16} \text{ GeV}$, two-peak signature 10⁻¹⁵ for $10^{12} \lesssim \frac{\eta}{GeV} \lesssim 10^{15}$. Gouttenoire, Servant, PS, to appear 10^{-4} 10^{-8} 10^{4} 34 frequency f (Hz)

Kination and GW peak from a spinning axion.

"Spinning axion"

Going beyond the assumption of vanishing velocity of axion.

e.g. Kinetic-misalignment & axion fragmentation \Rightarrow axion relic abundance.

[Co, Harigaya, Hall, '19 & Chang, Cui, '19] [Fonseca, Morgante, Sato, Servant, '19]

Model A: Trapped misalignment

[Di Luzio, Gavela, Quilez, Ringwald, '21]

High-temperature axion potential is unconstrained.

For instance, the \mathbb{Z}_N axion model [Hook,'18] leads to axion potential at $T \gg \Lambda_{\rm QCD}$.

Dynamics starts with $\phi = f_a$ and only involves the angular mode "axion" $\phi_{ini} = f_a$ $\bigvee(\Phi)$

Model B: Complex scalar field

[Co, Hall, Harigaya, et. al., '19 '20]

 $\Phi \sim \phi e^{i\theta}$ with $\mathit{U}(1)\text{-symmetry}$

Radial mode ϕ oscillates in potential with mass $\sqrt{V''(\Phi)}$.

Angular mode θ "axion" spins, $\phi_{ini} \gg f_a$ with large kinetic energy.

Dark matter from a spinning axion.

Axion Dark Matter and Peaked GW

"Spinning axion"

Going beyond the assumption of vanishing velocity of axion.

e.g. Kinetic-misalignment & axion fragmentation set axion relic abundance

[Co, Harigaya, Hall, '19 & Chang, Cui, '19] [Fonseca,

[Fonseca, Morgante, Sato, Servant, '19]

Model A: Trapped misalignment

[Di Luzio, Gavela, Quilez, Ringwald, '21]

High-temperature axion potential is unconstrained.

For instance, the \mathbb{Z}_N axion model [Hook,'18] leads to axion potential at $T \gg \Lambda_{\rm QCD}$.

Dynamics starts with $\phi = f_a$ and only involves the angular mode "axion" $\phi_{ini} = f_a$ $\psi(\Phi)$ $\phi_{ini} = f_a$ $\phi_{ini} = f_a$ $\phi_{ini} = f_a$ $\phi_{ini} = f_a$ $\phi_{ini} = f_a$

Model B: Complex scalar field

[Co, Hall, Harigaya, et. al., '19 '20]

 $\Phi \sim \phi e^{i\theta}$ with $\mathit{U}(1)\text{-symmetry}$

Radial mode ϕ oscillates in potential with mass $\sqrt{V''(\Phi)}$.

Angular mode θ "axion" spins, $\phi_{ini} \gg f_a$ with large kinetic energy.

Model A: trapped misalignment

Model A: Trapped misalignment [Di Luzio, Gavela, Quilez, Ringwald, '21]

Model B: Complex scalar field

Model B: Complex scalar field"Affleck-Dine Baryogenesis" (Affleck, Dine, 1985) $\phi_{ini} \gg f_a$ "Axiogenesis" (Co, Hall, Harigaya, et. al., '19) $\bigvee(\Phi)$ $\Phi \sim \phi e^{i\theta}$ with U(1)-symmetry $\phi_{ini} = f_a$ $\phi_{ini} = f_a$ $\psi_{ini} = f_a$ <td

Requirements for the successful kination era

1. U(1)-symmetric (quadratic) potential with spontaneous symmetry-breaking minimum

3. Explicit U(1)-breaking term (wiggle for angular velocity) 2. Large initial scalar VEV

4. Damping of radial motion

Ingredients I & II & III: scalar potential and large initial VEV

I.Scalar potential:
$$V(\Phi) = m_r^2 |\Phi|^2 \left[\log\left(\frac{|\Phi|^2}{f_a^2}\right) - 1 \right] + \Lambda_b^4 \left[\left(\frac{\Phi}{M_{\text{Pl}}}\right)^l + \left(\frac{\Phi^{\dagger}}{M_{\text{Pl}}}\right)^l \right] + V_{\text{stab}}$$

 $U(1)$ -conserving potential with a Mexican hat near f_a (generic in supergravity) $\propto \cos(l\theta)$ explicit breaking term term

II. For large- ϕ_{ini} : Driven away from $\phi = 0$ at early times $(H > m_r)$ by a negative Hubble mass $-H^2 |\Phi|^2$ (Dine, Randall, Thomas, 1995)

At $3H \sim m_r$:

conserved part \Rightarrow radial motion breaking part \Rightarrow angular motion At $3H \lesssim m_r$:

Elliptic orbit with red-shifting size $\phi \sim a^{-3/2}$ (quadratic potential)

Scalar Φ behaves as matter. (allowing Φ -domination)

 $\phi \propto a^{-6/(2+n)}$ for $V \propto \phi^n \propto a^{-6n/(2+n)}$

Later, U(1) symmetry restores. Conserved charge:

 $\frac{d}{dt}(a^3\phi^2\dot{\theta}) = 0 \Rightarrow \dot{\theta} \sim m_r$

45

Ingredients I & II & III: scalar potential and large initial VEV

[[]Gouttnoire & Servant & **PS**, to appear]

conserved part \Rightarrow radial motion breaking part \Rightarrow angular motion

For $3H \lesssim m_r$:

Elliptic orbit with red-shifting size $\phi \sim a^{-3/2}$ (quadratic potential)

Scalar Φ behaves as matter. (allowing Φ -domination)

Later, U(1) symmetry restores. Conserved charge:

$$\frac{d}{dt}(a^3\phi^2\dot{\theta}) = 0$$

Ingredients IV: radial-motion damping

Elliptic orbit

scalar Φ behaves as matter. (allowing matter-domination)

Radial oscillation causes matter era occurs at late times and over-closes the universe.

Radial motion must be damped, while the rotation of axion remains for kination.

introduce friction term to radial-mode equation of motion $\ddot{\phi} + (3H + \Gamma)\dot{\phi} + (m_r^2 - \dot{\theta}^2)\phi = 0$

Scalar Φ orbit becomes circle, still behaves as matter for $\phi > f_a$. i.e. $E_{\text{kinetic}} = E_{\text{potential}}$ balance between the centrifugal force and potential gradient.

Scenario I: parametric resonance extracts energy from zero-mode Damping happens fast after oscillation.

Scenario II: Thermal damping with U(1)-conserving interaction with **no thermal mass of** ϕ

No thermal mass requires λ_{ψ} -suppression $\sim \sqrt{m_r/M_{\rm Pl}} \Rightarrow$ insufficient damping for kination χ

Scenario III: Allow large $\lambda_{\psi} \Rightarrow$ strong radial damping and few efolds of kination Suppressed the thermal mass by **lowering the reheating temperature.**

Approaching minimum \Rightarrow kination era

Detectability of model B

Probing kination GW peak from spinning axion models

51

In summary...

Kination era amplifies any primordial GWe.g. inflationary GW spectrum gets blue-tilted.induced by a scalar field with large kinetic energy.(We also look at a peak in cosmic-string GW spectrum.)

A spinning axion

e.g. from complex scalar field (generic in SM extensions) or from trapped misalignment can generate a intermediate matter-kination during the pre-BBN epoch.

"Peaked GW signature" LISA

LISA for $E_{\rm KD} \sim 10^{2-5}~{\rm GeV}$ | ET & CE for $E_{\rm KD} \sim 10^{6-9}~{\rm GeV}.$

Effect on short-lasting GW

e.g. first-order phase transition

Thermal phase transition where the source of GW is the thermal plasma cannot have the enhancement.

Super simplified argument: For fixed β/H_p , the bubble size is fixed to be some fraction of Hubble horizon. During the matter-kination era, Universe has smaller size, smaller bubbles, and thus weaker GW.

Other spectral distortions, e.g. causality tail [Hook, Marques-Tavares, Racco, '20]