From nuclei to stars – The strong interaction in the universe

Achim Schwenk

Mainz Physics Colloquium, Nov. 30, 2021

Gravity

Weak interaction

Electrodynamics

Strong interaction

Linitad Nations

Ac

**

Th

Pa

U

Np

Pu

Inda m

Gravity

3

Li

Lithium Alkali Metal

11 Na Sodium Alkali Meta 19 К Potassium Alkali Metal 37 Rb Rubidiun Alkali Met 55 Cs Cesium Alkali Metal 87 Fr Francium Alkali Metal

Weak interaction

Electrodynamics

Periodic Table of Elements governed by electromagnetic interaction H Hydrogen Nonmetal He Helium Noble Gas 10 Be Beryllium С F В Ν 0 Ne

Boron

Carbon

Nitroger

Oxyger

Fluorine

Aikaline Earth Metal	Onled Watons • International real								Metalloid	Nonmetal	Nonmetai	Nonmetal	Halogen	Notie Gas		
12 Mg Magnesium Akaline Earth Metal			Education Cult	nal, Scien ural Orga	tific and nization	 of the of Che 	Periodic emical Ele	Table ments			13 Al Aluminum Post-Transition Metal	14 Si Silicon Metalloid	15 P Phosphorus Nonmetal	16 S Sulfur Nonmetal	17 Cl Chlorine Halogen	18 Ar Argon Noble Gas
20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Calcium	Scandium	Titanium	Vanadium	Chromium	Manganese	Iron	Cobalt	Nickel	Copper	Zinc	Gallium	Germanium	Arsenic	Selenium	Bromine	Krypton
Alkaline Earth Metal	Transition Metal	Transition Metal	Transition Metal	Transition Metal	Transition Metal	Transition Metal	Transition Metal	Transition Metal	Transition Metal	Transition Metal	Post-Transition Metal	Metalloid	Metalloid	Nonmetal	Halogen	Noble Gas
38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
Strontium	Yttrium	Zirconium	Niobium	Molybdenum	Technetium	Ruthenium	Rhodium	Palladium	Silver	Cadmium	Indium	Tin	Antimony	Tellurium	Iodine	Xenon
Akaline Earth Metal	Transition Metal	Transition Metal	Transition Metal	Transition Metal	Transition Metal	Transition Metal	Transition Metal	Transition Metal	Transition Metal	Transition Metal	Post-Transition Metal	Post-Transition Metal	Metalloid	Metalloid	Halogen	Noble Gas
56	*	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Ba		Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
Barium		Hafnium	Tantalum	Tungsten	Rhenium	Osmium	Iridium	Platinum	Gold	Mercury	Thallium	Lead	Bismuth	Polonium	Astatine	Radon
Akaline Earth Metal		Transition Metal	Transition Metal	Transition Metal	Transition Metal	Transition Metal	Transition Metal	Transition Metal	Transition Metal	Transition Metal	Post-Transition Metal	Post-Transition Metal	Post-Transition Metal	Metalloid	Halogen	Notile Gas
88	**	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Ra		Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	Fl	Mc	LV	Ts	Og
Radium		Rutherfordium	Dubnium	Seaborgium	Bohrium	Hassium	Meitnerium	Darmstadtium	Roentgenium	Copernicium	Nihonium	Flerovium	Moscovium	Livermorium	Tennessine	Oganesson
Alkaline Earth Metal		Transition Metal	Transition Metal	Transition Metal	Transition Metal	Transition Metal	Transition Metal	Transition Metal	Transition Metal	Transition Metal	Post-Transition Metal	Post-Transition Metal	Post-Transition Metal	Post-Transition Metal	Halogen	Noble Gas
	*	57 La Lanthanum Lanthanide	58 Ce Cerium Lanthanide	59 Pr Praseodymium Lanthanide	60 Nd Neodymium Lanthanide	61 Pm Promethium Lanthanide	62 Sm Samarium Lanthanide	63 Eu Europium Lanthanide	64 Gd Gadolinium Lantharide	65 Tb Terbium Lanthanide	66 Dy Dysprosium Lanthanide	67 Ho Holmium Lanthanide	68 Er Erbium Lanthanide	69 Tm Thulium Lanthanide	70 Yb Ytterbium Lanthanide	71 Lu Lutetium Lanthanide
		89	90	91	92	93	94	95	96	97	98	99	100	101	102	103

Am

Cm

Curium

Bk

Cf

Es

Einsteini

Fm

Fermium

Md

No

Nobelium

Lr

Gravity

Weak interaction

Electrodynamics

Strong interaction Quantum chromodynamics (QCD)

Gravity

Weak interaction

Electrodynamics

Strong interaction in the universe

doi:10.1038/nature11188

The limits of the nuclear landscape

Jochen Erler^{1,2}, Noah Birge¹, Markus Kortelainen^{1,2,3}, Witold Nazarewicz^{1,2,4}, Erik Olsen^{1,2}, Alexander M. Perhac¹ & Mario Stoitsov^{1,2}[‡]

doi:10.1038/nature11188

The limits of the nuclear landscape

Jochen Erler^{1,2}, Noah Birge¹, Markus Kortelainen^{1,2,3}, Witold Nazarewicz^{1,2,4}, Erik Olsen^{1,2}, Alexander M. Perhac¹ & Mario Stoitsov^{1,2}[‡]

doi:10.1038/nature11188

The limits of the nuclear landscape

Jochen Erler^{1,2}, Noah Birge¹, Markus Kortelainen^{1,2,3}, Witold Nazarewicz^{1,2,4}, Erik Olsen^{1,2}, Alexander M. Perhac¹ & Mario Stoitsov^{1,2}[‡]

doi:10.1038/nature11188

The limits of the nuclear landscape

Jochen Erler^{1,2}, Noah Birge¹, Markus Kortelainen^{1,2,3}, Witold Nazarewicz^{1,2,4}, Erik Olsen^{1,2}, Alexander M. Perhac¹ & Mario Stoitsov^{1,2}[‡]

doi:10.1038/nature11188

Proton number, Z

t : 0.00e+00 s / T : 10.96 GK / ρ_b : 8.71e+12 g/cm³

from Watts et al., RMP (2016) NASA/Goddard/LIGO/Virgo

Multi-messenger era: neutron star merger GW170817 gravitational wave signal: provides contraints on neutron star radii

short gamma-ray burst + kilonova light curve: decay of r-process nuclei

from Watts et al., RMP (2016) NASA/Goddard/LIGO/Virgo

Hierarchy of degrees of freedom

Emergent phenomena:

Protons and neutrons from QCD

Nuclear forces

Nuclear saturation, shell structure, and clusters

Large scattering length (universal) physics

Can we describe these phenomena quantitatively with theoretical uncertainties?

Can we connect each level in the tower back to QCD?

Hierarchy of degrees of freedom

Tower of effective field theories

Chiral EFT: nucleons, pions

Pionless EFT: nucleons only (low-energy few-body) or nucleons + clusters (halo EFT)

EFT for heavy nuclei: collective degrees of freedom

EFT at Fermi surface: Fermi liquid theory, superconductivity

EFT for nuclear DFT? densities as degrees of freedom

Chiral effective field theory for nuclear forces

Systematic expansion (power counting) in low momenta $(Q/\Lambda)^n$

Weinberg (1990,91)

based on symmetries of strong interaction (QCD)

long-range interactions governed by pion exchanges (phonons of QCD)

Weinberg, van Kolck (1992-1994), Kaplan, Savage, Wise, Bernard, Epelbaum, Kaiser, Meissner,...

Chiral effective field theory for nuclear forces Systematic expansion (power counting) in low momenta $(Q/\Lambda)^n$

IOP Publishing

Journal of Physics G: Nuclear and Particle Physics

J. Phys. G: Nucl. Part. Phys. 42 (2015) 034028 (20pp)

doi:10.1088/0954-3899/42/3/034028

A recipe for EFT uncertainty quantification in nuclear physics

R J Furnstahl¹, D R Phillips² and S Wesolowski¹

Bayesian uncertainty estimates and model checking

Furnstahl, Phillips, Klos, Wesolowski, Melendez (2015-)

The oxygen anomaly Otsuka et al., PRL (2010)

Ab initio calculations of neutron-rich oxygen isotopes

based on same NN+3N interactions with different many-body methods

CC theory/CCEI Hagen et al., PRL (2012), Jansen et al., PRL (2014)

Multi-Reference In-Medium SRG and IT-NCSM Hergert et al., PRL (2013)

Self-Consistent Green's Functions Cipollone et al., PRL (2013)

Many-body calculations of medium-mass nuclei have smaller uncertainty compared to uncertainties in nuclear forces

Ab initio calculations of nuclei

great progress in last 5 years to access nuclei up to $A \sim 50$

Ab initio calculations

Editors' Suggestion

Structure of the Lightest Tin Isotopes

great progress in last 5 years to access nucle T. D. Morris, J. Simonis, S. R. Stroberg, C. Stumpf, G. Hagen, J. D. Holt, G. R. Jansen, T. Papenbrock, R. Roth, and A. Schwenk Phys. Rev. Lett. **120**, 152503 (2018) – Published 12 April 2018

Tsukiyama, Bogner, AS, PRL (2011), Hergert et al., Phys. Rep. (2016) continuous transformation to block-diagonal form (\rightarrow decoupling)

Tsukiyama, Bogner, AS, PRL (2011), Hergert et al., Phys. Rep. (2016) flow equations to decouple higher-lying particle-hole states

Tsukiyama, Bogner, AS, PRL (2011), Hergert et al., Phys. Rep. (2016) flow equations to decouple higher-lying particle-hole states

Tsukiyama, Bogner, AS, PRL (2011), Hergert et al., Phys. Rep. (2016) flow equations to decouple higher-lying particle-hole states

Valence space IMSRG

Tsukiyama et al. (2012); Bogner et al., PRL (2014); Stroberg et al., PRL (2016), PRL (2018) decouple valence space of few particles followed by exact diagonalization in valence space

Valence space IMSRG

Tsukiyama et al. (2012); Bogner et al., PRL (2014); Stroberg et al., PRL (2016), PRL (2018) decouple valence space of few particles followed by exact diagonalization in valence space

Valence space IMSRG

with ensemble normal ordering to move along isotopic chains

1.0

0.5

0.0

10

20

30

Neutron Number N

 $\mathcal{P}_{ ext{bound}}$

40

enables access to all open-shell nuclei!

Nuclear landscape based on a chiral NN+3N interaction

ab initio is advancing to global theories, limitations due to input NN+3N

Extreme matter in neutron stars

governed by the same strong interactions

Watts et al., RMP (2016)

Chiral EFT calculations of neutron matter

good agreement up to saturation density for neutron matter nonlocal/local int. and different calcs. (MBPT, QMC, SCGF, CC)

slope determines pressure of neutron matter

from Huth, Wellenhofer, AS (2020)

updated 4 April 2016

Neutron star masses from Jim Lattimer

three 2 M_{sun} neutron stars obs. Demorest et al, Nature (2010), Antoniadis et al., Science (2013), $2.08 \pm 0.07 \text{ M}_{\text{sun}}$ Fonseca et al. (2021)

Why are stars stable?

due to their mass, stars would undergo gravitational collapse

stabilized by the pressure of matter they consist of: equation of state \rightarrow hydrostatic equilibrium

For neutrons: pressure of Fermi gas plus strong interactions

Impact on neutron stars Hebeler et al., PRL (2010), ApJ (2013) constrain high-density EOS by causality, require to support 2 M_{sun} star

predicts neutron star radius: 9.7 - 13.9 km for M=1.4 M_{sun} 1.8 - 4.4 ρ_0 modest central densities

speed of sound needs to exceed ~0.65c to get 2 M_{sun} stars Greif et al., ApJ (2020)

Neutron star EOS: chiral EFT plus general extensions

Neutron star radius from GW170817 chiral EFT + general EOS extrapolation: 9.7 - 13.9 km for M=1.4 M_{sun}

NICER results

Neutron star radius from pulse profile modeling

J0030 and J0740 here: Amsterdam analysis Riley et al., ApJL (2019), (2021)

similar results from Illinois-Maryland analysis Miller et al., ApJL (2019), (2021)

Combined LIGO/Virgo and NICER constraints (J0030 only)

Raaijmakers et al., ApJL (2020)

piecewise polytrope extension

Combined merger and NICER constraints

Functional RG: From QCD to intermediate densities based on QCD at high densities symmetric matter ($m_u=m_d$, no s quark, no electroweak interactions) Leonhardt, Pospiech, Schallmo, Braun et al., PRL (2020)

promising consistency between chiral EFT and FRG and pQCD diquark correlations crucial for intermediate densities and high speed of sound

include in addition to chiral EFT: constraints from ASY-EOS and FOPI for neutron and symmetric matter with different functionals

Bayesian multi-messenger framework using EOS draws

Chiral EFT

Mmax

based on chiral EFT (QMC results) with c_s extension

NICER

GW170817

AT2017gfo

GW190425

inclusion of HIC constraints prefers higher pressures, similar to NICER, overall remarkable consistency with chiral EFT and astro constraints!

inclusion of HIC constraints prefers higher pressures, similar to NICER, overall remarkable consistency with chiral EFT and astro constraints!

	Prior	Astro only	HIC only	$\mathbf{Astro}+\mathbf{HIC}$
$P_{1.5n_{\rm sat}}$	$5.59^{+2.04}_{-1.97}$	$5.84^{+1.95}_{-2.26}$	$6.06\substack{+1.85 \\ -2.04}$	$6.25^{+1.90}_{-2.26}$
$R_{1.4}$	$11.96\substack{+1.18 \\ -1.15}$	$11.93\substack{+0.80 \\ -0.75}$	$12.06\substack{+1.13 \\ -1.18}$	$12.01\substack{+0.78 \\ -0.77}$

more HIC information for intermediate densities very interesting!

Exciting era in nuclear physics

Effective field theory of strong interaction + powerful many-body theory

New experimental frontier

New observations in astrophysics

Extreme neutron-rich matter Neutron star

Thanks to our group and collaborators!

Chiral EFT calculations of neutron matter

slope (L parameter) determines pressure of neutron matter

Chiral EFT for coupling to electroweak interactions

Chiral EFT for coupling to electroweak interactions

consistent electroweak one- and two-body currents

magnetic properties of light nuclei Pastore et al. (2012-) B(M1) of ⁶Li Gayer et al., PRL (2021)

Gamow-Teller beta decay of ¹⁰⁰Sn Gysbers et al., Nature Phys. (2019)

two-body currents (2BC) key for quenching puzzle of beta decays

Effective theory for heavy nuclei

near spherical nuclei based on core + phonons + particles/holes as degrees of freedom

Gamow-Teller transitions for single and double-beta decay at LO Coello Perez et al., PRC (2018)

prediction (ET and shell model) for double electron capture on ¹²⁴Xe Coello Perez et al., PLB (2019) first observed by XENON collaboration Aprile et al. Nature (2019)

Impact on neutron stars Hebeler et al., PRL (2010), ApJ (2013)

Equation of state/pressure for neutron-star matter (includes small Y_{e,p})

pressure below nuclear densities agrees with standard crust equation of state only after 3N forces are included

Impact on neutron stars Hebeler et al., PRL (2010), ApJ (2013)

Equation of state/pressure for neutron-star matter (includes small $Y_{e,p}$)

pressure below nuclear densities agrees with standard crust equation of state only after 3N forces are included

extend uncertainty band to higher densities using piecewise polytropes allow for soft regions

EOS constraints from GW170817

