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What is an axion?
In my usage, “axion” = “axion-like particle”, not necessarily the QCD axion. 

The axion is a periodic scalar field, , with  being the decay constant. 

With approximate continuous shift symmetry. Two ways such a field can arise: 

• As a (pseudo-)Nambu-Goldstone boson of a spontaneously broken U(1) global 
symmetry. 

• As a Wilson loop of a higher-dimensional U(1) gauge field, like  

, where the periodicity is inherited from  gauge 

transformations with winding.  

(Could also be higher-form generalizations, , etc.)

a ≅ a + 2π fa fa

a(x) = ∮ dx5A5( ⃗x , x5) A5

∮ dx5dx6B56( ⃗x , x5, x6)



Part 1. Axions and the  Anomalyg − 2

arXiv:2104.03267 with Buen-Abad, Fan, Sun



Axion Basics
 

Axion arises ubiquitously from top-down theory (Svrcek, Witten 2006) and low-
energy phenomenology theories (Peccei, Quinn, Wilczek, Weinberg …..). 

Exact discrete shift symmetry on the field and approximate continuous shift 
symmetry in the axion’s interactions. For example,  

 are  Hermitian matrices in the mass basis. The off-diagonal entries 
could be severely constrained by lepton flavor violation processes (more later). 
First we consider flavor-diagonal entries.  

kL, kR 3 × 3

instanton e↵ects break the axion’s continuous shift symmetry to a discrete shift symmetry,

but this is logically inverted; the axion begins its life as a periodic field, which constrains

the form of its interactions with gauge fields. The literature on axion EFTs often invokes

field redefinitions which are incompatible with the axion’s periodicity. However, when we

introduce simplifying assumptions about the form of our model, we will end up in a setting

extremely close to that of the earlier references. (The earlier references also consider many

details, like RG evolution in the axion EFT, that we do not.)

Working below the scale of electroweak symmetry breaking, we can package the charged

lepton fields into Dirac fermion fields ` (e, µ, or ⌧), with `L ⌘ PL` and `R ⌘ PR` denoting

the left- and right-handed Weyl components. The e↵ective Lagrangian containing the

interactions relevant for our analysis takes the form:
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Here kL and kR are hermitian matrices, j and k are lepton generation numbers that are

implicitly summed over, Fµ⌫ is the electromagnetic field strength, F̃µ⌫ = 1
2✏

µ⌫↵�
F↵� , and

G
a
µ⌫ is the gluon field strength.2 Couplings to quarks could also exist, but will not be

relevant for our analysis and take the same form as the lepton couplings, so we have

suppressed them. The action must be invariant under the gauge transformation a 7!

a + 2⇡fa, which is highly constraining.3 In particular, this is the reason for our choice to

write the scalar a¯̀R`L couplings in the form of a sum over integers n, manifestly respecting

the periodicity. The aF F̃ term in the action is not gauge invariant, but must shift by a

multiple of the periodicity of the QED ✓ term in order for exp(iS) to remain invariant. The

conclusion depends on the global structure of the Standard Model gauge group, (SU(3)C ⇥

SU(2)L ⇥U(1)Y )/�. If � = Z6 or Z3, then c�� must be an integer, whereas if � = Z2 or 1,
then 9c�� must be an integer [28]. We will assume the former: c�� 2 Z. Similarly, gauge

invariance requires that cgg 2 Z and that V (a) must be a periodic function with period

2⇡fa. Notice that derivative couplings like c��;2 are unconstrained by periodicity, and can

give rise to e↵ective contributions to c�� when the axion can be treated as massive, via the

equation of motion @
2
a = �@aV (a) + · · · ⇡ �m

2
aa+ · · · .

Notice that, because c�� and cgg are integers, it is technically natural for an axion

to not couple to photons or gluons (except via higher-derivative terms like c��;2). Such

an assumption needs no more explanation than the fact that neutrinos are electrically

neutral or that the electron does not carry color charge. Loops will induce these quantized

2
An even more general ansatz would allow the axion to couple to the lepton kinetic terms through a

series of harmonics carrying exp(ina/fa) factors. We will briefly comment on this below.
3
In theories of multiple periodic axions, naively integrating out heavier axions sometimes appears to give

an EFT that need not respect shifts of only the light axions. However, physical quantities computed in such

EFTs, in known examples, still respect the requirements of periodicity, and we expect that a su�ciently

careful choice of gauge and field redefinitions can always render the low-energy EFT manifestly periodic.

See, e.g., Refs. [26, 27] for recent discussions along these lines. We will discuss related issues in Secs. 3.2

and 3.3 below.
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 SM charged leptonsℓ :



Low-energy axion EFT for muon g-2

  in lepton mass basiscii = (kR)ii − (kL)ii
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Quantized “Chern-Simons term” 

 is invariant only if  is quantized 
and takes rational value (canonically 
normalized field strength)

eiS cγγ

Side comment: one could encounter an irrational . For example, the infrared contribution 
to the leading order coupling of QCD axion to the photons through mixing with the pions 
is irrational. But no periodicity violation! The reason is that the leading order coupling and 
high-order couplings (e.g: ) could be repacked into a periodic function. 
(Appendix A of 1709.06085 Agrawal, Fan, Reece and Wang).

cγγ

a2FF̃, a3FF̃



In light of the strong experimental constraints on flavor-violating o↵-diagonal derivative

couplings, we will henceforth assume that kL and kR are diagonal in the lepton mass basis.

Equivalently, the flavor diagonal axion coupling is then5

cii

2
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Our focus is not the QCD axion, and the coupling to gluons will not be important for our

phenomenological analysis. Furthermore, as mentioned above, it is technically natural to

set it to zero. Hence, we will neglect cgg as well. (We will also mostly neglect couplings

to quarks, which may exist but do not a↵ect our observables of interest.) We are left with

only the diagonal derivative couplings (2.6) and the couplings to photons. Summarizing,

then, the axion EFT that we will work with in the remainder of the paper has the form
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This EFT can be valid up to energy scales . 4⇡fa. We emphasize that the truncation to

only flavor-conserving couplings is not justified on general EFT grounds in the infrared.

An ultraviolet completion must have some structure, such as flavor symmetries, to explain

the suppression of the flavor-violating o↵-diagonal couplings. Because our main goal is to

argue that axion explanations of the muon g � 2 anomaly face a variety of challenges in

their UV completion, this only strengthens our main conclusion.

2.4 Parameter space for explaining muon g � 2

In this e↵ective Lagrangian, there are three leading diagrams contributing to the lepton

g � 2, as depicted in Fig. 1.

1 2 3

Figure 1. Feynman diagrams for contributions to lepton g� 2. The cyan dots represent insertions
of a derivative coupling of the form (2.6). The magenta dot represents an insertion of an aF F̃

coupling. Unmarked vertices are ordinary gauge interactions.

5
Note that using equation of motion or equivalently with chiral rotations of fermions, this operator could

be rewritten as a combination [16, 19]:
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where the dots represent similar terms involving Z boson and terms higher order in a/fa.
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Chang et.al 2001; Marciano et.al. 2016; Bauer et.al. 2017. 
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light fermion loop could 
not be reduced to a 
contact interaction. 
Buen-Abad, Fan, Reece 
and Sun 2021
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Schematically, the contributions of these three diagrams to aµ are
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where for diagram (3), cii is the axion coupling to a fermion `i with a mass mi running

in the loop. Note that the first diagram always has the wrong-sign contribution to muon

g � 2. The remaining two contributions actually contribute at the same order (due to the

fact that c�� always comes with a one-loop factor). They could have the correct sign if

cµµ and c�� (or cii) have opposite signs. Thus to explain the muon g � 2 anomaly, we

need to have at least one of the latter two diagrams to balance against the first one. This

possibility has been discussed in Refs. [14–16].

One technical subtlety, which is not entirely addressed in the literature, is that diagram

(3) with fermions of all possible masses running in the inner loop has not been computed.

In Refs. [16, 19], the vertex function from the fermion loop with the axion and the two

photons all on mass shell has been computed first and then inserted into diagram (2) to

get an approximated answer for the third diagram. Yet the more proper treatment is as

follows: a) compute the fermion loop contribution to the vertex function with only one

photon on-shell and do not impose the on-shell conditions for the axion and the other

photon; b) insert the vertex function into diagram (2) to get the final answer.6 With the

shift-invariant axion-fermion coupling in Eq. (2.6), we follow the recipe above and perform

a two-loop calculation for diagram (3). The full results are included in App. A. In two

interesting limits, we have
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where ⇤ is the UV cuto↵ scale. Note that in the limit mµ ⌧ mi ⌧ ⇤, the contribution

is from a heavy fermion loop and one would expect that it should decouple. The result

above is from the renormalization of aµ due to the axion-fermion couplings at the two-loop

order between mi and ⇤. The formula for diagrams (1) and (2) have been computed in

Ref. [15, 16] and we will include them in App. B.

To be more quantitative, we consider two scenarios below.

• If we only include non-zero cµµ and c�� (all three diagrams in Fig. 1 contribute),

then the parameter space to explain muon g � 2 for ma = 1 and 5 GeV is in Fig. 2.

Allowing cµµ to vary, we show the minimal c��/fa needed to explain the muon g � 2

anomaly as a function of ma in Fig. 3. The allowed parameter space, consistent with

6
Ref. [14] did a full two-loop calculation with the operator a¯̀i�5`, following this strategy but assuming

the fermions in the loop being heavy. We also want to consider the case with a fermion lighter than the

muon, i.e., an electron, running in the loop.
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Chang et.al 2001; Marciano et.al. 2016; Bauer et.al. 2017.  

Different combinations of the axion couplings: Darme et.al 2020 



Case 1: only  cμμ , cγγ
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Case 1: only  cμμ , cγγ

Buen-Abad, Fan, Reece, Sun, 2021
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Figure 2. Allowed regions (red) in the (cµµ/fa, c��/fa) plane to explain muon g � 2 at 2� level,
for ma = 1 GeV (left) and ma = 5 GeV (right). We set all the other axion couplings to be zero.
The red band corresponds to cuto↵ scale ⇤ = 1 TeV while the blue band corresponds to ⇤ = 100
GeV.

current experimental bounds, is then

c��/cµµ < 0, ma ⇢ (40MeV � 200GeV)����
fa

c��

���� . (10 � 25)GeV,

����
fa

cµµ

���� . 100GeV . (2.10)

• If we only include non-zero cµµ and cee (contributions from diagram (1) and (3) in

Fig. 1), the parameter space that is consistent with observed muon and electron g�2

values is shown in Fig. 4. From it, we could see that

ma & 2GeV, cee/cµµ < 0,����
fa

cµµ

���� . 100GeV,

����
fa

cee

���� . 25GeV for ma = 5GeV . (2.11)

Thus a generic feature for the explanation of axion explanation for g � 2 is that we need

large axion couplings to muons as well as large axion couplings to electrons or to photons.

3 Large axion-fermion couplings

As shown in the previous section, we need very large axion couplings to fermions or photons

to explain the muon g � 2 discrepancy. In this section, we will argue that the models that

generate a large coupling between the axion and SM leptons always contain light charged

particles with masses around or below 100 GeV, and additional scalars that can both a↵ect

the value of g � 2 itself and potentially mix with the Higgs boson.

Before discussing axion coupling to fermions, we want to comment on the axion-photon

coupling first. A large axion coupling to photons, i.e., fa/ |c�� | . (10 - 25) GeV, as is needed
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Case 2: only  cμμ, cee

1 2 3

Figure 1. Feynman diagrams for contributions to lepton g� 2. The cyan dots represent insertions
of a derivative coupling of the form (2.6). The magenta dot represents an insertion of an aF F̃

coupling. Unmarked vertices are ordinary gauge interactions.

One technical subtlety, which is not fully addressed in the literature, is a direct cal-

culation of diagram (3) with fermions of all possible masses running in the inner loop. 7

In Refs. [17, 21], the vertex function from the fermion loop with the axion and the two

photons all on mass shell has been computed first and then inserted into diagram (2) to

get an approximated answer for the third diagram. Yet the more proper treatment is as

follows: a) compute the fermion loop contribution to the vertex function with only one

photon on-shell and do not impose the on-shell conditions for the axion and the other

photon; b) insert the vertex function into diagram (2) to get the final answer.8 With the

shift-invariant axion-fermion coupling in Eq. (2.6), we follow the recipe above and perform

a two-loop calculation for diagram (3). The full results are included in App. A. In two

interesting limits, we have
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where ⇤ is the UV cuto↵ scale. Note that in the limit mµ ⌧ mi ⌧ ⇤, the contribution

is from a heavy fermion loop and one would expect that it should decouple. The result

above is from the renormalization of aµ due to the axion-fermion couplings at the two-loop

order between mi and ⇤. The formula for diagrams (1) and (2) have been computed in

Ref. [16, 17] and we will include them in App. B.

To be more quantitative, we consider two scenarios below.

• If we only include non-zero cµµ and c�� (all three diagrams in Fig. 1 contribute),

then the parameter space to explain muon g � 2 for ma = 1 and 5 GeV is in Fig. 2.

Allowing cµµ to vary, we show the minimal c��/fa needed to explain the muon g � 2

anomaly as a function of ma in Fig. 3. The allowed parameter space, consistent with

7
A calculation of the two-loop contribution to electron g�2 was carried out in a di↵erent operator basis

and then transformed to our basis in Ref. [39], which result agrees with ours.
8
Ref. [15] did a full two-loop calculation with the operator a¯̀i�5`, following this strategy but assuming

the fermions in the loop being heavy. We also want to consider the case with a fermion lighter than the

muon, i.e., an electron, running in the loop.
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coupling. Unmarked vertices are ordinary gauge interactions.
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photons all on mass shell has been computed first and then inserted into diagram (2) to

get an approximated answer for the third diagram. Yet the more proper treatment is as

follows: a) compute the fermion loop contribution to the vertex function with only one

photon on-shell and do not impose the on-shell conditions for the axion and the other

photon; b) insert the vertex function into diagram (2) to get the final answer.8 With the

shift-invariant axion-fermion coupling in Eq. (2.6), we follow the recipe above and perform

a two-loop calculation for diagram (3). The full results are included in App. A. In two

interesting limits, we have

a
(3)
µ ⇡ �

cµµcii↵

8⇡3

m
2
µ

f2
a

ln

✓
⇤2

m
2
i

◆
, mµ ⌧ ma ⌧ mi ⌧ ⇤,

⇡ �
cµµcii↵

8⇡3

m
2
µ

f2
a

✓
ln

⇤2

m2
a
+ 2

◆
, mi ⌧ mµ ⌧ ma ⌧ ⇤, (2.9)

where ⇤ is the UV cuto↵ scale. Note that in the limit mµ ⌧ mi ⌧ ⇤, the contribution

is from a heavy fermion loop and one would expect that it should decouple. The result

above is from the renormalization of aµ due to the axion-fermion couplings at the two-loop

order between mi and ⇤. The formula for diagrams (1) and (2) have been computed in

Ref. [16, 17] and we will include them in App. B.

To be more quantitative, we consider two scenarios below.

• If we only include non-zero cµµ and c�� (all three diagrams in Fig. 1 contribute),

then the parameter space to explain muon g � 2 for ma = 1 and 5 GeV is in Fig. 2.

Allowing cµµ to vary, we show the minimal c��/fa needed to explain the muon g � 2

anomaly as a function of ma in Fig. 3. The allowed parameter space, consistent with

7
A calculation of the two-loop contribution to electron g�2 was carried out in a di↵erent operator basis

and then transformed to our basis in Ref. [39], which result agrees with ours.
8
Ref. [15] did a full two-loop calculation with the operator a¯̀i�5`, following this strategy but assuming

the fermions in the loop being heavy. We also want to consider the case with a fermion lighter than the

muon, i.e., an electron, running in the loop.
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Δa(1)
μ ∝ −

c2
μμ

16π2
, Δa(3)

μ ∝ −
cμμceeα

16π3

⇒ cμμ/cee < 0

cμμ cμμ

cμμ

cee



Case 2: only  cμμ, cee

Figure 2. Allowed regions (red) in the (cµµ/fa, c��/fa) plane to explain muon g � 2 at 2� level,
for ma = 1 GeV (left) and ma = 5 GeV (right). We set all the other axion couplings to be zero.
The red band corresponds to cuto↵ scale ⇤ = 1 TeV while the blue band corresponds to ⇤ = 100
GeV.

current experimental bounds, is then

c��/cµµ < 0, ma ⇢ (40MeV � 6GeV)����
fa

c��

���� . (10 � 20)GeV,

����
fa

cµµ

���� . 100GeV . (2.10)

• If we only include non-zero cµµ and cee (contributions from diagram (1) and (3) in

Fig. 1), the parameter space that is consistent with observed muon and electron g�2

values is shown in Fig. 4. From it, we could see that

ma & 2GeV, cee/cµµ < 0,����
fa

cµµ

���� . 100GeV,

����
fa

cee

���� . 25GeV for ma = 5GeV . (2.11)

Thus a generic feature for the explanation of axion explanation for g � 2 is that we need

large axion couplings to muons as well as large axion couplings to electrons or to photons.

3 Large axion-fermion couplings

As shown in the previous section, we need very large axion couplings to fermions or photons

to explain the muon g � 2 discrepancy. In this section, we will argue that the models that

generate a large coupling between the axion and SM leptons always contain light charged

particles with masses around or below 100 GeV, and additional scalars that can both a↵ect

the value of g � 2 itself and potentially mix with the Higgs boson.

Before discussing axion coupling to fermions, we want to comment on the axion-photon

coupling first. A large axion coupling to photons, i.e., fa/ |c�� | . (10 - 20) GeV, as is needed
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Buen-Abad, 
Fan, Reece, 
Sun, 2021

Muon g-2

Electron g-2 ( : Rb 2020) α



Explanation with off-diagonal couplings
Off-diagonal coupling, such as , was used to explain muon , as well as 
electron  based on measurement of  using Cs atoms (Parker et.al 2018).  

ceμ g − 2
g − 2 α

Bauer, Neubert, Renner, Schnubel and Thamm 2019; Cornelia, Paradisi, Sumensari 2019.

1 2 3

Figure 1. Feynman diagrams for contributions to lepton g� 2. The cyan dots represent insertions
of a derivative coupling of the form (2.6). The magenta dot represents an insertion of an aF F̃

coupling. Unmarked vertices are ordinary gauge interactions.
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In Refs. [17, 21], the vertex function from the fermion loop with the axion and the two

photons all on mass shell has been computed first and then inserted into diagram (2) to

get an approximated answer for the third diagram. Yet the more proper treatment is as

follows: a) compute the fermion loop contribution to the vertex function with only one

photon on-shell and do not impose the on-shell conditions for the axion and the other

photon; b) insert the vertex function into diagram (2) to get the final answer.8 With the

shift-invariant axion-fermion coupling in Eq. (2.6), we follow the recipe above and perform

a two-loop calculation for diagram (3). The full results are included in App. A. In two

interesting limits, we have
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where ⇤ is the UV cuto↵ scale. Note that in the limit mµ ⌧ mi ⌧ ⇤, the contribution

is from a heavy fermion loop and one would expect that it should decouple. The result

above is from the renormalization of aµ due to the axion-fermion couplings at the two-loop

order between mi and ⇤. The formula for diagrams (1) and (2) have been computed in

Ref. [16, 17] and we will include them in App. B.

To be more quantitative, we consider two scenarios below.

• If we only include non-zero cµµ and c�� (all three diagrams in Fig. 1 contribute),

then the parameter space to explain muon g � 2 for ma = 1 and 5 GeV is in Fig. 2.

Allowing cµµ to vary, we show the minimal c��/fa needed to explain the muon g � 2

anomaly as a function of ma in Fig. 3. The allowed parameter space, consistent with

7
A calculation of the two-loop contribution to electron g�2 was carried out in a di↵erent operator basis

and then transformed to our basis in Ref. [39], which result agrees with ours.
8
Ref. [15] did a full two-loop calculation with the operator a¯̀i�5`, following this strategy but assuming

the fermions in the loop being heavy. We also want to consider the case with a fermion lighter than the

muon, i.e., an electron, running in the loop.
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When  ,  ma > mμ Δaμ ∝
c2

eμ

16π2
> 0

ceμ ceμ



Electron  anomaly is in doubt given the latest measurement of  using Rb 
atoms (Morel et.al 2020).  

This explanation for muon  is ruled out by muonium oscillation Endo, Iguro 
and Kitahara 2020 .

g − 2 α

g − 2



Recap

To use flavor-diagonal axion-coupling to the SM particles (i.e., muon and 
electron/photon) to explain muon , we need them to be huge:  

Cutoff of the axion EFT  is also low. 

g − 2

4π fa

fa
|c |

≲ 25 GeV



Enhancing axion-photon couplings
new d.o.f, such as charged matter, with masses of 

. E.g. KSVZ model where one integrates out heavy charged 
vector-like fermions with masses of order  , assuming that these fermions have 
order one charges and PQ charges. Kim, Shifman, Vainshtein, Zakharov 1980 

1. Large charges  

— Landau pole of  : hypercharge  for pole above Planck scale; 

— Highly charged fermions may not decay quickly. 

fa/ |cγγ | ≲ (10 − 25) GeV ⇒
𝒪(10 − 25) GeV

fa

U(1)Y ≲ 6



2.  Large PQ charges 

Masses of the fermions are exponentially suppressed

E.g.:  ,  

: PQ scalar with VEV   and unit PQ charge, : vector-like leptons , : PQ 

charge of . Mass of : .   

One could UV complete it by adding a chain of vector-like fermions or 
clockworking. Agrawal, Fan, Reece and Wang 2017

ϕm

Λm−1
LL̃

ϕ fa L(L̃) m

L(L̃) L(L̃) fa( fa
Λ )

m−1



3. Alignment/clockwork mechanism: enhance  of the axion compared to the 
fundamental period  . Dvali 2007; Kim, Nilles, Peloso 2014; Choi, Im; Kaplan, Rattazzi 
2015

fa
Fa

φ1

φ2

· · ·

FIG. 1: Flat direction in the fundamental domain of axion fields in the limit Λ2 = 0. Even

though the fundamental domain is sub-Planckian with fi ! MP l, the flat direction can have a

super-Planckian length if one (or both) of ni/gcd (n1, n2) is large enough. The right panel depicts

the flat direction in the fundamental domain for which the axion periodicity is manifest.

which can be identified as the inflaton direction. One easily finds that the length of this

periodic flat direction is given by

!flat =
2π
√

n2
1f

2
2 + n2

2f
2
1

gcd (n1, n2)
, (12)

where gcd (n1, n2) denotes the greatest common divisor of n1 and n2. This shows that

a super-Planckian flat direction with !flat " MP l " fi can be developed on the two-

dimensional sub-Planckian domain if

n1

gcd (n1, n2)
or

n2

gcd (n1, n2)
"

MP l

fi
" 1. (13)

In Fig. 1, we depict the flat direction in the fundamental domain of axion fields, which has

a length given by (12). Since the axionic inflaton of natural inflation rolls down along this

periodic flat direction, its effective decay constant is bounded as

feff ≤
!flat
2π

,

which means that at least one of ni should be as large as gcd (n1, n2)feff/fi.

Turning on the second axion potential

∆V = Λ4
2

[

1− cos

(

m1φ1

f1
+

m2φ2

f2

)]

, (14)

a nontrivial potential is developed along the periodic flat direction having a length (12).

Even when !flat " MP l, natural inflation is not guaranteed as the inflaton potential induced

6

Choi, Kim, Yun ’14  
Fa

Fa

fa



Applications to get photophilic axion: Farina, Pappadopulo, Rompineve, Tesi 2016; 
Agrawal, Fan, Reece, Wang 2017.  

In theses models (mostly KSVZ-type), the fundamental period of the axion 

                                     

while  could be much larger. But one still needs new charged matter with 
masses of order  in these models.  

Fa ∼ fa / cγγ ∼ 𝒪(10 − 25) GeV

fa
Fa

A possible exception: clockworking  Higgses ( ) in the DFSZ-type model 
(Dine, Fischler, Srednicki, Zhitnitsky 1981) so that the Higgs coupling to one flavor of 
SM fermion has a huge PQ charge . Darme et.al 2020

n n ∼ 𝒪(10)

∼ 2n



KSVZ-type model: mixing with vector-like fermions

ℒ ⊃ χ†(iσ̄μ∂μ)χ − y χ̃ Φs Ec−M χ̃χ

SM right-handed lepton

PQ scalar: Φs = fa/ 2 eia/fa

 heavy vector-like 
fermions with mass 
χ, χ̃ :

M

Integrating out :  , we have . Then to explain 

muon g-2, . 

χ χ = −
yΦsEc

M
−

y fa
M

2 ∂μa

2fa
Ec†σ̄μEc

M ≲ 125 GeV ( y

4π ) ( 1/25 GeV
cμμ/fa )

Enhancing axion-fermion couplings



Three issues: 

1. Always generate axion-fermion couplings of the same sign (case 2 doesn’t 
work; case 1 might work but need to introduce new matter to generate large 
axion-photon couplings). 

2. Light vector-like fermions with mass ~ (100) GeV;  

3. The vector-like fermions have sizable contributions to muon . 

𝒪

g − 2

Δaμ ≈ 11 × 10−10 y2 ( 100 GeV
M )

2



for c = c�� or cee. That is, we expect fa ⌧ vEW. This means that we should somehow

sequester PQ breaking from electroweak breaking, because axion couplings of order 1/vEW
are too small to account for the observed value of g� 2. The value of fa also suggests that

the radial components of the PQ scalars, ⇢s ⌘ rs � vs, have masses of order ⇠ O(20 GeV),

which could also be important for their phenomenology.

One way to achieve the necessary sequestering is to arrange for a hierarchy in the

size of the scalar VEVs, v1 � v2, v�. Then the Nambu-Goldstone mode eaten by the Z

boson will be dominantly ✓1. This leaves two other modes, dominantly contained in ✓2

and ✓�, one combination of which will become the axion. If v2, v� ⇠ fa, then this can

be consistent with fa ⌧ vEW. Because the top quark has a large coupling to electroweak

symmetry breaking, it should couple to H1. We are interested in obtaining significant

lepton couplings to the axion, so we wish the leptons to acquire their mass from H2. This

is compatible with either a Type II 2HDM, in which H1 gives mass to up-type quarks and

H2 gives mass to down-type quarks and leptons, or to a lepton-specific 2HDM, in which

H1 gives mass to all quarks and H2 gives mass to leptons. Because the phenomenology of

the model becomes more complicated when the axion interacts significantly with quarks,

we will choose the latter route, in which all axion couplings to quarks will be suppressed by

the small ratio fa/vEW. For clarity, in the remaining discussion we will denote the Higgs

that gives mass to quarks by Hq and the Higgs that gives mass to leptons by Hl. We

summarize the scalar content of the model in the Table 1.

Field SU(2)L U(1)Y U(1)PQ

Hl 2 �
1
2 1

Hq 2
1
2 1

� 1 0 1

Table 1. Scalar sector content: Hq is the Higgs doublet that couples to the SM quarks, Hl is the
doublet coupling to the SM leptons, and � is the SM-singlet PQ-charged scalar.

Here we have used the freedom to choose any linear combination of PQ and hypercharge

to assign definite values of +1 for the PQ charges of Hl and Hq. The important interactions

for our purposes are:

V0(|Hl|, |Hq|, |�|, |HlHq|) +
⇣
�ql�HlHq�

†2 + yuHqQU
c + ydH

†
qQD

c + yeHlLE
c + h.c.

⌘
.

(3.14)

One could take, for example, U c
, D

c
, and E

c to have PQ charge �1,+1, and �1 respectively.

The Z boson eats the linear combination v
2
q✓q � v

2
l ✓l, and (as noted above) the �ql�

term gives a mass to the linear combination ✓l + ✓q � 2✓�. The light axion mode must

be orthogonal (in the metric defined by the kinetic terms of the ✓ fields) to both of these

combinations [50]. If we define canonically normalized fields ⇠q = vq✓q, ⇠l = vl✓l, and

⇠� = v�✓�, then one can calculate that the light axion mode is

a =
1

fa

✓
v�⇠� + 2

vqvl

v
2
EW

(vq⇠l + vl⇠q)

◆
, (3.15)
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for c = c�� or cee. That is, we expect fa ⌧ vEW. This means that we should somehow
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, D
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, and E

c to have PQ charge �1,+1, and �1 respectively.

The Z boson eats the linear combination v
2
q✓q � v

2
l ✓l, and (as noted above) the �ql�

term gives a mass to the linear combination ✓l + ✓q � 2✓�. The light axion mode must

be orthogonal (in the metric defined by the kinetic terms of the ✓ fields) to both of these

combinations [50]. If we define canonically normalized fields ⇠q = vq✓q, ⇠l = vl✓l, and

⇠� = v�✓�, then one can calculate that the light axion mode is

a =
1

fa
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(vq⇠l + vl⇠q)
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where f
2
a = v

2
� +4v2qv

2
l /v

2
EW. In particular, assuming that vEW ⇡ vq � vl, v�, this reduces

to

a ⇡
1q

v
2
� + 4v2l

(v�⇠� + 2vl⇠l) + O(vl,�/vEW). (3.16)

As promised, the light axion is independent of the mode coupling to quarks up to corrections

suppressed by the ratio of small VEVs to the large VEV. Of course, at the level that we

are working so far, this axion is massless, so we must also add some explicit PQ-violating

terms to V . If these terms involve only � and are relatively small, then we expect that

their e↵ects can have little e↵ect on the axion’s couplings to Standard Model fields.

We rewrite the fermion couplings in our preferred form by following the recipe outlined

in Subsec. 3.2. In this way, we obtain the following derivative couplings of the light axion:

Le↵ � (@µ✓l)E
c†
�̄
µ
E

c + (@µ✓q)U
c†
�̄
µ
U

c
� (@µ✓q)D

c†
�̄
µ
D

c

7!
2

fa

v
2
q

v
2
EW

(@µa)E
c†
�̄
µ
E

c +
2

fa

v
2
l

v
2
EW

(@µa)
⇣
U

c†
�̄
µ
U

c
� D

c†
�̄
µ
D

c
⌘
. (3.17)

In the second line, the 7! symbol indicates that we have projected onto only the coupling

of the light axion, dropping the contributions that are related to the other, decoupled

linear combinations of phases. As expected, we obtain a derivative coupling of the axion

to leptons, suppressed by the low scale fa (because vq ⇡ vEW), while the axion coupling to

quarks is further suppressed by the square of the ratio of small to large VEVs.

Notice that, in the absence of any additional Higgs bosons, these couplings are generation-

independent: all the leptons obtain masses from the Higgs Hl, and so all have the same

phase ✓l that must be rotated away. Hence, the minimal version of this model predicts

equal couplings to electrons and muons. Models with additional Higgs bosons could accom-

modate di↵erent couplings, at the cost of adding more possible collider-accessible particles

to the theory.

In addition, the chiral rotations we have performed generate couplings of ✓l and ✓q to

the photon. They do not generate couplings to the gluons, because the quark fields U c and

D
c were rotated by equal and opposite phases. Taking account of the three generations

and the color and charge factors, we obtain a coupling

3(✓l + ✓q)
↵

4⇡
Fµ⌫F̃

µ⌫
7!

6

fa

v
2
q + v

2
l

v
2
EW

↵

4⇡
aFµ⌫F̃

µ⌫ =
6

fa

↵

4⇡
aFµ⌫F̃

µ⌫
. (3.18)

Again, the 7! indicates projecting onto the light axion. Here we recognize that indeed,

fa plays the role of an axion decay constant, and the coe�cient is an integer—reflecting

that the light axion combination does, in fact, behave as a periodic field in the low-energy

e↵ective theory.

The model makes a correlated prediction for the axion’s derivative couplings to leptons

and its coupling to gauge fields. In particular, because E
c is a left-handed Weyl fermion,

when we compare Eq. (3.17) to Eq. (2.7) we find that cii has the opposite sign as c�� .

However, one could always shift the photon coupling, without a↵ecting the derivative

coupling to leptons, by adding additional KSVZ-like fermions, as discussed above.

– 16 –

DFSZ model:  two Higgs doublets with PQ charges

suppressed coupling to quarks: 
vl ≪ vEW

large coupling to leptons: fa ∼ vΦ ≲ 25 GeV, vq ∼ vEW

vl
vq

vΦ

VEV

The Z boson eats the linear combination v
2
q✓q � v

2
l ✓l, and (as noted above) the �ql�

term gives a mass to the linear combination ✓l + ✓q � 2✓�. The light axion mode must

be orthogonal (in the metric defined by the kinetic terms of the ✓ fields) to both of these

combinations [57]. If we define canonically normalized fields ⇠q = vq✓q, ⇠l = vl✓l, and

⇠� = v�✓�, then one can calculate that the light axion mode is

a =
1

fa

✓
v�⇠� + 2

vqvl

v
2
EW

(vq⇠l + vl⇠q)

◆
, (3.15)

where f
2
a = v

2
� +4v2qv

2
l /v

2
EW. In particular, assuming that vEW ⇡ vq � vl, v�, this reduces

to
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E

c + (@µ✓q)U
c†
�̄
µ
U

c
� (@µ✓q)D

c†
�̄
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2
q

v
2
EW
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c†
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E

c +
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2
l
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(@µa)
⇣
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c†
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� D
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⌘
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In the second line, the 7! symbol indicates that we have projected onto only the coupling

of the light axion, dropping the contributions that are related to the other, decoupled

linear combinations of phases. As expected, we obtain a derivative coupling of the axion

to leptons, suppressed by the low scale fa (because vq ⇡ vEW), while the axion coupling to

quarks is further suppressed by the square of the ratio of small to large VEVs.

Notice that, in the absence of any additional Higgs bosons, these couplings are generation-

independent: all the leptons obtain masses from the Higgs Hl, and so all have the same

phase ✓l that must be rotated away. Hence, the minimal version of this model predicts

equal couplings to electrons and muons. Models with additional Higgs bosons could accom-

modate di↵erent couplings, at the cost of adding more possible collider-accessible particles

to the theory.

In addition, the chiral rotations we have performed generate couplings of ✓l and ✓q to

the photon. They do not generate couplings to the gluons, because the quark fields U c and

D
c were rotated by equal and opposite phases. Taking account of the three generations

and the color and charge factors, we obtain a coupling

3(✓l + ✓q)
↵

4⇡
Fµ⌫F̃

µ⌫
7!

6

fa

v
2
q + v

2
l

v
2
EW

↵

4⇡
aFµ⌫F̃

µ⌫ =
6

fa

↵

4⇡
aFµ⌫F̃

µ⌫
. (3.18)

Again, the 7! indicates projecting onto the light axion. Here we recognize that indeed,

fa plays the role of an axion decay constant, and the coe�cient is an integer—reflecting
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coupling to photons:



Three issues: 

1. Always generate axion-fermion couplings and axion-photon coupling of the 
same sign;  

2. Light charged Higgs boson and light radial mode of  mixes with the Higgs: 
;  

3. Additional Higgs bosons contribute to muon g-2 as well.  

A possible exception as before: clockworking  Higgses ( ) so that the 
Higgs coupling to the lepton has a huge PQ charge . The additional Higgses 
are relatively heavy and have suppressed VEV  

Darme et.al 2020 

Φ
h → aa, a → γγ, ℓ+ℓ−

n n ∼ 𝒪(10)
2n

vk ∼
v2

k−1

m2
k

vEW, k = 2,⋯n



Part 1 Conclusion
A heavy axion-like particle with couplings to leptons and photons provides a 
tantalizing potential solution to muon .  

Yet to get these couplings, usually new states (charged or neutral but mixed 
with the Higgs boson) with masses of order a few 10’s to a few 100’s of GeV 
have to be present.  

It is not a no-go theorem, but suggests that to consider an axion’s contribution 
to muon , one needs to consider more complete models specifying the 
origins of the couplings and other relevant d.o.f.  These new d.o.f. could be 
strongly constrained and also contribute to muon . 

g − 2

g − 2

g − 2



Part II. Axion mass from monopole loops

arXiv:2105.09950 with Fan, Fraser, Stout



New origin of axion potential

It is well known that for axion coupling to non-Abelian gauge group, 
instantons generate a potential for axion. 

Yet for axion coupling to Abelian gauge fields, axion could still acquire a 
potential through loops of magnetic monopoles.                                        
Fan, Fraser, Reece and Stout 2021

Existence of magnetic monopoles: “completeness hypothesis”           
Polchinski 2003



Monopole refresher: ’t Hooft-Polyakov

 symmetry broken by an adjoint vev: classical solution of 
’t Hooft-Polyakov (’t H-P) monopole.

                                                       

                                                       

                                                        
 
 
The solution has 4 zero modes (collective coordinates): 3 translations, 1 U(1) (large 
gauge transformation, not vanishing at infinity).

review: Shifman, Advanced Topics in Quantum Field Theory, Chapter 4

SU(2) → U(1)

ϕa = v ̂r aH(r), Aa
i = ϵaij 1

r
̂r jF(r)

r → ∞ : H(r) → 1, F(r) → 1

r → 0 : H(r) → 0, F(r) → 0
Shifman



Possible charged states: not only magnetic monopoles, but also dyons (particles 
with both magnetic and electric charges). 

E.g., in ’t H-P case, a residual unbroken global  rotation could be realized by a 
compact real scalar. In 4d, this is described by QM of a particle living on a circle, 

 (dyonic collective coordinate). This has a spectrum labelled by integers. 
The ground state is the magnetic monopole (with no electric charge) and the 
excited states are dyons.  

U(1)

σ ≅ σ + 2π

0e

{Dyon tower

⋯

ground state m2
0 = m2

M

m2
n = m2

M + m2
Δn2

±e

±2e

±3e

excited states



Witten effect

Given   (  and : unit of electric charge) and a 
point magnetic monopole (no electric charge when ) at the origin, the 
Maxwell equations are modified: 

e2θ
8π2

F ∧ F =
e2θ

16π2
FμνF̃μν θ = a/fa e

θ = 0

Magnetic Gauss’ law: ,  : unit of magnetic charge;  due to 
Dirac quantization condition;

∇ ⋅ B =
gm

4π
δ(r) gm egm = 2π

Electric Gauss’ law:  ∇ ⋅ E +
e2

4π2
θ (∇ ⋅ B) = 0 ⇒

QE

e
= −

θ
2π

A monopole obtains an effective electric charge in the presence of an axion 
background! 

Witten, 1979



In general, the dyon electric charge is shifted to be 

QE

e
= n −

θ
2π

, n = 0, ± 1, ± 2,⋯

The corresponding energy spectrum will be modified as well! 

L =
1
2

·σ2 +
θ

2π
·σ

Conjugate momentum:   Πσ = ·σ +
θ

2π

: dyonic collective coordinateσ

Hamiltonian:  H =
1
2 (Πσ −

θ
2π )

2

⇒ En =
1
2 (n −

θ
2π )

2

1
2 (−i∂σ −

θ
2π )

2

ψn = Enψn



The corresponding energy spectrum 

m2
n − m2

M = m2
Δ (n −

θ
2π )

2

ground state monopole mass at θ = 0

Integrating out these states  vacuum potential for the axion ! ⇒ θ

periodicity through “monodromy” or 
rearrangement of the eigenstates: 

n → n + 1, θ → θ + 2π



Side note: different from the axion potential generated by monopole and anti-
monopole plasma! Fischler, Preskill 1983; Kawasaki et.al; Nomura et.al. 2015…

A plasma of monopoles and anti-monopoles could be generated through Kibble-
Zurek mechanism in the early Universe. 

Here we talk about the axion potential from the virtual effects of monopole (dyon) 
loops. 



Our calculation can be carried out from two viewpoints:

1. Integrate out the dyons to get a Coleman-Weinberg potential for axion.

2. Do the path integral over all monopole loops. 

Related by Poisson resummation

2

We can estimate l� by comparing (3) to the energy of
the classical field configuration outside a monopole in an
axion background, following [29], from which we obtain:

l� ⇠
4⇡

e2k2
r⇤ , r⇤ = max(rc, r0), (4)

where rc = ⇡/(e2mm) is the classical radius of the mag-
netic monopole (of mass mm) and r0 = ke/(8⇡2f) is
the length scale over which the axion field is screened
near the monopole core. In the special case of critical
’t Hooft-Polyakov monopoles [30, 31], we begin with an
SU(2) gauge theory with coupling g. Matching to (1)
gives e = g/2 and k = 2, while matching to (2) (when
rc � r0) gives l� = mm/m2

w where mm = 4⇡v/g and
mw = gv is the W boson mass. (We have chosen the
order-one coe�cient in (4) to be accurate for this case,
but it will di↵er in general theories.)

Because the dyon energy spectrum (3) is ✓-dependent,
we can integrate out the dyons and obtain an e↵ective
potential for ✓. This can be understood either as a sum
of Coleman-Weinberg-type potentials [32] from each dyon
mode n, or as a sum over loops with nontrivial winding
of � around the loop. These two calculations are related
by Poisson resummation, as we explain below. Although
there is prior work on the ✓ potential generated by a gas
of (non-virtual) monopoles and antimonopoles (see [29,
33–35] and follow-ups), the e↵ect of monopole loops on
the vacuum ✓ potential is, as far as we know, absent from
the prior literature.

II. MONOPOLE LOOPS

We would like to compute the vacuum energy in
the presence of “fundamental” magnetic monopoles.
Schematically, the vacuum energy should be derived by
computing a Euclidean path integral of the form

Z(✓) =
X

worldlines

Z
D(fields) e�Se[fields,worldlines,✓] , (5)

and taking the limit of infinite spacetime volume,

Ve↵(✓) = � lim
V!1

1

V
logZ(✓) . (6)

The worldline formalism has previously been applied to
other physical processes involving monopoles, e.g., to pair
production in magnetic fields [36].

In the limit where interactions between the configu-
rations are small, we expect the partition function to
be dominated by disconnected vacuum paths character-
ized by the transition amplitude ZS1(✓), the Feynman-
weighted sum over all paths that are topologically a circle
S1. These contributions exponentiate:

Z(✓) =
1X

n=0

1

n!
(ZS1)n = exp

�
ZS1(✓)

�
. (7)

Hence Ve↵(✓) = �
1
VZS1(✓); we work in the first-quantized

picture to compute the amplitude ZS1(✓) [37]. We sum

over all trajectories that return to the same configura-
tion. This includes an integral over the invariant length
(Schwinger proper time) ⌧ , weighted with a 1/2⌧ to ac-
count for overcounting trajectories related by transla-
tions and reflections. So,

ZS1 =

Z 1

0

d⌧

2⌧
Z(⌧, ✓) , (8)

with Z(⌧, ✓) the sum over transition amplitudes at fixed
✓ of all trajectories with invariant length ⌧ .
There are two ways we can compute ZS1 . For a free

particle of mass m, the gauge fixed transition amplitude
for a trajectory of length ⌧ from point x to point x0 is

hx0
|xi⌧ =

1

2(2⇡⌧)2
exp

✓
�

1

2⌧
(x� x0)2 �m2⌧

◆
(9)

After integrating over all trajectories that begin and end
at the same point and canceling o↵ the a factor of the
spacetime volume from the measure with the factor in
the definition of the e↵ective potential, we obtain

Ve↵ = �

Z 1

0

d⌧

2⌧

1

2(2⇡⌧)2
exp

✓
�
m2⌧

2

◆
. (10)

We will sum over all dyon modes, labeled by n 2 Z.
To simplify the computation, we assume that the dyon
mass spectrum takes the form

m2
n = m2

m +m2
�

✓
n�

✓

2⇡

◆2

, m2
� =

mm

l�
. (11)

This agrees with (3) to order 1/l�, and in certain cases
is an exact consequence of a BPS condition. In general,
there may be power corrections in (mml�)�1. Summing
over the tower of states, we obtain the e↵ective potential

�

X

n2Z

Z 1

0

d⌧

4⌧ (2⇡⌧)2
exp

 
�
m2

m⌧

2
�

m2
�⌧

2

✓
n�

✓

2⇡

◆2
!
.

(12)
Periodicity in ✓, arising from the sum over n, is manifest
after Poisson resummation:

X

n2Z
e�

1
2m

2
�⌧(n� ✓

2⇡ )
2

=
X

`2Z

s
2⇡

m2
�⌧

exp

✓
�
2⇡2`2

m2
�⌧

+ i`✓

◆
.

(13)
The e↵ective potential then becomes

�
⇡2

m�

X

`2Z

Z 1

0

d⌧ ei`✓

(2⇡⌧)7/2
exp

✓
�
m2

m⌧

2
�

2⇡2`2

m2
�⌧

◆
. (14)

After integrating, the result is

Ve↵(✓) = �

1X

`=1

m2
�m

2
m

32⇡4`3
e�2⇡`mm/m� cos(`✓)⇥

✓
1 +

3m�

2⇡`mm
+

3m2
�

(2⇡`mm)2

◆
, (15)

where we have ignored the irrelevant constant from the
divergent ` = 0 integral.
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but it will di↵er in general theories.)

Because the dyon energy spectrum (3) is ✓-dependent,
we can integrate out the dyons and obtain an e↵ective
potential for ✓. This can be understood either as a sum
of Coleman-Weinberg-type potentials [32] from each dyon
mode n, or as a sum over loops with nontrivial winding
of � around the loop. These two calculations are related
by Poisson resummation, as we explain below. Although
there is prior work on the ✓ potential generated by a gas
of (non-virtual) monopoles and antimonopoles (see [29,
33–35] and follow-ups), the e↵ect of monopole loops on
the vacuum ✓ potential is, as far as we know, absent from
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Schematically, the vacuum energy should be derived by
computing a Euclidean path integral of the form
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worldlines
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D(fields) e�Se[fields,worldlines,✓] , (5)

and taking the limit of infinite spacetime volume,

Ve↵(✓) = � lim
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V
logZ(✓) . (6)

The worldline formalism has previously been applied to
other physical processes involving monopoles, e.g., to pair
production in magnetic fields [36].

In the limit where interactions between the configu-
rations are small, we expect the partition function to
be dominated by disconnected vacuum paths character-
ized by the transition amplitude ZS1(✓), the Feynman-
weighted sum over all paths that are topologically a circle
S1. These contributions exponentiate:
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1
VZS1(✓); we work in the first-quantized

picture to compute the amplitude ZS1(✓) [37]. We sum

over all trajectories that return to the same configura-
tion. This includes an integral over the invariant length
(Schwinger proper time) ⌧ , weighted with a 1/2⌧ to ac-
count for overcounting trajectories related by transla-
tions and reflections. So,
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Z 1
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Z(⌧, ✓) , (8)

with Z(⌧, ✓) the sum over transition amplitudes at fixed
✓ of all trajectories with invariant length ⌧ .
There are two ways we can compute ZS1 . For a free

particle of mass m, the gauge fixed transition amplitude
for a trajectory of length ⌧ from point x to point x0 is
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After integrating over all trajectories that begin and end
at the same point and canceling o↵ the a factor of the
spacetime volume from the measure with the factor in
the definition of the e↵ective potential, we obtain
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This agrees with (3) to order 1/l�, and in certain cases
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there may be power corrections in (mml�)�1. Summing
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We can estimate l� by comparing (3) to the energy of
the classical field configuration outside a monopole in an
axion background, following [29], from which we obtain:
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where rc = ⇡/(e2mm) is the classical radius of the mag-
netic monopole (of mass mm) and r0 = ke/(8⇡2f) is
the length scale over which the axion field is screened
near the monopole core. In the special case of critical
’t Hooft-Polyakov monopoles [30, 31], we begin with an
SU(2) gauge theory with coupling g. Matching to (1)
gives e = g/2 and k = 2, while matching to (2) (when
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w where mm = 4⇡v/g and
mw = gv is the W boson mass. (We have chosen the
order-one coe�cient in (4) to be accurate for this case,
but it will di↵er in general theories.)

Because the dyon energy spectrum (3) is ✓-dependent,
we can integrate out the dyons and obtain an e↵ective
potential for ✓. This can be understood either as a sum
of Coleman-Weinberg-type potentials [32] from each dyon
mode n, or as a sum over loops with nontrivial winding
of � around the loop. These two calculations are related
by Poisson resummation, as we explain below. Although
there is prior work on the ✓ potential generated by a gas
of (non-virtual) monopoles and antimonopoles (see [29,
33–35] and follow-ups), the e↵ect of monopole loops on
the vacuum ✓ potential is, as far as we know, absent from
the prior literature.
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Schematically, the vacuum energy should be derived by
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other physical processes involving monopoles, e.g., to pair
production in magnetic fields [36].
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rations are small, we expect the partition function to
be dominated by disconnected vacuum paths character-
ized by the transition amplitude ZS1(✓), the Feynman-
weighted sum over all paths that are topologically a circle
S1. These contributions exponentiate:
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count for overcounting trajectories related by transla-
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where we have ignored the irrelevant constant from the
divergent ` = 0 integral.

transition amplitude ⟨x |x⟩τ

invariant length

Poisson resum
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rations are small, we expect the partition function to
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where we have ignored the irrelevant constant from the
divergent ` = 0 integral.
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the length scale over which the axion field is screened
near the monopole core. In the special case of critical
’t Hooft-Polyakov monopoles [29, 30], we begin with an
SU(2) gauge theory with coupling g. Matching to (1)
gives e = g/2 and k = 2, while matching to (2) (when
rc � r0) gives l� = mm/m2
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mw = gv is the W boson mass. (We have chosen the
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of � around the loop. These two calculations are related
by Poisson resummation, as we explain below. Although
there is prior work on the ✓ potential generated by a gas
of (non-virtual) monopoles and antimonopoles (see [28,
32–34] and follow-ups), the e↵ect of monopole loops on
the vacuum ✓ potential is, as far as we know, absent from
the prior literature.
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where we have ignored the irrelevant constant from the
divergent ` = 0 integral.

We can interpret ` in this sum as the winding number
of � around the loop. If we take the relativistic comple-
tion of the action (2) with the dyon collective coordinate
� treated as another (compact) spatial direction in which
the monopole propagates, analogous to the DBI action:
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 in ’t H-P model: same 
instanton action as in YM theory!
e−Sinst ∼ e−8π2/g2
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In a hidden gauged  sector with an axion and monopoles: both axion and 
monopole contribute to DM 

U(1)

dark gauge coupling
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Conclusions
— Axion-like particles may appear in models of the muon  anomaly, but 
we need a complete model beyond the axion EFT to have a full explanation.

— There is new source of axion potential from the axion coupling to Abelian 
gauge fields, via loops of magnetic monopoles. This should lead to a 
minimum mass to any axion coupling to photons (work in progress).

Still a lot to explore—both phenomenology and QFT—in axion physics!
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Effective theory of axion and monopoles

Axion Mass from Magnetic Monopole Loops
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We show that axions interacting with abelian gauge fields obtain a potential from loops of mag-
netic monopoles. This is a consequence of the Witten e↵ect: the axion field causes the monopoles
to acquire an electric charge and alters their energy spectrum. The axion potential can also be
understood as a type of instanton e↵ect due to a Euclidean monopole worldline winding around
its dyon collective coordinate. We calculate this e↵ect, which has features in common with both
nonabelian instantons and Euclidean brane instantons. To provide consistency checks, we argue
that this axion potential vanishes in the presence of a massless charged fermion and that it is ro-
bust against the presence of higher-derivative corrections in the e↵ective Lagrangian. Finally, as a
first step toward connecting with particle phenomenology and cosmology, we discuss the regime in
which this potential is important in determining the dark matter relic abundance in a hidden sector
containing an abelian gauge group, monopoles, and axions.

I. INTRODUCTION

Axions are naturally light scalar bosons that are of
great interest in solving the strong CP problem [1–4], as
dark matter candidates [5–7], and for many other appli-
cations. It is well known that instanton e↵ects can gen-
erate a potential for an axion ✓ [3, 4] when it is coupled
to a nonabelian gauge field via the topological coupling
✓ tr(F ^ F ). Even in the absence of axion interactions
with gauge fields, it is known that Euclidean branes can
give rise to axion potentials [8–12]. Here, we argue that
axions coupled to abelian gauge fields through a ✓F ^ F
coupling acquire a potential through an instanton e↵ect
whenever there are monopoles magnetically charged un-
der F , due to the Witten e↵ect [13]. Like nonabelian
instantons, these e↵ects are associated with 4d gauge the-
ory dynamics. Like Euclidean branes, they occur within
a well-behaved semiclassical expansion free of infrared
divergences. In fact, we expect that our instantons are
continuously connected to, or a limiting case of, known
instanton e↵ects in specific UV completions [14]. The
virtue of our approach is that, by working from the bot-
tom up, we deduce that such e↵ects must exist [15] even
when we do not know the UV theory.1

The Completeness Hypothesis postulates that any UV-
complete theory of an interacting U(1) gauge field (which
has quantized charge) contains magnetic monopoles [17],
which break a would-be 1-form global symmetry [18].
This is, in particular, believed to be true of all theories
of quantum gravity [19–22]. Assuming the validity of the
Completeness Hypothesis, the instanton e↵ect that we
discuss will give rise to an e↵ective potential for any axion
interacting with photons. This is of great phenomenolog-

1 The existence of the instantons we discuss here has been noted
previously by Jake McNamara [16] and communicated to MR in
the course of writing [14], although neither considered computing
an axion potential from them at the time.

ical interest, since the ✓F ^ F interaction is the primary
target of experimental searches for axions [23–26].

We consider an e↵ective theory of a periodic axion field
✓ ⇠= ✓ + 2⇡ coupled to a gauge field A normalized such
that the allowed Wilson lines P[exp(iq

H
A)] have integer

charge q 2 Z:

S =

Z 
1

2
f2d✓ ^ ?d✓ �

1

2e2
F ^ ?F +

k✓

8⇡2
F ^ F

�
. (1)

The axion-gauge field coupling is of Chern-Simons type,
with quantized coe�cient k 2 Z. Through the Witten
e↵ect, a magnetic monopole in the presence of a nonzero
background ✓ acquires an electric charge �k✓/(2⇡). A
consistent description of this e↵ect requires that the ef-
fective theory on the magnetic monopole worldvolume
contains, in addition to the usual translational zero
modes xµ, a collective coordinate interacting with the
field ✓. This takes the form of a compact scalar boson
� ⇠= � + 2⇡, with an action that (expanding around a
monopole worldline extended in time) contains [27]:

S =

Z

�


1

2
l�dA� ^ ?dA� +

✓

2⇡
dA�

�
, (2)

where the gauge-covariant derivative dA� ⌘ d� + kA
respects a shift of � under A gauge transformations. The
mode � behaves as a quantum particle on a circle (see,
e.g., App. D.1 of [28]). Its energy eigenstates, labeled
by integers n 2 Z, correspond to dyonic states of the
monopole with electric charge k (n� ✓/2⇡) and energy

En =
1

2l�

✓
n�

✓

2⇡

◆2

. (3)

There is a monodromy n 7! n+ 1 when ✓ 7! ✓ + 2⇡ that
ensures the spectrum of the theory is periodic.
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We show that axions interacting with abelian gauge fields obtain a potential from loops of mag-
netic monopoles. This is a consequence of the Witten e↵ect: the axion field causes the monopoles
to acquire an electric charge and alters their energy spectrum. The axion potential can also be
understood as a type of instanton e↵ect due to a Euclidean monopole worldline winding around
its dyon collective coordinate. We calculate this e↵ect, which has features in common with both
nonabelian instantons and Euclidean brane instantons. To provide consistency checks, we argue
that this axion potential vanishes in the presence of a massless charged fermion and that it is ro-
bust against the presence of higher-derivative corrections in the e↵ective Lagrangian. Finally, as a
first step toward connecting with particle phenomenology and cosmology, we discuss the regime in
which this potential is important in determining the dark matter relic abundance in a hidden sector
containing an abelian gauge group, monopoles, and axions.

I. INTRODUCTION

Axions are naturally light scalar bosons that are of
great interest in solving the strong CP problem [1–4], as
dark matter candidates [5–7], and for many other appli-
cations. It is well known that instanton e↵ects can gen-
erate a potential for an axion ✓ [3, 4] when it is coupled
to a nonabelian gauge field via the topological coupling
✓ tr(F ^ F ). Even in the absence of axion interactions
with gauge fields, it is known that Euclidean branes can
give rise to axion potentials [8–12]. Here, we argue that
axions coupled to abelian gauge fields through a ✓F ^ F
coupling acquire a potential through an instanton e↵ect
whenever there are monopoles magnetically charged un-
der F , due to the Witten e↵ect [13]. Like nonabelian
instantons, these e↵ects are associated with 4d gauge the-
ory dynamics. Like Euclidean branes, they occur within
a well-behaved semiclassical expansion free of infrared
divergences. In fact, we expect that our instantons are
continuously connected to, or a limiting case of, known
instanton e↵ects in specific UV completions [14]. The
virtue of our approach is that, by working from the bot-
tom up, we deduce that such e↵ects must exist [15] even
when we do not know the UV theory.1

The Completeness Hypothesis postulates that any UV-
complete theory of an interacting U(1) gauge field (which
has quantized charge) contains magnetic monopoles [17],
which break a would-be 1-form global symmetry [18].
This is, in particular, believed to be true of all theories
of quantum gravity [19–22]. Assuming the validity of the
Completeness Hypothesis, the instanton e↵ect that we
discuss will give rise to an e↵ective potential for any axion
interacting with photons. This is of great phenomenolog-

1 The existence of the instantons we discuss here has been noted
previously by Jake McNamara [16] and communicated to MR in
the course of writing [14], although neither considered computing
an axion potential from them at the time.

ical interest, since the ✓F ^ F interaction is the primary
target of experimental searches for axions [23–26].

We consider an e↵ective theory of a periodic axion field
✓ ⇠= ✓ + 2⇡ coupled to a gauge field A normalized such
that the allowed Wilson lines P[exp(iq

H
A)] have integer

charge q 2 Z:

S =

Z 
1

2
f2d✓ ^ ?d✓ �

1

2e2
F ^ ?F +

k✓

8⇡2
F ^ F

�
. (1)

The axion-gauge field coupling is of Chern-Simons type,
with quantized coe�cient k 2 Z. Through the Witten
e↵ect, a magnetic monopole in the presence of a nonzero
background ✓ acquires an electric charge �k✓/(2⇡). A
consistent description of this e↵ect requires that the ef-
fective theory on the magnetic monopole worldvolume
contains, in addition to the usual translational zero
modes xµ, a collective coordinate interacting with the
field ✓. This takes the form of a compact scalar boson
� ⇠= � + 2⇡, with an action that (expanding around a
monopole worldline extended in time) contains [27]:

S =

Z

�


1

2
l�dA� ^ ?dA� +

✓

2⇡
dA�

�
, (2)

where the gauge-covariant derivative dA� ⌘ d� + kA
respects a shift of � under A gauge transformations. The
mode � behaves as a quantum particle on a circle (see,
e.g., App. D.1 of [28]). Its energy eigenstates, labeled
by integers n 2 Z, correspond to dyonic states of the
monopole with electric charge k (n� ✓/2⇡) and energy

En =
1

2l�

✓
n�

✓

2⇡

◆2

. (3)

There is a monodromy n 7! n+ 1 when ✓ 7! ✓ + 2⇡ that
ensures the spectrum of the theory is periodic.

2

We can estimate l� by comparing (3) to the energy of
the classical field configuration outside a monopole in an
axion background, following [29], from which we obtain:

l� ⇠
4⇡

e2k2
r⇤ , r⇤ = max(rc, r0), (4)

where rc = ⇡/(e2mm) is the classical radius of the mag-
netic monopole (of mass mm) and r0 = ke/(8⇡2f) is
the length scale over which the axion field is screened
near the monopole core. In the special case of critical
’t Hooft-Polyakov monopoles [30, 31], we begin with an
SU(2) gauge theory with coupling g. Matching to (1)
gives e = g/2 and k = 2, while matching to (2) (when
rc � r0) gives l� = mm/m2

w where mm = 4⇡v/g and
mw = gv is the W boson mass. (We have chosen the
order-one coe�cient in (4) to be accurate for this case,
but it will di↵er in general theories.)

Because the dyon energy spectrum (3) is ✓-dependent,
we can integrate out the dyons and obtain an e↵ective
potential for ✓. This can be understood either as a sum
of Coleman-Weinberg-type potentials [32] from each dyon
mode n, or as a sum over loops with nontrivial winding
of � around the loop. These two calculations are related
by Poisson resummation, as we explain below. Although
there is prior work on the ✓ potential generated by a gas
of (non-virtual) monopoles and antimonopoles (see [29,
33–35] and follow-ups), the e↵ect of monopole loops on
the vacuum ✓ potential is, as far as we know, absent from
the prior literature.

II. MONOPOLE LOOPS

We would like to compute the vacuum energy in
the presence of “fundamental” magnetic monopoles.
Schematically, the vacuum energy should be derived by
computing a Euclidean path integral of the form

Z(✓) =
X

worldlines

Z
D(fields) e�Se[fields,worldlines,✓] , (5)

and taking the limit of infinite spacetime volume,

Ve↵(✓) = � lim
V!1

1

V
logZ(✓) . (6)

The worldline formalism has previously been applied to
other physical processes involving monopoles, e.g., to pair
production in magnetic fields [36].

In the limit where interactions between the configu-
rations are small, we expect the partition function to
be dominated by disconnected vacuum paths character-
ized by the transition amplitude ZS1(✓), the Feynman-
weighted sum over all paths that are topologically a circle
S1. These contributions exponentiate:

Z(✓) =
1X

n=0

1

n!
(ZS1)n = exp

�
ZS1(✓)

�
. (7)

Hence Ve↵(✓) = �
1
VZS1(✓); we work in the first-quantized

picture to compute the amplitude ZS1(✓) [37]. We sum

over all trajectories that return to the same configura-
tion. This includes an integral over the invariant length
(Schwinger proper time) ⌧ , weighted with a 1/2⌧ to ac-
count for overcounting trajectories related by transla-
tions and reflections. So,

ZS1 =

Z 1

0

d⌧

2⌧
Z(⌧, ✓) , (8)

with Z(⌧, ✓) the sum over transition amplitudes at fixed
✓ of all trajectories with invariant length ⌧ .
There are two ways we can compute ZS1 . For a free

particle of mass m, the gauge fixed transition amplitude
for a trajectory of length ⌧ from point x to point x0 is

hx0
|xi⌧ =

1

2(2⇡⌧)2
exp

✓
�

1

2⌧
(x� x0)2 �m2⌧

◆
(9)

After integrating over all trajectories that begin and end
at the same point and canceling o↵ the a factor of the
spacetime volume from the measure with the factor in
the definition of the e↵ective potential, we obtain

Ve↵ = �

Z 1

0

d⌧

2⌧

1

2(2⇡⌧)2
exp

✓
�
m2⌧

2

◆
. (10)

We will sum over all dyon modes, labeled by n 2 Z.
To simplify the computation, we assume that the dyon
mass spectrum takes the form

m2
n = m2

m +m2
�

✓
n�

✓

2⇡

◆2

, m2
� =

mm

l�
. (11)

This agrees with (3) to order 1/l�, and in certain cases
is an exact consequence of a BPS condition. In general,
there may be power corrections in (mml�)�1. Summing
over the tower of states, we obtain the e↵ective potential

�

X

n2Z

Z 1

0

d⌧

4⌧ (2⇡⌧)2
exp

 
�
m2

m⌧

2
�

m2
�⌧

2

✓
n�

✓

2⇡

◆2
!
.

(12)
Periodicity in ✓, arising from the sum over n, is manifest
after Poisson resummation:

X

n2Z
e�

1
2m

2
�⌧(n� ✓

2⇡ )
2

=
X

`2Z

s
2⇡

m2
�⌧

exp

✓
�
2⇡2`2

m2
�⌧

+ i`✓

◆
.

(13)
The e↵ective potential then becomes

�
⇡2

m�

X

`2Z

Z 1

0

d⌧ ei`✓

(2⇡⌧)7/2
exp

✓
�
m2

m⌧

2
�

2⇡2`2

m2
�⌧

◆
. (14)

After integrating, the result is

Ve↵(✓) = �

1X

`=1

m2
�m

2
m

32⇡4`3
e�2⇡`mm/m� cos(`✓)⇥

✓
1 +

3m�

2⇡`mm
+

3m2
�

(2⇡`mm)2

◆
, (15)

where we have ignored the irrelevant constant from the
divergent ` = 0 integral.
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We show that axions interacting with abelian gauge fields obtain a potential from loops of mag-
netic monopoles. This is a consequence of the Witten e↵ect: the axion field causes the monopoles
to acquire an electric charge and alters their energy spectrum. The axion potential can also be
understood as a type of instanton e↵ect due to a Euclidean monopole worldline winding around
its dyon collective coordinate. We calculate this e↵ect, which has features in common with both
nonabelian instantons and Euclidean brane instantons. To provide consistency checks, we argue
that this axion potential vanishes in the presence of a massless charged fermion and that it is ro-
bust against the presence of higher-derivative corrections in the e↵ective Lagrangian. Finally, as a
first step toward connecting with particle phenomenology and cosmology, we discuss the regime in
which this potential is important in determining the dark matter relic abundance in a hidden sector
containing an abelian gauge group, monopoles, and axions.

I. INTRODUCTION

Axions are naturally light scalar bosons that are of
great interest in solving the strong CP problem [1–4], as
dark matter candidates [5–7], and for many other appli-
cations. It is well known that instanton e↵ects can gen-
erate a potential for an axion ✓ [3, 4] when it is coupled
to a nonabelian gauge field via the topological coupling
✓ tr(F ^ F ). Even in the absence of axion interactions
with gauge fields, it is known that Euclidean branes can
give rise to axion potentials [8–12]. Here, we argue that
axions coupled to abelian gauge fields through a ✓F ^ F
coupling acquire a potential through an instanton e↵ect
whenever there are monopoles magnetically charged un-
der F , due to the Witten e↵ect [13]. Like nonabelian
instantons, these e↵ects are associated with 4d gauge the-
ory dynamics. Like Euclidean branes, they occur within
a well-behaved semiclassical expansion free of infrared
divergences. In fact, we expect that our instantons are
continuously connected to, or a limiting case of, known
instanton e↵ects in specific UV completions [14]. The
virtue of our approach is that, by working from the bot-
tom up, we deduce that such e↵ects must exist [15] even
when we do not know the UV theory.1

The Completeness Hypothesis postulates that any UV-
complete theory of an interacting U(1) gauge field (which
has quantized charge) contains magnetic monopoles [17],
which break a would-be 1-form global symmetry [18].
This is, in particular, believed to be true of all theories
of quantum gravity [19–22]. Assuming the validity of the
Completeness Hypothesis, the instanton e↵ect that we
discuss will give rise to an e↵ective potential for any axion
interacting with photons. This is of great phenomenolog-

1 The existence of the instantons we discuss here has been noted
previously by Jake McNamara [16] and communicated to MR in
the course of writing [14], although neither considered computing
an axion potential from them at the time.

ical interest, since the ✓F ^ F interaction is the primary
target of experimental searches for axions [23–26].

We consider an e↵ective theory of a periodic axion field
✓ ⇠= ✓ + 2⇡ coupled to a gauge field A normalized such
that the allowed Wilson lines P[exp(iq

H
A)] have integer

charge q 2 Z:

S =

Z 
1

2
f2d✓ ^ ?d✓ �

1

2e2
F ^ ?F +

k✓

8⇡2
F ^ F

�
. (1)

The axion-gauge field coupling is of Chern-Simons type,
with quantized coe�cient k 2 Z. Through the Witten
e↵ect, a magnetic monopole in the presence of a nonzero
background ✓ acquires an electric charge �k✓/(2⇡). A
consistent description of this e↵ect requires that the ef-
fective theory on the magnetic monopole worldvolume
contains, in addition to the usual translational zero
modes xµ, a collective coordinate interacting with the
field ✓. This takes the form of a compact scalar boson
� ⇠= � + 2⇡, with an action that (expanding around a
monopole worldline extended in time) contains [27]:

S =

Z

�


1

2
l�dA� ^ ?dA� +

✓

2⇡
dA�

�
, (2)

where the gauge-covariant derivative dA� ⌘ d� + kA
respects a shift of � under A gauge transformations. The
mode � behaves as a quantum particle on a circle (see,
e.g., App. D.1 of [28]). Its energy eigenstates, labeled
by integers n 2 Z, correspond to dyonic states of the
monopole with electric charge k (n� ✓/2⇡) and energy

En =
1

2l�

✓
n�

✓

2⇡

◆2

. (3)

There is a monodromy n 7! n+ 1 when ✓ 7! ✓ + 2⇡ that
ensures the spectrum of the theory is periodic.

 dyonic collective 
coordinate, 
σ :

σ ≅ σ + 2π

classical radius of magnetic 
monopole: rc = π/(e2mM)

length scale of axion screening: 
r0 = ke/(8π2f )



Monopole loops

2

We can estimate l� by comparing (3) to the energy of
the classical field configuration outside a monopole in an
axion background, following [29], from which we obtain:

l� ⇠
4⇡

e2k2
r⇤ , r⇤ = max(rc, r0), (4)

where rc = ⇡/(e2mm) is the classical radius of the mag-
netic monopole (of mass mm) and r0 = ke/(8⇡2f) is
the length scale over which the axion field is screened
near the monopole core. In the special case of critical
’t Hooft-Polyakov monopoles [30, 31], we begin with an
SU(2) gauge theory with coupling g. Matching to (1)
gives e = g/2 and k = 2, while matching to (2) (when
rc � r0) gives l� = mm/m2

w where mm = 4⇡v/g and
mw = gv is the W boson mass. (We have chosen the
order-one coe�cient in (4) to be accurate for this case,
but it will di↵er in general theories.)

Because the dyon energy spectrum (3) is ✓-dependent,
we can integrate out the dyons and obtain an e↵ective
potential for ✓. This can be understood either as a sum
of Coleman-Weinberg-type potentials [32] from each dyon
mode n, or as a sum over loops with nontrivial winding
of � around the loop. These two calculations are related
by Poisson resummation, as we explain below. Although
there is prior work on the ✓ potential generated by a gas
of (non-virtual) monopoles and antimonopoles (see [29,
33–35] and follow-ups), the e↵ect of monopole loops on
the vacuum ✓ potential is, as far as we know, absent from
the prior literature.

II. MONOPOLE LOOPS

We would like to compute the vacuum energy in
the presence of “fundamental” magnetic monopoles.
Schematically, the vacuum energy should be derived by
computing a Euclidean path integral of the form

Z(✓) =
X

worldlines

Z
D(fields) e�Se[fields,worldlines,✓] , (5)

and taking the limit of infinite spacetime volume,

Ve↵(✓) = � lim
V!1

1

V
logZ(✓) . (6)

The worldline formalism has previously been applied to
other physical processes involving monopoles, e.g., to pair
production in magnetic fields [36].

In the limit where interactions between the configu-
rations are small, we expect the partition function to
be dominated by disconnected vacuum paths character-
ized by the transition amplitude ZS1(✓), the Feynman-
weighted sum over all paths that are topologically a circle
S1. These contributions exponentiate:

Z(✓) =
1X

n=0

1

n!
(ZS1)n = exp

�
ZS1(✓)

�
. (7)

Hence Ve↵(✓) = �
1
VZS1(✓); we work in the first-quantized

picture to compute the amplitude ZS1(✓) [37]. We sum

over all trajectories that return to the same configura-
tion. This includes an integral over the invariant length
(Schwinger proper time) ⌧ , weighted with a 1/2⌧ to ac-
count for overcounting trajectories related by transla-
tions and reflections. So,

ZS1 =

Z 1

0

d⌧

2⌧
Z(⌧, ✓) , (8)

with Z(⌧, ✓) the sum over transition amplitudes at fixed
✓ of all trajectories with invariant length ⌧ .
There are two ways we can compute ZS1 . For a free

particle of mass m, the gauge fixed transition amplitude
for a trajectory of length ⌧ from point x to point x0 is

hx0
|xi⌧ =

1

2(2⇡⌧)2
exp

✓
�

1

2⌧
(x� x0)2 �m2⌧

◆
(9)

After integrating over all trajectories that begin and end
at the same point and canceling o↵ the a factor of the
spacetime volume from the measure with the factor in
the definition of the e↵ective potential, we obtain

Ve↵ = �

Z 1

0

d⌧

2⌧

1

2(2⇡⌧)2
exp

✓
�
m2⌧

2

◆
. (10)

We will sum over all dyon modes, labeled by n 2 Z.
To simplify the computation, we assume that the dyon
mass spectrum takes the form

m2
n = m2

m +m2
�

✓
n�

✓

2⇡

◆2

, m2
� =

mm

l�
. (11)

This agrees with (3) to order 1/l�, and in certain cases
is an exact consequence of a BPS condition. In general,
there may be power corrections in (mml�)�1. Summing
over the tower of states, we obtain the e↵ective potential
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Periodicity in ✓, arising from the sum over n, is manifest
after Poisson resummation:
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The e↵ective potential then becomes
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After integrating, the result is
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where we have ignored the irrelevant constant from the
divergent ` = 0 integral.
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We can estimate l� by comparing (3) to the energy of
the classical field configuration outside a monopole in an
axion background, following [29], from which we obtain:

l� ⇠
4⇡

e2k2
r⇤ , r⇤ = max(rc, r0), (4)

where rc = ⇡/(e2mm) is the classical radius of the mag-
netic monopole (of mass mm) and r0 = ke/(8⇡2f) is
the length scale over which the axion field is screened
near the monopole core. In the special case of critical
’t Hooft-Polyakov monopoles [30, 31], we begin with an
SU(2) gauge theory with coupling g. Matching to (1)
gives e = g/2 and k = 2, while matching to (2) (when
rc � r0) gives l� = mm/m2

w where mm = 4⇡v/g and
mw = gv is the W boson mass. (We have chosen the
order-one coe�cient in (4) to be accurate for this case,
but it will di↵er in general theories.)

Because the dyon energy spectrum (3) is ✓-dependent,
we can integrate out the dyons and obtain an e↵ective
potential for ✓. This can be understood either as a sum
of Coleman-Weinberg-type potentials [32] from each dyon
mode n, or as a sum over loops with nontrivial winding
of � around the loop. These two calculations are related
by Poisson resummation, as we explain below. Although
there is prior work on the ✓ potential generated by a gas
of (non-virtual) monopoles and antimonopoles (see [29,
33–35] and follow-ups), the e↵ect of monopole loops on
the vacuum ✓ potential is, as far as we know, absent from
the prior literature.

II. MONOPOLE LOOPS

We would like to compute the vacuum energy in
the presence of “fundamental” magnetic monopoles.
Schematically, the vacuum energy should be derived by
computing a Euclidean path integral of the form

Z(✓) =
X

worldlines

Z
D(fields) e�Se[fields,worldlines,✓] , (5)

and taking the limit of infinite spacetime volume,

Ve↵(✓) = � lim
V!1

1

V
logZ(✓) . (6)

The worldline formalism has previously been applied to
other physical processes involving monopoles, e.g., to pair
production in magnetic fields [36].

In the limit where interactions between the configu-
rations are small, we expect the partition function to
be dominated by disconnected vacuum paths character-
ized by the transition amplitude ZS1(✓), the Feynman-
weighted sum over all paths that are topologically a circle
S1. These contributions exponentiate:

Z(✓) =
1X
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. (7)

Hence Ve↵(✓) = �
1
VZS1(✓); we work in the first-quantized

picture to compute the amplitude ZS1(✓) [37]. We sum

over all trajectories that return to the same configura-
tion. This includes an integral over the invariant length
(Schwinger proper time) ⌧ , weighted with a 1/2⌧ to ac-
count for overcounting trajectories related by transla-
tions and reflections. So,

ZS1 =

Z 1

0
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2⌧
Z(⌧, ✓) , (8)

with Z(⌧, ✓) the sum over transition amplitudes at fixed
✓ of all trajectories with invariant length ⌧ .
There are two ways we can compute ZS1 . For a free

particle of mass m, the gauge fixed transition amplitude
for a trajectory of length ⌧ from point x to point x0 is

hx0
|xi⌧ =
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After integrating over all trajectories that begin and end
at the same point and canceling o↵ the a factor of the
spacetime volume from the measure with the factor in
the definition of the e↵ective potential, we obtain
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We will sum over all dyon modes, labeled by n 2 Z.
To simplify the computation, we assume that the dyon
mass spectrum takes the form
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This agrees with (3) to order 1/l�, and in certain cases
is an exact consequence of a BPS condition. In general,
there may be power corrections in (mml�)�1. Summing
over the tower of states, we obtain the e↵ective potential
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Periodicity in ✓, arising from the sum over n, is manifest
after Poisson resummation:
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where we have ignored the irrelevant constant from the
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We can estimate l� by comparing (3) to the energy of
the classical field configuration outside a monopole in an
axion background, following [29], from which we obtain:

l� ⇠
4⇡

e2k2
r⇤ , r⇤ = max(rc, r0), (4)

where rc = ⇡/(e2mm) is the classical radius of the mag-
netic monopole (of mass mm) and r0 = ke/(8⇡2f) is
the length scale over which the axion field is screened
near the monopole core. In the special case of critical
’t Hooft-Polyakov monopoles [30, 31], we begin with an
SU(2) gauge theory with coupling g. Matching to (1)
gives e = g/2 and k = 2, while matching to (2) (when
rc � r0) gives l� = mm/m2

w where mm = 4⇡v/g and
mw = gv is the W boson mass. (We have chosen the
order-one coe�cient in (4) to be accurate for this case,
but it will di↵er in general theories.)

Because the dyon energy spectrum (3) is ✓-dependent,
we can integrate out the dyons and obtain an e↵ective
potential for ✓. This can be understood either as a sum
of Coleman-Weinberg-type potentials [32] from each dyon
mode n, or as a sum over loops with nontrivial winding
of � around the loop. These two calculations are related
by Poisson resummation, as we explain below. Although
there is prior work on the ✓ potential generated by a gas
of (non-virtual) monopoles and antimonopoles (see [29,
33–35] and follow-ups), the e↵ect of monopole loops on
the vacuum ✓ potential is, as far as we know, absent from
the prior literature.

II. MONOPOLE LOOPS

We would like to compute the vacuum energy in
the presence of “fundamental” magnetic monopoles.
Schematically, the vacuum energy should be derived by
computing a Euclidean path integral of the form
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The worldline formalism has previously been applied to
other physical processes involving monopoles, e.g., to pair
production in magnetic fields [36].

In the limit where interactions between the configu-
rations are small, we expect the partition function to
be dominated by disconnected vacuum paths character-
ized by the transition amplitude ZS1(✓), the Feynman-
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S1. These contributions exponentiate:
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over the tower of states, we obtain the e↵ective potential
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where we have ignored the irrelevant constant from the
divergent ` = 0 integral.

Euclidean path integral

Effective potential

Assuming that single monopole loop dominates

Sum over all paths that are topologically a circle S1

invariant length:  τ
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We can estimate l� by comparing (3) to the energy of
the classical field configuration outside a monopole in an
axion background, following [29], from which we obtain:
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e2k2
r⇤ , r⇤ = max(rc, r0), (4)

where rc = ⇡/(e2mm) is the classical radius of the mag-
netic monopole (of mass mm) and r0 = ke/(8⇡2f) is
the length scale over which the axion field is screened
near the monopole core. In the special case of critical
’t Hooft-Polyakov monopoles [30, 31], we begin with an
SU(2) gauge theory with coupling g. Matching to (1)
gives e = g/2 and k = 2, while matching to (2) (when
rc � r0) gives l� = mm/m2

w where mm = 4⇡v/g and
mw = gv is the W boson mass. (We have chosen the
order-one coe�cient in (4) to be accurate for this case,
but it will di↵er in general theories.)

Because the dyon energy spectrum (3) is ✓-dependent,
we can integrate out the dyons and obtain an e↵ective
potential for ✓. This can be understood either as a sum
of Coleman-Weinberg-type potentials [32] from each dyon
mode n, or as a sum over loops with nontrivial winding
of � around the loop. These two calculations are related
by Poisson resummation, as we explain below. Although
there is prior work on the ✓ potential generated by a gas
of (non-virtual) monopoles and antimonopoles (see [29,
33–35] and follow-ups), the e↵ect of monopole loops on
the vacuum ✓ potential is, as far as we know, absent from
the prior literature.

II. MONOPOLE LOOPS

We would like to compute the vacuum energy in
the presence of “fundamental” magnetic monopoles.
Schematically, the vacuum energy should be derived by
computing a Euclidean path integral of the form

Z(✓) =
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Z
D(fields) e�Se[fields,worldlines,✓] , (5)

and taking the limit of infinite spacetime volume,
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V!1
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The worldline formalism has previously been applied to
other physical processes involving monopoles, e.g., to pair
production in magnetic fields [36].

In the limit where interactions between the configu-
rations are small, we expect the partition function to
be dominated by disconnected vacuum paths character-
ized by the transition amplitude ZS1(✓), the Feynman-
weighted sum over all paths that are topologically a circle
S1. These contributions exponentiate:
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Hence Ve↵(✓) = �
1
VZS1(✓); we work in the first-quantized

picture to compute the amplitude ZS1(✓) [37]. We sum

over all trajectories that return to the same configura-
tion. This includes an integral over the invariant length
(Schwinger proper time) ⌧ , weighted with a 1/2⌧ to ac-
count for overcounting trajectories related by transla-
tions and reflections. So,

ZS1 =

Z 1
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with Z(⌧, ✓) the sum over transition amplitudes at fixed
✓ of all trajectories with invariant length ⌧ .
There are two ways we can compute ZS1 . For a free

particle of mass m, the gauge fixed transition amplitude
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This agrees with (3) to order 1/l�, and in certain cases
is an exact consequence of a BPS condition. In general,
there may be power corrections in (mml�)�1. Summing
over the tower of states, we obtain the e↵ective potential
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We can estimate l� by comparing (3) to the energy of
the classical field configuration outside a monopole in an
axion background, following [29], from which we obtain:
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r⇤ , r⇤ = max(rc, r0), (4)

where rc = ⇡/(e2mm) is the classical radius of the mag-
netic monopole (of mass mm) and r0 = ke/(8⇡2f) is
the length scale over which the axion field is screened
near the monopole core. In the special case of critical
’t Hooft-Polyakov monopoles [30, 31], we begin with an
SU(2) gauge theory with coupling g. Matching to (1)
gives e = g/2 and k = 2, while matching to (2) (when
rc � r0) gives l� = mm/m2

w where mm = 4⇡v/g and
mw = gv is the W boson mass. (We have chosen the
order-one coe�cient in (4) to be accurate for this case,
but it will di↵er in general theories.)

Because the dyon energy spectrum (3) is ✓-dependent,
we can integrate out the dyons and obtain an e↵ective
potential for ✓. This can be understood either as a sum
of Coleman-Weinberg-type potentials [32] from each dyon
mode n, or as a sum over loops with nontrivial winding
of � around the loop. These two calculations are related
by Poisson resummation, as we explain below. Although
there is prior work on the ✓ potential generated by a gas
of (non-virtual) monopoles and antimonopoles (see [29,
33–35] and follow-ups), the e↵ect of monopole loops on
the vacuum ✓ potential is, as far as we know, absent from
the prior literature.

II. MONOPOLE LOOPS

We would like to compute the vacuum energy in
the presence of “fundamental” magnetic monopoles.
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We can estimate l� by comparing (3) to the energy of
the classical field configuration outside a monopole in an
axion background, following [29], from which we obtain:

l� ⇠
4⇡

e2k2
r⇤ , r⇤ = max(rc, r0), (4)

where rc = ⇡/(e2mm) is the classical radius of the mag-
netic monopole (of mass mm) and r0 = ke/(8⇡2f) is
the length scale over which the axion field is screened
near the monopole core. In the special case of critical
’t Hooft-Polyakov monopoles [30, 31], we begin with an
SU(2) gauge theory with coupling g. Matching to (1)
gives e = g/2 and k = 2, while matching to (2) (when
rc � r0) gives l� = mm/m2

w where mm = 4⇡v/g and
mw = gv is the W boson mass. (We have chosen the
order-one coe�cient in (4) to be accurate for this case,
but it will di↵er in general theories.)

Because the dyon energy spectrum (3) is ✓-dependent,
we can integrate out the dyons and obtain an e↵ective
potential for ✓. This can be understood either as a sum
of Coleman-Weinberg-type potentials [32] from each dyon
mode n, or as a sum over loops with nontrivial winding
of � around the loop. These two calculations are related
by Poisson resummation, as we explain below. Although
there is prior work on the ✓ potential generated by a gas
of (non-virtual) monopoles and antimonopoles (see [29,
33–35] and follow-ups), the e↵ect of monopole loops on
the vacuum ✓ potential is, as far as we know, absent from
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We would like to compute the vacuum energy in
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Schematically, the vacuum energy should be derived by
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production in magnetic fields [36].
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where we have ignored the irrelevant constant from the
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for a trajectory of length ⌧ from point x to point x0 is
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After integrating over all trajectories that begin and end
at the same point and canceling o↵ the a factor of the
spacetime volume from the measure with the factor in
the definition of the e↵ective potential, we obtain

Ve↵ = �

Z 1

0

d⌧

2⌧

1

2(2⇡⌧)2
exp

✓
�
m2⌧

2

◆
. (10)

We will sum over all dyon modes, labeled by n 2 Z.
To simplify the computation, we assume that the dyon
mass spectrum takes the form

m2
n = m2

m +m2
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◆2

, m2
� =

mm

l�
. (11)

This agrees with (3) to order 1/l�, and in certain cases
is an exact consequence of a BPS condition. In general,
there may be power corrections in (mml�)�1. Summing
over the tower of states, we obtain the e↵ective potential
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Periodicity in ✓, arising from the sum over n, is manifest
after Poisson resummation:
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The e↵ective potential then becomes
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After integrating, the result is
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where we have ignored the irrelevant constant from the
divergent ` = 0 integral.
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We can think of the integer ` as the number of times
the coordinate � winds around itself for a particular con-
figuration, and so we expect that we can interpret the ef-
fective potential (14) in terms of the monopole wordline
action. Indeed, if we consider the relativistic completion
of (2) with the dyon collective coordinate � treated as an-
other (compact) spatial direction in which the monopole

propagates, analogous to the DBI action:
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dxµ
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l�
mm

✓
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+
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(16)
then we can compute the transition amplitude for a tra-
jectory of length ⌧ from point (x,�) to point (x0,�0),

hx0,�0
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Again, we integrate over all trajectories that begin and
end at the same point, this time getting a contribution
from the sum over windings �0

� � = 2⇡`, which nicely
reproduces (15).

We can understand the exponential factor in (15) via a
saddle point approximation for each `, corresponding to a
classical Euclidean instanton solution that winds ` times
in the � coordinate while remaining at constant xµ. The
saddle is at Schwinger proper time ⌧⇤ = 2⇡`/(mmm�).
The instanton action, which controls the convergence of
the Fourier expansion (15), is

S =
2⇡mm

m�
⇠

4⇡2

ke2

s
max(rc, r0)

rc
. (18)

Remarkably, for the critical ’t Hooft-Polyakov monopole,
the instanton action is S = 8⇡2/g2, precisely that of the
classical BPST instanton in Yang-Mills theory [38, 39]!

A. Light and Massless Fermions

As is familiar from standard instanton physics, the
presence of light, charged fermions can dramatically alter
a theory’s ✓-dependence. In particular, any dependence
on ✓ should vanish as we take any charged fermion’s mass
to zero and thus restore a chiral symmetry.

Such light fermions similarly a↵ect dyonic physics.
In the presence of a fermion of mass m ⌧ mm, the
dyon’s electric charge will no longer be localized to its
core [40, 41] but will rather be dispersed in the fermionic
vacuum on a length scale of order m�1. As m ! 0, this
cloud grows to encompass all of space and an observer at
finite distance would measure vanishing electric charge:
this cloud screens the charge induced by the Witten ef-
fect. Furthermore, there exists a collection of fermionic
excitations about the dyon that must be accounted for
when computing our monopole loops.

While a full analysis of this e↵ect—and the inclusion
of multiple light fermions—is reserved for future work,
we can easily understand how it impacts the dyon mass
spectrum on dimensional grounds. Since the fermion di-
lutes the induced electric charge over a region roughly the

size of its Compton wavelength, we expect that r⇤ ⇠ m�1

in the estimate (4), and so the dyonic mass spacing be-
comes of order m2

� ⇠ mmm. Since this spacing vanishes
as m ! 0, so does the ✓-dependence of the dyon tower.

B. Higher-Derivative Corrections and Validity

Our calculation assumed the dyon mass spectrum pre-
sented in (11), which we expect to receive corrections
in e↵ective field theory when monopoles are not BPS.
We should check that our result is robust against such
corrections. These corrections can arise from higher
derivative operators in the bulk e↵ective Lagrangian, like

(Fµ⌫Fµ⌫)2 or
�
Fµ⌫ F̃µ⌫

�2
, or higher powers of (@µ�+kAµ)

in the worldline Lagrangian. These are related: the for-
mer add B4, (E ·B)2,B2E2 and E4 terms to the energy
density ⇢. Integrating ⇢ outside the monopole core, sim-
ilarly to the logic that led us to (4), implies that these
terms modify the dyon mass spectrum. A series of terms
of the form c2jE2j/⇤4(j�1) in ⇢ generates corrections to
the mass spectrum in even powers of (n� ✓/2⇡):

m2
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, (19)

where �2j ⇠ c2j
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e2k2/

�
16⇡2(r⇤⇤)4

�⇤j�1
is small when

j > 1 (and �1 ⌘ 1, by the definition of m2
�). Terms

involving powers of both B and E give subleading shifts
to the definitions of m2

m,m
2
�, and the �j .

Repeating our earlier logic, we can sum the loop cor-
rections (10) using the mass spectrum (19). Poisson re-
summation and relabeling n� ✓/2⇡ ! n then gives
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To evaluate the integral over n, we work in a saddle point
approximation: defining S`(n) to be the function inside
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Again, we integrate over all trajectories that begin and
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As is familiar from standard instanton physics, the
presence of light, charged fermions can dramatically alter
a theory’s ✓-dependence. In particular, any dependence
on ✓ should vanish as we take any charged fermion’s mass
to zero and thus restore a chiral symmetry.

Such light fermions similarly a↵ect dyonic physics.
In the presence of a fermion of mass m ⌧ mm, the
dyon’s electric charge will no longer be localized to its
core [40, 41] but will rather be dispersed in the fermionic
vacuum on a length scale of order m�1. As m ! 0, this
cloud grows to encompass all of space and an observer at
finite distance would measure vanishing electric charge:
this cloud screens the charge induced by the Witten ef-
fect. Furthermore, there exists a collection of fermionic
excitations about the dyon that must be accounted for
when computing our monopole loops.

While a full analysis of this e↵ect—and the inclusion
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we can easily understand how it impacts the dyon mass
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ilarly to the logic that led us to (4), implies that these
terms modify the dyon mass spectrum. A series of terms
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summation and relabeling n� ✓/2⇡ ! n then gives

Ve↵(✓) = �

X

`2Z

Z 1

0

d⌧

4⌧

1

(2⇡⌧)2
e�

1
2m

2
m⌧+i`✓

Z(`, ⌧),

Z(`, ⌧) ⌘

Z 1

�1
dn e�2⇡in`� 1

2m
2
�⌧(n

2+�4n
4+··· ) (20)

To evaluate the integral over n, we work in a saddle point
approximation: defining S`(n) to be the function inside



In the presence of a light fermion with  , dyon’s electric charge dispersed 
to a length . 

m ≪ mM
∼ 1/m

2

We can estimate l� by comparing (3) to the energy of
the classical field configuration outside a monopole in an
axion background, following [29], from which we obtain:

l� ⇠
4⇡

e2k2
r⇤ , r⇤ = max(rc, r0), (4)

where rc = ⇡/(e2mm) is the classical radius of the mag-
netic monopole (of mass mm) and r0 = ke/(8⇡2f) is
the length scale over which the axion field is screened
near the monopole core. In the special case of critical
’t Hooft-Polyakov monopoles [30, 31], we begin with an
SU(2) gauge theory with coupling g. Matching to (1)
gives e = g/2 and k = 2, while matching to (2) (when
rc � r0) gives l� = mm/m2

w where mm = 4⇡v/g and
mw = gv is the W boson mass. (We have chosen the
order-one coe�cient in (4) to be accurate for this case,
but it will di↵er in general theories.)

Because the dyon energy spectrum (3) is ✓-dependent,
we can integrate out the dyons and obtain an e↵ective
potential for ✓. This can be understood either as a sum
of Coleman-Weinberg-type potentials [32] from each dyon
mode n, or as a sum over loops with nontrivial winding
of � around the loop. These two calculations are related
by Poisson resummation, as we explain below. Although
there is prior work on the ✓ potential generated by a gas
of (non-virtual) monopoles and antimonopoles (see [29,
33–35] and follow-ups), the e↵ect of monopole loops on
the vacuum ✓ potential is, as far as we know, absent from
the prior literature.

II. MONOPOLE LOOPS

We would like to compute the vacuum energy in
the presence of “fundamental” magnetic monopoles.
Schematically, the vacuum energy should be derived by
computing a Euclidean path integral of the form

Z(✓) =
X

worldlines

Z
D(fields) e�Se[fields,worldlines,✓] , (5)

and taking the limit of infinite spacetime volume,

Ve↵(✓) = � lim
V!1

1

V
logZ(✓) . (6)

The worldline formalism has previously been applied to
other physical processes involving monopoles, e.g., to pair
production in magnetic fields [36].

In the limit where interactions between the configu-
rations are small, we expect the partition function to
be dominated by disconnected vacuum paths character-
ized by the transition amplitude ZS1(✓), the Feynman-
weighted sum over all paths that are topologically a circle
S1. These contributions exponentiate:
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�
. (7)

Hence Ve↵(✓) = �
1
VZS1(✓); we work in the first-quantized

picture to compute the amplitude ZS1(✓) [37]. We sum

over all trajectories that return to the same configura-
tion. This includes an integral over the invariant length
(Schwinger proper time) ⌧ , weighted with a 1/2⌧ to ac-
count for overcounting trajectories related by transla-
tions and reflections. So,
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with Z(⌧, ✓) the sum over transition amplitudes at fixed
✓ of all trajectories with invariant length ⌧ .
There are two ways we can compute ZS1 . For a free

particle of mass m, the gauge fixed transition amplitude
for a trajectory of length ⌧ from point x to point x0 is
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After integrating over all trajectories that begin and end
at the same point and canceling o↵ the a factor of the
spacetime volume from the measure with the factor in
the definition of the e↵ective potential, we obtain
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We will sum over all dyon modes, labeled by n 2 Z.
To simplify the computation, we assume that the dyon
mass spectrum takes the form
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This agrees with (3) to order 1/l�, and in certain cases
is an exact consequence of a BPS condition. In general,
there may be power corrections in (mml�)�1. Summing
over the tower of states, we obtain the e↵ective potential
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Periodicity in ✓, arising from the sum over n, is manifest
after Poisson resummation:
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The e↵ective potential then becomes
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After integrating, the result is
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where we have ignored the irrelevant constant from the
divergent ` = 0 integral.

m2
Δ ∼ mMm

m → 0, m2
Δ → 0


