

New horizons and physics research opportunities in ion beam therapy

Katia Parodi, Ph.D., Professor and Chair Department of Medical Physics, Ludwig-Maximilians-Universität München, Munich, Germany

Source: Elekta, Accuray, ViewRay

Biological effectiveness

- Radiation effects are mainly due to complex DNA damage in cell nucleus
- Depend on ionization density of released electrons

Physical and biological advantages of ion beam therapy

4

The worldwide spread of ion beam therapy

- > 90 proton therapy facilities (35 in USA)
- 13 carbon ion therapy facilities, 6 combined with protons (Germany, Italy, Austria, Japan, China)

Worldwide >200,000 patients treated with ions

Sources: http://www.schaer-engineering.ch/en/rptc.html14, GSI Darmstadt, A. Lomax, PSI

Nuclear Physics for Medicine Report, NUPECC, 2014

Source: TPC, Northwestern Medicine, Oncoray Dresden, MGH Boston, IBA, MedPhoton; Hoffmann ... Parodi, RadOnc 2020

8

In-room imaging for ion beam therapy

Imaging of tissue stopping power properties (SPR, specific to ion beam therapy)

Competitive performance of proton CT prototype vs dual-source DECT at much lower imaging dose

Ongoing efforts to translate this technology into clinical use

Further dose reduction possibilities in combination with fluence modulation

Dedes, ..., Parodi, PMB 2019 ; Dedes...Parodi, Landry MP 2018

PET or PG imaging?

PET

- Proven imaging technologies, with many ongoing developments for nuclear medicine applications (eg ultra-fast TOF)
- Intrisically 3D, possibility of combination with tracer imaging
- Issues of washout and "slow" response

- Requires dedicated instrumentation for detection of multi-MeV photons
- Not all implementations provide 3D imaging
- Online, real-time (no washout issue)
- Possibility to provide spectroscopic information

Ferraro et al, Sci Rep 2018

Richter et al, Radiother Oncol 2016

Integration in clinical workflow

Comparison meas. vs. prediction so far based on engines (mostly MC) external to treatment planning system (TPS) Analytical PET & PG calculation in a research version of TPS "RayStation" for p, currently under extension for ${}^{12}C$

RaySearch Laboratories

New horizons in small animal research

Bridging the gap: small animal radiotherapy research Emerging irradiation platforms for protons and heavier ions

WP2a: Proton radiography/tomography

Pre-treatment radiographic & tomographic imaging

- Proton transmission imaging for recovery of tissue relative stopping power (to water, SPR)
- Vertical irradiation position for imaging & treatment
- In-house holder accommodating sterility, anaesthetization and temperature stabilization, with minimal material budget and possibility of acoustic coupling

Two solutions being developed for conventional & synchrocyclotron-based facilities

1. Single particle tracking

- Low dose ($< 1 \mbox{ mGy per radiography}$)
- Accounts for Coulomb scattering
- Complex detectors

14

In-vivo range monitoring

Two solutions being developed for conventional & synchrocyclotron-based facilities

WP2.c Development of dedicated in-beam PET scanner to detect irradiation induced activity

WP2.b Exploitation of thermoacoustic emissions from pulsed beam delivery (ionoacoustics)

Nitta et al, IEEE MIC 2019, Lovatti PhD project

Lascaud ... Parodi, talk at Small Animal Precision IGRT conference; Lascaud ... Parodi, MIC 2020; Dash MSc thesis

WP2c: In-beam PET

Requirements of high-sensitivity, (sub)-millimeter spatial resolution, in-beam integration

3-layer DOI block with 0.9 pixel width

Detector

Amp. circuit

Proton beam

500 mm

mm

68

Proposed novel spherical design

- 56 LYSO DOI detectors and spherical design (7-12% efficiency)
- Spatial resolution \leq 1.0 mm FWHM
- Wide opening for beam, mouse holder & ultrasound transducers

First in-beam operation

- 8 LYSO DOI successfully tested in ^{10,11}C beams @ GSI

Ongoing work & Next steps

- Characterization and assembly of all 56 LYSO DOI detectors
- Finalization of simulation and image reconstruction framework
- Final evaluation of scanner imaging performance and first in-beam tests in proton beams

Nitta, Lovatti...Yamaya, Thirolf, Parodi, IEEE NSS-MIC 2019, 2021; Lovatti PhD project; Haghani MSc thesis

WP3: Adaptive treatment workflows

Beamline optimization and future SIRMIO operation requires TPS planning system • License agreement and research collaboration agreement with RaySearch Laboratories

Ongoing work & Next steps

- Validation of $\mu\text{-}\mathsf{RayStation}$ against full Monte Carlo transport code
- Systematic planning studies for final optimization of setup and assessment of pCT image quality
- Import/handling of all SIRMIO imaging data to develop adaptive treatment workflow
- µ-RayStation upgrade to explicitly handle SIRMIO beamline (with RaySearch)

Meyer et al, PMB 2020; Pinto (LMU), Nilsson, Traneus (RaySearch), PhD thesis S. Meyer, MSc thesis S. Kundel & L. Zott

Several beamtimes scheduled in summer/fall 2021 to test performance of different components, prior to final demonstration early 2022

Final system will be adaptable to different proton centers and could thus offer a versatile platform for precision small animal radiation research

Motorized rotation

Parodi ... Würl, Acta Oncologica 2019; Meyer...Parodi PMB 2020

Sources: West German Proton Therapy Center & HIT Heidelberg

Conclusion & Outlook

- Promising techniques for full exploitation of ion therapy advantages in clinical practice close to or just starting clinical translation & evaluation
- Reduction of uncertainties at planning & delivery stage will enable more accurate dose delivery and likely impact clinical outcome
- New technologies for precision pre-clinical research will support ongoing studies on new frontiers effects to widen therapeutic window

