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• LHC cross sections are usually computed in terms of convolutions of 
partonic cross sections with parton distribution functions


• Partonic cross sections are calculated at some fixed order in perturbation 
theory (NNLO or N3LO)


• In many cases this is insufficient, because in the presence of experimental 
cuts the cross sections are sensitive to very different energy scales 


• Fixed-order results are affected by large logarithmic corrections, which 
need to be resummed to all orders; often this is done using parton showers 
(large-Nc approximation)


• This talk is about “strange logarithms” and a clever way to resum them …

Introduction
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Consider the “gap between jets” observable (inter-jet energy flow):


The cross section contains large logarithms            with 


‣ for e+e- collisions: , leading logs have 


‣ for hadron colliders:


‣ not contained in existing parton showers!

m ≤ n m = n

Introduction
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In general, large logarithms arise from an incomplete cancellation of soft and 
collinear IR divergences:
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Since the effect arises first at 4-loop order, little is known about SLLs: 


‣ discovered in "gaps between jets” calculation for 


‣ calculation of first SLL  for arbitrary  hard processes using the color-
space formalism


‣ diagrammatic calculation of the first two SLLs for some selected 2-parton channels


All-order structure of SLLs, their contributions to other scattering processes, 
and their asymptotic behavior for  are completely unknown!

qq → qq

∼ α4
s L5 2 → 2

Q/Q0 → ∞

Introduction

[Forshaw, Kyrieleis, Seymour (2006)]

[Forshaw, Kyrieleis, Seymour (2008)]

[Keates, Seymour (2009)]
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gap:

 2Egap < Q0

unrestricted Ein ~ Q

The SLLs are the parametrically leading contributions to exclusive LHC cross sections,  
yet these effects are currently not understood in higher orders  

and not included in existing parton showers! 

We will argue that the contributions of SLLs can numerically be as large as a  
one-loop effect, and we will present a complete theory of their all-order contributions.



‣ soft radiation does not resolve individual 
energetic partons; sensitive only to the 
direction and total color charge of the jets


‣ soft function:


‣ simple structure → N3LL resummation

Soft radiation in global observables
Consider the thrust distribution in e+e- collisions near T~1:
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NGLs in e+e- collisions
Non-global observables are insensitive to radiation in certain regions of phase 
space:

Q0

Q Q

Q0
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↵2
sL

2
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↵3
sL

3 exclusive jet cross sections

‣ soft radiation from secondary emissions inside the jets leads to a complicated pattern 
of large logs  with , which do not exponentiate


‣ in large-Nc limit, the NGLs can be obtained by solving the non-linear BMS integral 
equation                                    ; 1/Nc corrections worked out in


‣ no generalization to hadron colliders exists!

∼ (αsL)n L = ln(Q/Q0) [Dasgupta, Salam (2002)]

non-global logs (NGLs)

[Banfi, Marchesini, Smye (2002)] [Weigert (2003); Hatta, Ueda (2013); 
Hagiwara (2015)]
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Factorization theorem for NGLs
For the “gap between jets” cross section at e+e- colliders, we have derived a 
factorization theorem using soft-collinear effective theory: [Becher, MN, Rothen, Shao (2015, 2016)]

Hard function 
m hard partons along 


fixed directions {n1, …, nm} 

Soft function 

squared amplitude 

with m Wilson lines

integration over directions color trace

Figure 1. Pictorial representations of factorization formulas (1.1) and (1.4) for interjet energy flow
(left) and jet mass (right). The black lines represent hard radiation with typical scale Q which is
constrained to be inside the cones, and the red lines depict soft radiation with a low energy scale
Q0 which is allowed to populate the full phase space. In the right figure, the blue lines in the left
hemisphere represent collinear radiation which is described by the inclusive jet function in (1.4).

Our main goal in the present work is to develop the Monte Carlo methods to include

these corrections as a step towards full higher-logarithmic resummation, but it is also

interesting to study their numerical size, since they have never been computed for non-

global observables and often dominate numerically in the global case. It is customary to

add a prime to the logarithmic accuracy to indicate the presence of higher-order matching

corrections. In this notation our next-to-leading-logarithmic results for the jet mass have

NLL0 accuracy.

In Refs. [2, 10] we have derived a factorization formula for interjet energy flow and light-

jet mass. The key element is the presence of multi-Wilson-line operators which generate

the intricate pattern of Non-Global Logarithms (NGLs). Explicitly, the result for interjet

energy flow at a lepton collider has the form

�(Q,Q0) =
1X

m=2

⌦
Hm({n}, Q, µ)⌦ Sm({n}, Q0, µ)

↵
, (1.1)

where Q is the center-of-mass energy, and Q0 = �Q is the veto energy outside the jet cone

area. For simplicity, we choose the jet axis along the thrust axis. The above factorization

formula neglects power corrections from O(�) terms. The hard functions Hm describe

hard radiation inside the jet cone, and their characteristic scale is Q since radiation inside

the cones is unrestricted. The index m represents the number of hard partons inside the

jet, which propagate along the directions {n} = {n1, n2, . . . , nm}. Each of these sources

soft radiation, which we describe by a Wilson line along the direction of the hard parton.

The matrix elements of these Wilson lines define the soft functions Sm({n}, Q0, µ). To

obtain the cross section, one integrates over the directions {n} which is indicated by the

symbol ⌦. The hard and soft functions are matrices in the color space of the m partons

and one takes the color trace h. . . i after multiplying them. The operator definition for

these functions and further explanations can be found in [2].

– 2 –

σ =
∑
a,b

∫ 1

0
dx1dx2 σ̂ab(Q, x1, x2, µf ) fa(x1, µf) fb(x2, µf ) +O(ΛQCD/Q) (1)

σ =
∑
a,b

∫ 1

0
dx1dx2 Cab(Q, x1, x2, µ)〈P (p1)|Oa(x1)|P (p1)〉 〈P (p2)|Ob(x2)|P (p2)〉+O(ΛQCD/Q)

(2)

〈qa′(x′p)|Oa(x)|qa′(x′ p)〉 = δaa′ δ(x′ − x)

Cab(Q, x1, x2) = σ̂ab(Q, x1, x2)

Vm =2
∑
(ij)

∫
dΩ(nk)

4π
(Ti,L · Tj,L + Ti,R · Tj,R)W

k
ij

− 2 iπ
∑
(ij)

(Ti,L · Tj,L − Ti,R · Tj,R)Πij (3)

Rm =− 4
∑
(ij)

Ti,L · Tj,R Wm+1
ij Θin(nm+1)

Hm ∝ |Mm〉〈Mm| (4)
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Factorization theorem for NGLs
Factorization theorem:

‣ separates contributions from scales Q and Q0 


‣ operator definitions of all ingredients:

from these Wilson lines

Sm({n}, Q0, µ) =

Z

Xs

X
h0|S†

1
(n1) . . . S

†
m(nm) |XsihXs|S1(n1) . . . Sm(nm) |0i ✓(Q0 � E out) ,

(2.3)

where the states Xs contain an arbitrary number of soft partons. The soft functions depend

on the energy Q0 of the radiation and implicitly also on the shape of the region ⌦out in

which the energy is measured. TheWilson-line matrix elements have ultraviolet divergences

which can be renormalized away and this induces a dependence on the renormalization scale

µ.

The hard functions are given by the square of the hard-scattering amplitudes, together

with the phase-space constraints ⇥in

��
p
 �

which restrict the m hard partons to the inside

of the jets,

Hm({n}, Q, µ) =
1

2Q2

X

spins

mY

i=1

Z
dEiE

d�3

i

(2⇡)d�2
|Mm({p})ihMm({p})|

⇥ (2⇡)d �
⇣
Q�

mX

i=1

Ei

⌘
�
(d�1)(~ptot)⇥in

��
p
 �

. (2.4)

For cone jets the phase-space constraint ⇥in

��
p
 �

is defined by cones around the hard

partons. For recombination algorithms, on the other hand, the jet clustering constraints

can be quite complicated in general and can spoil factorization. However, they simplify in

our setup which considers the limit of hard partons together with (infinitely) soft radiation.

This situation was considered in [31] where it was shown that for anti-kT jets, the jet

boundary becomes cone-like so that the theorem (2.1) also applies to this case.

Since the cross section must be independent of the scale µ, the scale dependence among

the hard and soft functions must cancel. The one for the hard function is driven by the

RG equation

d

d lnµ
Hm({n}, Q, µ) = �

mX

l=k

Hl({n}, Q, µ)�H

lm
({n}, Q, µ) . (2.5)

This evolution equation is formally solved by the path ordered exponential

U({n}, µs, µh) = P exp

 Z
µh

µs

dµ

µ
�
H({n}, µ)

�
, (2.6)

and the resummed cross section is then

d�(Q,Q0) =
1X

l=k,m�l

⌦
Hl({n}, Q, µh)⌦Ulm({n}, µs, µh) ⌦̂Sm({n}, Q0, µs)

↵
. (2.7)

The condition m � l arises because the anomalous dimension matrix is zero below the

diagonal, see below. The hat in ⌦̂ indicates that one has to integrate over the angles of

the (m � l) additional unresolved emissions. For the choice µh ⇠ Q and µs ⇠ Q0, the

hard and soft functions are free of large logarithms and can be expanded in the respective

– 4 –
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Figure 1. Pictorial representations of factorization formulas (1.1) and (1.4) for interjet energy flow
(left) and jet mass (right). The black lines represent hard radiation with typical scale Q which is
constrained to be inside the cones, and the red lines depict soft radiation with a low energy scale
Q0 which is allowed to populate the full phase space. In the right figure, the blue lines in the left
hemisphere represent collinear radiation which is described by the inclusive jet function in (1.4).

Our main goal in the present work is to develop the Monte Carlo methods to include

these corrections as a step towards full higher-logarithmic resummation, but it is also

interesting to study their numerical size, since they have never been computed for non-

global observables and often dominate numerically in the global case. It is customary to

add a prime to the logarithmic accuracy to indicate the presence of higher-order matching

corrections. In this notation our next-to-leading-logarithmic results for the jet mass have

NLL0 accuracy.

In Refs. [2, 10] we have derived a factorization formula for interjet energy flow and light-

jet mass. The key element is the presence of multi-Wilson-line operators which generate

the intricate pattern of Non-Global Logarithms (NGLs). Explicitly, the result for interjet

energy flow at a lepton collider has the form

�(Q,Q0) =
1X

m=2

⌦
Hm({n}, Q, µ)⌦ Sm({n}, Q0, µ)

↵
, (1.1)

where Q is the center-of-mass energy, and Q0 = �Q is the veto energy outside the jet cone

area. For simplicity, we choose the jet axis along the thrust axis. The above factorization

formula neglects power corrections from O(�) terms. The hard functions Hm describe

hard radiation inside the jet cone, and their characteristic scale is Q since radiation inside

the cones is unrestricted. The index m represents the number of hard partons inside the

jet, which propagate along the directions {n} = {n1, n2, . . . , nm}. Each of these sources

soft radiation, which we describe by a Wilson line along the direction of the hard parton.

The matrix elements of these Wilson lines define the soft functions Sm({n}, Q0, µ). To

obtain the cross section, one integrates over the directions {n} which is indicated by the

symbol ⌦. The hard and soft functions are matrices in the color space of the m partons

and one takes the color trace h. . . i after multiplying them. The operator definition for

these functions and further explanations can be found in [2].

– 2 –
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Factorization theorem for NGLs

Figure 1. Pictorial representations of factorization formulas (1.1) and (1.4) for interjet energy flow
(left) and jet mass (right). The black lines represent hard radiation with typical scale Q which is
constrained to be inside the cones, and the red lines depict soft radiation with a low energy scale
Q0 which is allowed to populate the full phase space. In the right figure, the blue lines in the left
hemisphere represent collinear radiation which is described by the inclusive jet function in (1.4).
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area. For simplicity, we choose the jet axis along the thrust axis. The above factorization

formula neglects power corrections from O(�) terms. The hard functions Hm describe

hard radiation inside the jet cone, and their characteristic scale is Q since radiation inside

the cones is unrestricted. The index m represents the number of hard partons inside the

jet, which propagate along the directions {n} = {n1, n2, . . . , nm}. Each of these sources

soft radiation, which we describe by a Wilson line along the direction of the hard parton.

The matrix elements of these Wilson lines define the soft functions Sm({n}, Q0, µ). To

obtain the cross section, one integrates over the directions {n} which is indicated by the

symbol ⌦. The hard and soft functions are matrices in the color space of the m partons

and one takes the color trace h. . . i after multiplying them. The operator definition for

these functions and further explanations can be found in [2].
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Factorization theorem:

‣ separates contributions from scales Q and Q0 


‣ crucial new ingredient is the sum over parton multiplicities! 

‣ provides a natural way to perform resummation using RG equations 
(including NGLs)


‣ not limited to leading logarithms or leading color


‣ sum over m accounts for possibility of branchings; hard and                                
soft functions depend on all ni vectors

Q

Q0
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Similar formula holds for hadron colliders:


Differences are:

Neubert Part B2 EFT2

in a rapidity region �Y in between the two leading jets. This can be imposed by requiring that any
additional jet in the veto region has a transverse momentum smaller than Q0. At leading logarithmic
accuracy, there is no sensitivity to how the radiation is vetoed but only to the scale hierarchy between
Q0 and the partonic center-of-mass energy Q ⌘

p
ŝ =

p
x1x2s. This “gap between jets” observable

obeys the factorization formula

�(Q, Q0) =
X

a1,a2=q,q̄,g

Z
dx1dx2

1X

m=4

⌦
Hm({n}, Q, µ) ⌦Wm({n}, Q0, x1, x2, µ)Q

↵
. (4)

The hard functions Hm describe all possible m-parton processes a1 + a2 ! a3 + · · · + am and are
obtained after imposing appropriate kinematic constraints. They are integrated over the phase space
but for fixed directions {n} = {n1, . . . , nm} of the m partons. The color sum, indicated by h. . . i, is
performed after the hard functions are combined with the functions Wm, which encode the soft and
collinear low-energy dynamics. Both quantities depend on the directions {n} of the hard partons, and
after combining them the integrals over these directions are performed, as indicated by the symbol ⌦.
The low-energy matrix elements Wm consist of squared matrix elements of m soft Wilson lines for
the incoming and outgoing partons together with two collinear fields for the incoming particles. They
need to be evaluated in SCET with Glauber gluons [51], which can mediate non-trivial interactions
between soft and collinear partons. The functions Wm contain rapidity logarithms, which induce a
dependence on the hard scale Q [52, 53], as indicated by the subscript. This additional dependence
on the hard scale is a single-logarithmic e↵ect and does not contribute to the leading SLLs.

In principle, relation (4) provides the basis for a rigorous calculation of non-global observables at
hadron colliders (shown here for the example of a pp ! 2 jet process). In order to resum the large
logarithmic corrections, one evaluates the hard functions Hm at a scale µh ⇠ Q, where they are free
of large logarithms, and connects them to the low-energy matrix elements Wm evaluated at a low
scale µs ⇠ Q0 using RG equations. Formally, this yields for the color trace in (4)

1X

m=4

⌦
Hm({n}, Q, µh) ⌦

1X

l=m

Uml({n}, µh, µs) ⌦̂W l({n}, Q0, x1, x2, µs)Q
↵
, (5)

where

U({n}, µh, µs) = P exp

Z
µh

µs

dµ

µ
�H({n}, Q, µ)

�
(6)

is a path-ordered exponential over the anomalous-dimension matrix �H . The symbol ⌦̂ in (5) implies
an integration over the (l � m) directions ni of the “unresolved” partons not contained in the hard
functions Hm. The anomalous dimension is not only a matrix in color space, but also in the infinite
space of parton multiplicities, which is the key novel aspect of our approach. It can be split into two
parts: �H = �C 1 + �S . The first part governs the purely collinear singularities and is present also
for inclusive cross sections. The second part contains soft as well as soft + collinear terms. This part
is absent for inclusive cross sections, but present here because of the restrictions on hard radiation in
the veto region. The soft + collinear piece generates the SLLs. At one-loop order, one finds

�S =
↵s

4⇡

0

BBBBBBBB@

V4 R4 0 0 · · ·

0 V5 R5 0 · · ·

0 0 V6 R6 · · ·

0 0 0 V7 · · ·

...
...

...
...

. . .

1

CCCCCCCCA

+ O(↵2
s) . (7)

The virtual contributions Vm leave the number of partons unchanged, while the real-emission operators
Rm add one extra parton to a given hard function. Starting with the lowest-multiplicity hard function
H4 involving four partons, successive applications of �S generate functions of arbitrary multiplicity
l � 4, which are then combined with the corresponding low-energy matrix elements W l. The evolution
operator in (6) is the solution to a di↵erential equation which can be cast in the form of a full-color,

4

Factorization theorem for NGLs

‣ hard functions         describe m-parton processes 


‣ low-energy matrix elements         now contain soft Wilson lines plus collinear fields 
for the incoming partons; they also contain single-logarithmic Q dependence from 
the collinear anomaly


‣ low-energy theory involves Glauber gluons, which mediate non-trivial interactions 
between soft and collinear particles
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Jet cross sections at high-energy colliders exhibit intricate patterns of logarithmically enhanced

higher-order corrections. In particular, so-called non-global logarithms emerge from soft radiation

emitted o↵ energetic partons inside jets. While this is a single-logarithmic e↵ect at lepton colliders,

at hadron colliders phase factors in the amplitudes lead to double-logarithmic corrections starting

at four-loop order. This e↵ect was discovered a long time ago, but not much is known about the

higher-order behavior of these terms and their process dependence. We derive, for the first time,

the all-order structure of these “super-leading logarithms” for generic 2 ! l scattering processes at

hadron colliders and resum them in closed form.

If the radiation in a high-energy scattering process is
restricted by experimental cuts, higher-order terms in the
perturbative series are enhanced by large logarithms as-
sociated with soft and collinear emissions. The simple
structure of these emissions often makes it possible to
resum the logarithmic terms to all orders, either analyt-
ically or using parton-shower methods. For non-global
observables, such as exclusive jet cross sections in which
a veto on radiation is imposed only in certain angular
regions, even the leading logarithms have a complicated
structure due to the fact that they are generated by sec-
ondary emissions o↵ the original hard partons [1].

The prototypical non-global observable is the interjet
energy flow, where a veto associated with a low scale Q0

is imposed on radiation in a region away from the hard
jets with energy of the order of the collision energy Q.
Being sensitive only to large-angle soft radiation, one ex-
pects the leading logarithms to this observable to scale as
↵n
s Ln, where L = ln(Q/Q0). This is indeed the case for

e+e� colliders, but Forshaw, Kyrieleis and Seymour [2]
argued that at hadron colliders double logarithms arise
at four-loop order, so that the leading logarithm at this
order is ↵4

sL
5. These so-called super-leading logarithms

(SLLs) are a subtle e↵ect generated by complex phases in
the amplitudes, which spoil the real-virtual cancellation
for collinear emissions o↵ the initial states [3–5]. The
e↵ect is absent in the large-Nc limit and not captured
by any of the existing parton showers, which therefore
do not account for the leading-logarithmic corrections to
non-global observables at hadron colliders.

Even 15 years after this e↵ect was discovered, remark-
ably little is known about it. While the first SLL is known
for arbitrary 2 ! 2 hard processes [6], the second SLL
(⇠ ↵5

sL7) is known for some selected partonic channels
only [7]. The all-order structure of SLLs, their contribu-
tion to other hard processes and their large-order behav-
ior are completely unknown. One reason for this lack of
understanding lies in the fact that one needs to perform
calculations in the full color space, whose dimension is

rapidly growing with the number of emitted partons.
In [8, 9] we have derived factorization theorems for

non-global observables in Soft-Collinear E↵ective The-
ory (SCET) [10–12] and found that non-global logarithms
are governed by a renormalization-group (RG) equation.
Here we apply this method to non-global logarithms at
hadron colliders and derive the all-order structure of the
SLLs ↵3

sL
3 ⇥ ↵n

s L2n for arbitrary 2 ! l processes. We
further show that the e↵ect already arises for l = 0, rel-
evant e.g. to Higgs production with a central jet veto.

As a concrete example, we consider the pp ! 2 jet
cross section with a veto on hard radiation in a rapidity
region �Y in between the two leading jets. This can be
imposed by requiring that any additional jet in the veto
region has a transverse momentum smaller than Q0. At
leading logarithmic accuracy, there is no sensitivity to
how the radiation is vetoed but only to the scale hier-
archy between Q0 and the transverse momentum of the
hard jets, which is of order the partonic center-of-mass
energy, Q =

p
ŝ =

p
x1x2s. For this “gap between jets”

observable, the following factorization formula holds [13]:

�(Q0) =
X

a1,a2=q,q̄,g

Z
dx1dx2

⇥
1X

m=4

⌦
Hm({n}, Q, µ) ⌦ Wm({n}, Q0, x1, x2, µ)

↵
.

(1)

The hard functions Hm describe all possible m-parton
processes a1 + a2 ! a3 + · · · + am and are obtained after
imposing appropriate kinematic constraints, such as cuts
on the transverse momenta and rapidities of the leading
jets. One then integrates over the phase space but for
fixed directions {n} = {n1, . . . , nm} of the m partons,
i.e.

Hm =
1

2ŝ
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Jet cross sections at high-energy colliders exhibit intricate patterns of logarithmically enhanced

higher-order corrections. In particular, so-called non-global logarithms emerge from soft radiation

emitted o↵ energetic partons inside jets. While this is a single-logarithmic e↵ect at lepton colliders,

at hadron colliders phase factors in the amplitudes lead to double-logarithmic corrections starting

at four-loop order. This e↵ect was discovered a long time ago, but not much is known about the

higher-order behavior of these terms and their process dependence. We derive, for the first time,

the all-order structure of these “super-leading logarithms” for generic 2 ! l scattering processes at

hadron colliders and resum them in closed form.

If the radiation in a high-energy scattering process is
restricted by experimental cuts, higher-order terms in the
perturbative series are enhanced by large logarithms as-
sociated with soft and collinear emissions. The simple
structure of these emissions often makes it possible to
resum the logarithmic terms to all orders, either analyt-
ically or using parton-shower methods. For non-global
observables, such as exclusive jet cross sections in which
a veto on radiation is imposed only in certain angular
regions, even the leading logarithms have a complicated
structure due to the fact that they are generated by sec-
ondary emissions o↵ the original hard partons [1].

The prototypical non-global observable is the interjet
energy flow, where a veto associated with a low scale Q0

is imposed on radiation in a region away from the hard
jets with energy of the order of the collision energy Q.
Being sensitive only to large-angle soft radiation, one ex-
pects the leading logarithms to this observable to scale as
↵n
s Ln, where L = ln(Q/Q0). This is indeed the case for

e+e� colliders, but Forshaw, Kyrieleis and Seymour [2]
argued that at hadron colliders double logarithms arise
at four-loop order, so that the leading logarithm at this
order is ↵4

sL
5. These so-called super-leading logarithms

(SLLs) are a subtle e↵ect generated by complex phases in
the amplitudes, which spoil the real-virtual cancellation
for collinear emissions o↵ the initial states [3–5]. The
e↵ect is absent in the large-Nc limit and not captured
by any of the existing parton showers, which therefore
do not account for the leading-logarithmic corrections to
non-global observables at hadron colliders.

Even 15 years after this e↵ect was discovered, remark-
ably little is known about it. While the first SLL is known
for arbitrary 2 ! 2 hard processes [6], the second SLL
(⇠ ↵5

sL7) is known for some selected partonic channels
only [7]. The all-order structure of SLLs, their contribu-
tion to other hard processes and their large-order behav-
ior are completely unknown. One reason for this lack of
understanding lies in the fact that one needs to perform
calculations in the full color space, whose dimension is

rapidly growing with the number of emitted partons.
In [8, 9] we have derived factorization theorems for

non-global observables in Soft-Collinear E↵ective The-
ory (SCET) [10–12] and found that non-global logarithms
are governed by a renormalization-group (RG) equation.
Here we apply this method to non-global logarithms at
hadron colliders and derive the all-order structure of the
SLLs ↵3

sL
3 ⇥ ↵n

s L2n for arbitrary 2 ! l processes. We
further show that the e↵ect already arises for l = 0, rel-
evant e.g. to Higgs production with a central jet veto.

As a concrete example, we consider the pp ! 2 jet
cross section with a veto on hard radiation in a rapidity
region �Y in between the two leading jets. This can be
imposed by requiring that any additional jet in the veto
region has a transverse momentum smaller than Q0. At
leading logarithmic accuracy, there is no sensitivity to
how the radiation is vetoed but only to the scale hier-
archy between Q0 and the transverse momentum of the
hard jets, which is of order the partonic center-of-mass
energy, Q =

p
ŝ =

p
x1x2s. For this “gap between jets”

observable, the following factorization formula holds [13]:

�(Q0) =
X

a1,a2=q,q̄,g

Z
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⇥
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m=4

⌦
Hm({n}, Q, µ) ⌦ Wm({n}, Q0, x1, x2, µ)

↵
.

(1)

The hard functions Hm describe all possible m-parton
processes a1 + a2 ! a3 + · · · + am and are obtained after
imposing appropriate kinematic constraints, such as cuts
on the transverse momenta and rapidities of the leading
jets. One then integrates over the phase space but for
fixed directions {n} = {n1, . . . , nm} of the m partons,
i.e.

Hm =
1
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Jet cross sections at high-energy colliders exhibit intricate patterns of logarithmically enhanced

higher-order corrections. In particular, so-called non-global logarithms emerge from soft radiation

emitted o↵ energetic partons inside jets. While this is a single-logarithmic e↵ect at lepton colliders,

at hadron colliders phase factors in the amplitudes lead to double-logarithmic corrections starting

at four-loop order. This e↵ect was discovered a long time ago, but not much is known about the

higher-order behavior of these terms and their process dependence. We derive, for the first time,

the all-order structure of these “super-leading logarithms” for generic 2 ! l scattering processes at

hadron colliders and resum them in closed form.

If the radiation in a high-energy scattering process is
restricted by experimental cuts, higher-order terms in the
perturbative series are enhanced by large logarithms as-
sociated with soft and collinear emissions. The simple
structure of these emissions often makes it possible to
resum the logarithmic terms to all orders, either analyt-
ically or using parton-shower methods. For non-global
observables, such as exclusive jet cross sections in which
a veto on radiation is imposed only in certain angular
regions, even the leading logarithms have a complicated
structure due to the fact that they are generated by sec-
ondary emissions o↵ the original hard partons [1].

The prototypical non-global observable is the interjet
energy flow, where a veto associated with a low scale Q0

is imposed on radiation in a region away from the hard
jets with energy of the order of the collision energy Q.
Being sensitive only to large-angle soft radiation, one ex-
pects the leading logarithms to this observable to scale as
↵n
s Ln, where L = ln(Q/Q0). This is indeed the case for

e+e� colliders, but Forshaw, Kyrieleis and Seymour [2]
argued that at hadron colliders double logarithms arise
at four-loop order, so that the leading logarithm at this
order is ↵4

sL
5. These so-called super-leading logarithms

(SLLs) are a subtle e↵ect generated by complex phases in
the amplitudes, which spoil the real-virtual cancellation
for collinear emissions o↵ the initial states [3–5]. The
e↵ect is absent in the large-Nc limit and not captured
by any of the existing parton showers, which therefore
do not account for the leading-logarithmic corrections to
non-global observables at hadron colliders.

Even 15 years after this e↵ect was discovered, remark-
ably little is known about it. While the first SLL is known
for arbitrary 2 ! 2 hard processes [6], the second SLL
(⇠ ↵5

sL7) is known for some selected partonic channels
only [7]. The all-order structure of SLLs, their contribu-
tion to other hard processes and their large-order behav-
ior are completely unknown. One reason for this lack of
understanding lies in the fact that one needs to perform
calculations in the full color space, whose dimension is

rapidly growing with the number of emitted partons.
In [8, 9] we have derived factorization theorems for

non-global observables in Soft-Collinear E↵ective The-
ory (SCET) [10–12] and found that non-global logarithms
are governed by a renormalization-group (RG) equation.
Here we apply this method to non-global logarithms at
hadron colliders and derive the all-order structure of the
SLLs ↵3

sL
3 ⇥ ↵n

s L2n for arbitrary 2 ! l processes. We
further show that the e↵ect already arises for l = 0, rel-
evant e.g. to Higgs production with a central jet veto.

As a concrete example, we consider the pp ! 2 jet
cross section with a veto on hard radiation in a rapidity
region �Y in between the two leading jets. This can be
imposed by requiring that any additional jet in the veto
region has a transverse momentum smaller than Q0. At
leading logarithmic accuracy, there is no sensitivity to
how the radiation is vetoed but only to the scale hier-
archy between Q0 and the transverse momentum of the
hard jets, which is of order the partonic center-of-mass
energy, Q =

p
ŝ =

p
x1x2s. For this “gap between jets”

observable, the following factorization formula holds [13]:
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(1)

The hard functions Hm describe all possible m-parton
processes a1 + a2 ! a3 + · · · + am and are obtained after
imposing appropriate kinematic constraints, such as cuts
on the transverse momenta and rapidities of the leading
jets. One then integrates over the phase space but for
fixed directions {n} = {n1, . . . , nm} of the m partons,
i.e.
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Factorization theorem for NGLs
RG evolution of hard functions:

‣ key feature: hard functions with lower parton multiplicities mix into 
higher-multiplicity functions!


Strategy for resumming NGLs:

‣ compute hard functions at a scale               


‣ evolve them to a low scale               by solving the RG equation


‣ evaluate low-energy matrix elements at the scale

d

dt
Hn(t) = Hn(t)Vn +Hn�1(t)Rn�1(t) (11)

H2(th = 0) = 1, Hn>2(th = 0) = 1 (12)

Hn(t) =

Z
t

0
dt

0Hn�1(t
0)Rn�1(t

0)e�(t0�t)Vn (13)

�LL =
1X

n=2

Hn(ts)⌦ Sn(ts) (14)

d

d lnµ
Hm({n}, Q, �, µ) = �

mX

l=2

Hl({n}, Q, µ)�H

lm
({n}, Q, µ) (15)

d

d lnµ
Hm(Q,µ) = �

mX

l=2

Hl(Q,µ)�H

lm
(Q,µ) (16)

2

<latexit sha1_base64="1UWsAznvPo/+DLsOu0FiahaIBYQ=">AAAB8nicbVDJSgNBEO1xjXGLevTSGARPYUZFPQb04DEBs0BmCD2dnqRJL0N3jRCGgD/hxYMiXv0ab/6NneWgiQ8KHu9VUVUvTgW34Pvf3srq2vrGZmGruL2zu7dfOjhsWp0ZyhpUC23aMbFMcMUawEGwdmoYkbFgrXh4O/Fbj8xYrtUDjFIWSdJXPOGUgJM6ocy6g9ByievdUtmv+FPgZRLMSRnNUeuWvsKepplkCqgg1nYCP4UoJwY4FWxcDDPLUkKHpM86jioimY3y6cljfOqUHk60caUAT9XfEzmR1o5k7DolgYFd9Cbif14ng+QmyrlKM2CKzhYlmcCg8eR/3OOGURAjRwg13N2K6YAYQsGlVHQhBIsvL5PmeSW4qlzUL8vVu6dZHAV0jE7QGQrQNaqie1RDDUSRRs/oFb154L14797HrHXFm0d4hP7A+/wBGiCRjQ==</latexit>

µh ⇠ Q
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µs ⇠ Q0
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l = 4 RG
 evolution

Q

Q0

treatment which is based on RG evolution in Soft-Collinear E↵ective Theory (SCET) [4–6]

(see [7] for a review). Our starting point is the factorization theorem which separates the

hard radiation inside the jets (or outside the isolation cone) from the soft radiation. The

soft radiation is driven by Wilson lines along the directions of the hard partons in the

process. Since there are contributions involving any number of hard partons, we end up

with operators with an arbitrary number of Wilson lines and these operators mix under

renormalization. The corresponding RG equation is complicated, but we will show that it

takes the form of a recursive equation which can be solved using a parton shower Monte-

Carlo (MC) program, which at leading-log accuracy and large-Nc is equivalent to the one

used by Dasgupta and Salam. An advantage of our treatment is that the RG equation is

not limited to leading logarithmic accuracy and we briefly discuss which ingredients and

modifications will be necessary to reach higher precision. There has been a lot of recent

work [8–11] on the general structure of parton showers and how to increase their accuracy.

The problem at hand provides an explicit example of a shower equation derived from first

principles for which it is clear what ingredients are needed to resum sub-leading logarithms.

The leading logarithms can be obtained by starting from the tree-level amplitudes and

running the parton shower to generate the logarithmically enhanced terms. Using a tree-

level event generator, this resummation can be automated. We have written a dedicated

parton shower code to perform the resummation and use the MadGraph5_aMC@NLO

framework [12] to generate the necessary tree-level amplitudes. We then study exclusive

jet and isolation-cone cross sections. In particular, we give numerical results for dijet

production with a gap between jets and compare to ATLAS measurements and theoretical

predictions [13] based on the BMS equation [14]. We also study isolated photon production

and compute the logarithms of ✏� , the energy fraction inside the isolation cone.

The remainder of this paper is organized as follows. In Section 2 we review the factor-

ization theorem for jet cross sections with gaps or isolation cones. In Section 3 we will show

that RG evolution of the associated Wilson coe�cients is equivalent to a parton shower,

and we give the necessary ingredients for LL resummation. In Section 4 we will apply

the shower code to obtain some phenomenological predictions, namely gap fraction of dijet

production and isolation cone cross section. We summarize our results and provide some

further discussions in Section 5.

2 Factorization for jet cross sections with gaps or isolation cones

The factorization formula for lepton-collider processes with k jets which takes the form

[1, 2]

d�(Q,Q0) =
1X

m=k

⌦
Hm({n}, Q, µ)⌦ Sm({n}, Q0, µ)

↵
. (2.1)

Here Q denotes the large energy inside the jets, while Q0 denotes the small energy outside

the jets in an angular region ⌦out. The factorization theorem is the leading term in an

expansion of the cross section in � = Q0/Q. Both the soft and hard functions depend on

the directions {n} = {n1, . . . , nm} and colors of the hard partons. The symbol ⌦ indicates

– 2 –
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�
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(Ti,L · Tj,L + Ti,R · Tj,R)

⇢
� ln

µ
2
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+
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W

k
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�

� 8 i⇡
X
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(12)

X
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µ
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= �

X

i
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µ

2Ei
= �

X

i

Ci ln
µ
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(13)

�
X
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µ

2Ei
= +

X

i

Ti,L � Ti,R �(nk � ni) ln
µ

2Ei
(14)

� = �+ �G +
X

i

�c
i ln

µ
2

ŝ

�(Q0) =
X

a1,a2=q,q̄,g

Z
dx1dx2

1X

m=4

⌦
Hm({n}, Q, µ)⌦Wm({n}, Q0, x1, x2, µ)

↵
. (15)

Wm({n}, Q0, x1, x2, µs) = fa1(x1) fa2(x2)1 . (16)
ΛQCD
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Factorization theorem for NGLs
Formal solution:


with:


This object is an operator in color space but also in the (infinite)                    
space of parton multiplicities!

from these Wilson lines

Sm({n}, Q0, µ) =

Z

Xs

X
h0|S†

1
(n1) . . . S

†
m(nm) |XsihXs|S1(n1) . . . Sm(nm) |0i ✓(Q0 � E out) ,

(2.3)

where the states Xs contain an arbitrary number of soft partons. The soft functions depend

on the energy Q0 of the radiation and implicitly also on the shape of the region ⌦out in

which the energy is measured. TheWilson-line matrix elements have ultraviolet divergences

which can be renormalized away and this induces a dependence on the renormalization scale

µ.

The hard functions are given by the square of the hard-scattering amplitudes, together

with the phase-space constraints ⇥in

��
p
 �

which restrict the m hard partons to the inside

of the jets,

Hm({n}, Q, µ) =
1

2Q2

X

spins

mY

i=1

Z
dEiE

d�3

i

(2⇡)d�2
|Mm({p})ihMm({p})|

⇥ (2⇡)d �
⇣
Q�

mX

i=1

Ei

⌘
�
(d�1)(~ptot)⇥in

��
p
 �

. (2.4)

For cone jets the phase-space constraint ⇥in

��
p
 �

is defined by cones around the hard

partons. For recombination algorithms, on the other hand, the jet clustering constraints

can be quite complicated in general and can spoil factorization. However, they simplify in

our setup which considers the limit of hard partons together with (infinitely) soft radiation.

This situation was considered in [31] where it was shown that for anti-kT jets, the jet

boundary becomes cone-like so that the theorem (2.1) also applies to this case.

Since the cross section must be independent of the scale µ, the scale dependence among

the hard and soft functions must cancel. The one for the hard function is driven by the

RG equation

d

d lnµ
Hm({n}, Q, µ) = �

mX

l=k

Hl({n}, Q, µ)�H

lm
({n}, Q, µ) . (2.5)

This evolution equation is formally solved by the path ordered exponential

U({n}, µs, µh) = P exp

 Z
µh

µs

dµ

µ
�
H({n}, µ)

�
, (2.6)

and the resummed cross section is then

d�(Q,Q0) =
1X

l=k,m�l

⌦
Hl({n}, Q, µh)⌦Ulm({n}, µs, µh) ⌦̂Sm({n}, Q0, µs)

↵
. (2.7)

The condition m � l arises because the anomalous dimension matrix is zero below the

diagonal, see below. The hat in ⌦̂ indicates that one has to integrate over the angles of

the (m � l) additional unresolved emissions. For the choice µh ⇠ Q and µs ⇠ Q0, the

hard and soft functions are free of large logarithms and can be expanded in the respective

– 4 –

integration over (l-m) unresolved partons

RG
 evolution

Q

Q0

treatment which is based on RG evolution in Soft-Collinear E↵ective Theory (SCET) [4–6]

(see [7] for a review). Our starting point is the factorization theorem which separates the

hard radiation inside the jets (or outside the isolation cone) from the soft radiation. The

soft radiation is driven by Wilson lines along the directions of the hard partons in the

process. Since there are contributions involving any number of hard partons, we end up

with operators with an arbitrary number of Wilson lines and these operators mix under

renormalization. The corresponding RG equation is complicated, but we will show that it

takes the form of a recursive equation which can be solved using a parton shower Monte-

Carlo (MC) program, which at leading-log accuracy and large-Nc is equivalent to the one

used by Dasgupta and Salam. An advantage of our treatment is that the RG equation is

not limited to leading logarithmic accuracy and we briefly discuss which ingredients and

modifications will be necessary to reach higher precision. There has been a lot of recent

work [8–11] on the general structure of parton showers and how to increase their accuracy.

The problem at hand provides an explicit example of a shower equation derived from first

principles for which it is clear what ingredients are needed to resum sub-leading logarithms.

The leading logarithms can be obtained by starting from the tree-level amplitudes and

running the parton shower to generate the logarithmically enhanced terms. Using a tree-

level event generator, this resummation can be automated. We have written a dedicated

parton shower code to perform the resummation and use the MadGraph5_aMC@NLO

framework [12] to generate the necessary tree-level amplitudes. We then study exclusive

jet and isolation-cone cross sections. In particular, we give numerical results for dijet

production with a gap between jets and compare to ATLAS measurements and theoretical

predictions [13] based on the BMS equation [14]. We also study isolated photon production

and compute the logarithms of ✏� , the energy fraction inside the isolation cone.

The remainder of this paper is organized as follows. In Section 2 we review the factor-

ization theorem for jet cross sections with gaps or isolation cones. In Section 3 we will show

that RG evolution of the associated Wilson coe�cients is equivalent to a parton shower,

and we give the necessary ingredients for LL resummation. In Section 4 we will apply

the shower code to obtain some phenomenological predictions, namely gap fraction of dijet

production and isolation cone cross section. We summarize our results and provide some

further discussions in Section 5.

2 Factorization for jet cross sections with gaps or isolation cones

The factorization formula for lepton-collider processes with k jets which takes the form

[1, 2]

d�(Q,Q0) =
1X

m=k

⌦
Hm({n}, Q, µ)⌦ Sm({n}, Q0, µ)

↵
. (2.1)

Here Q denotes the large energy inside the jets, while Q0 denotes the small energy outside

the jets in an angular region ⌦out. The factorization theorem is the leading term in an

expansion of the cross section in � = Q0/Q. Both the soft and hard functions depend on

the directions {n} = {n1, . . . , nm} and colors of the hard partons. The symbol ⌦ indicates

– 2 –
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i ln

µ
2

ŝ

�(Q0) =
X
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Z
dx1dx2

1X

m=4

⌦
Hm({n}, Q, µ)⌦Wm({n}, Q0, x1, x2, µ)

↵
. (15)

Wm({n}, Q0, x1, x2, µs) = fa1(x1) fa2(x2)1 . (16)
ΛQCD
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in a rapidity region �Y in between the two leading jets. This can be imposed by requiring that any
additional jet in the veto region has a transverse momentum smaller than Q0. At leading logarithmic
accuracy, there is no sensitivity to how the radiation is vetoed but only to the scale hierarchy between
Q0 and the partonic center-of-mass energy Q ⌘

p
ŝ =

p
x1x2s. This “gap between jets” observable

obeys the factorization formula

�(Q, Q0) =
X

a1,a2=q,q̄,g

Z
dx1dx2

1X

m=4

⌦
Hm({n}, Q, µ) ⌦Wm({n}, Q0, x1, x2, µ)Q

↵
. (4)

The hard functions Hm describe all possible m-parton processes a1 + a2 ! a3 + · · · + am and are
obtained after imposing appropriate kinematic constraints. They are integrated over the phase space
but for fixed directions {n} = {n1, . . . , nm} of the m partons. The color sum, indicated by h. . . i, is
performed after the hard functions are combined with the functions Wm, which encode the soft and
collinear low-energy dynamics. Both quantities depend on the directions {n} of the hard partons, and
after combining them the integrals over these directions are performed, as indicated by the symbol ⌦.
The low-energy matrix elements Wm consist of squared matrix elements of m soft Wilson lines for
the incoming and outgoing partons together with two collinear fields for the incoming particles. They
need to be evaluated in SCET with Glauber gluons [51], which can mediate non-trivial interactions
between soft and collinear partons. The functions Wm contain rapidity logarithms, which induce a
dependence on the hard scale Q [52, 53], as indicated by the subscript. This additional dependence
on the hard scale is a single-logarithmic e↵ect and does not contribute to the leading SLLs.

In principle, relation (4) provides the basis for a rigorous calculation of non-global observables at
hadron colliders (shown here for the example of a pp ! 2 jet process). In order to resum the large
logarithmic corrections, one evaluates the hard functions Hm at a scale µh ⇠ Q, where they are free
of large logarithms, and connects them to the low-energy matrix elements Wm evaluated at a low
scale µs ⇠ Q0 using RG equations. Formally, this yields for the color trace in (4)

1X

m=4

⌦
Hm({n}, Q, µh) ⌦

1X

l=m

Uml({n}, µh, µs) ⌦̂W l({n}, Q0, x1, x2, µs)Q
↵
, (5)

where

U({n}, µh, µs) = P exp

Z
µh

µs

dµ

µ
�H({n}, Q, µ)

�
(6)

is a path-ordered exponential over the anomalous-dimension matrix �H . The symbol ⌦̂ in (5) implies
an integration over the (l � m) directions ni of the “unresolved” partons not contained in the hard
functions Hm. The anomalous dimension is not only a matrix in color space, but also in the infinite
space of parton multiplicities, which is the key novel aspect of our approach. It can be split into two
parts: �H = �C 1 + �S . The first part governs the purely collinear singularities and is present also
for inclusive cross sections. The second part contains soft as well as soft + collinear terms. This part
is absent for inclusive cross sections, but present here because of the restrictions on hard radiation in
the veto region. The soft + collinear piece generates the SLLs. At one-loop order, one finds

�S =
↵s

4⇡

0

BBBBBBBB@

V4 R4 0 0 · · ·

0 V5 R5 0 · · ·

0 0 V6 R6 · · ·

0 0 0 V7 · · ·

...
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. . .

1

CCCCCCCCA

+ O(↵2
s) . (7)

The virtual contributions Vm leave the number of partons unchanged, while the real-emission operators
Rm add one extra parton to a given hard function. Starting with the lowest-multiplicity hard function
H4 involving four partons, successive applications of �S generate functions of arbitrary multiplicity
l � 4, which are then combined with the corresponding low-energy matrix elements W l. The evolution
operator in (6) is the solution to a di↵erential equation which can be cast in the form of a full-color,
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gap:

 2Egap < Q0

unrestricted Ein ~ Q

Our factorization formula provides a complete description of  
non-global observables at hadron colliders. 

From the leading terms, we have obtained an all-order understanding  
of SLLs for arbitrary exclusive 2→n LHC cross sections. 



Superleading logarithms
The leading logarithms are obtained using the lowest-multiplicity hard 
function       (since                            ), the lowest-order result for the matrix 
elements


and the soft anomalous dimension at 1-loop order (with                             ):

3

HmRm =
P
(ij)

11

22

3

m

i

j
M M†

HmV m =
P
(ij)

ii

j
M M† +

ii

j
M M†

Figure 1: Action of the operator the real part Rm and the virtual piece Vm

of the anomalous dimension on the hard function Hm. The sums run over
all pairs of unordered indices i, j = 1 . . . m. Due to the emitted gluon (blue),
the product HmRm defines a hard function with m + 1 external legs, while
the virtual correction (red) HmVm has m legs.

Hm RC
1 = ...

...

11

22

M M†

Hm V I = M M† + M M†

Figure 2: Action of the imaginary part VI (red dotted line) and the collinear
real-emission piece RC on the hard function. After the simplifications dis-
cussed in the text, these parts only involve legs 1 and 2. The real correc-
tions HmRC involve one additional hard gluon (dashed blue line) which is
collinear to one of the incoming legs.

1

FIG. 1. Action of the real-emission operator Rm and the

virtual piece Vm on a hard function Hm. Due to the emitted

gluon (blue), the product Hm Rm defines a hard function

with (m+ 1) external legs.

where the color indices a and ã refer to the emitted gluon.
We use the symbol � to indicate the presence of the ad-
ditional color space of the emitted parton. Subsequent
applications of the anomalous-dimension matrix can act
on these indices. In the simplest case of a single cut prop-
agator as in Figure 1, the indices are contracted with �ãa.
On the other hand, if an additional gluon with group in-
dex b is attached to the emitted parton, the indices get
contracted with (�if bãa).

The operators Vm and Rm encode soft singularities
arising when a virtual or real soft parton is exchanged
between two di↵erent legs of the hard function. The
squared amplitude for the exchange is a product of the
eikonal factors for each leg, and the notation (ij) on
the sums in (6) indicates a pair of unordered indices
i, j = 1, . . . , m. We use a bar to indicate that the
collinear limits of the emissions are subtracted, i.e.

W
k
ij =

ni · nj

ni · nk nj · nk
� �(nk � ni)

ni · nk
� �(nk � nj)

nj · nk
. (9)

The angular �-distributions only act on the test function.
The collinear singularities in the soft anomalous di-

mension are encoded in Rc
i and V c

i , both of which are
proportional to the cusp anomalous dimension (as indi-
cated by the superscript). These operators multiply a
logarithm of the hard scale, which when inserted into (3)
gives rise to Sudakov double logarithms. We show below
that all final-state collinear singularities cancel between
real and virtual contributions, and for this reason only
the initial-state pieces (with i = 1, 2) must be kept in (6).
The cancellation for the initial-state terms is spoiled by
the complex Glauber phases in V G, also referred to as
Coulomb phases [2]. These arise whenever soft partons
are exchanged between two final-state legs or two initial-
state legs. Using color conservation,

Pm
i=1 Hm T a

i = 0,
the phase terms can be rewritten in the form of V G,
which makes it obvious that they are only relevant for
processes involving (at least) two colored partons in the
initial state.

Three properties of the di↵erent components of the
anomalous dimension greatly simplify our calculations.
Color coherence, the fact that the sum of the soft emis-

sions o↵ two collinear partons has the same e↵ect as a
single soft emission o↵ the parent parton, implies that

Hm �c � = Hm ��c , (10)

where we have defined �c =
P2

i=1(R
c
i+V c

i ) and Hm � ⌘
Hm (Rm + Vm). Next, the cyclicity of the trace ensures
that

hHm �c ⌦ 1i = 0 ,
⌦
Hm V G ⌦ 1

↵
= 0 .

(11)

The first of these relations is a consequence of collinear
safety: the singularity associated with a collinear real
emission cancels against the one in the associated virtual
correction. It is trivial to verify this, because

hHm (Rc
i + V c

i ) ⌦ 1i / hT a
i Hm T a

i � Ci Hmi = 0 .
(12)

The three properties hold for an arbitrary hard function
Hm, which can be obtained from the tree-level hard func-
tion after applying the one-loop anomalous dimension
several times.

We extract the leading contributions to (3) by consid-
ering products of �c, � and V G, only the first of which
gives rise to double logarithms. In the absence of V G,
we could use relation (10) to move all occurrences of �c

to the last step, where they give a vanishing contribution
due to (11). (Even in the presence of V G this can still be
done for all final-state partons, and for this reason we did
not include terms with i 6= 1, 2 in the definition of �c.)
To get the SLLs, we thus need two insertions of V G. A
single insertion gives zero, since the cross section is real.
Due to the two properties in (11) we also need one power
of � in the last step of the evolution. Therefore, the SLLs
at (3 + n)th order in perturbation theory are associated
with color traces of the form

Crn =
⌦
H4 (�c)r V G (�c)n�r V G � ⌦ 1

↵
, (13)

where 0  r  n. This explains why the SLLs first
appear at four-loop order. However, the three-loop term
(n = 0) originates from the same color structures and is
numerically significant, even though it only involves the
imaginary part ⇡ = | ln(�1)| of the large logarithm.

To get the corresponding contribution to the partonic
cross section, we must combine the color traces Crn with
the associated ordered integrals in (3). Each factor of �c

is multiplied by a logarithm of µ, see (6), which produces
a double logarithm upon integration. Neglecting the run-
ning of the coupling ↵s, setting µ2

h = ŝ and evaluating
the integrals, we find with L = ln(

p
ŝ/µs)

�̂SLL
n =

⇣↵s

4⇡

⌘n+3
L2n+3 (�4)n n!

(2n + 3)!

nX

r=0

(2r)!

4r (r!)2
Crn ,

(14)
which makes it explicit that starting from four-loop order
two logarithms per loop arise.

Figure 1. The relation between shower time t, hard scale µh and soft scale µs. We stop the lines
in the plot when µs reaches 1GeV.

coupling constants ↵s(µh) and ↵s(µs). At leading logarithmic accuracy, we only need these

functions at leading power in ↵s. The soft functions then become trivial Sm = 1 and all

higher-multiplicity hard functions are suppressed, Hm ⇠ ↵
m�k
s Hk. The cross section thus

simplifies to

d�
LL(Q,Q0) =

1X

m=k

⌦
Hk({n}, Q, µh) ⌦ Ukm({n}, µs, µh) ⌦̂1

↵
, (2.8)

where the evolution factor can be evaluated with the leading-order expression for the

anomalous dimension �
H . We note that the Born-level cross section is given by

d�0(Q,Q0) =
⌦
Hk({n}, Q, µh)

↵
. (2.9)

This demonstrates that the starting point of the evolution is the tree-level cross section, as

we have indicated earlier. The additional piece of information needed is the color structure

since the evolution changes the colors. The paper [32] has modified the MadGraph code

in such a way that it provides the full color information. We will focus on the large-Nc

limit below and use the color information which MadGraph provides for showering its

tree-level events. We will come back to this point later.

It is convenient to rewrite the exponent of the evolution matrix (2.6) at leading order

in RG-improved perturbation theory in the form

Z
µh

µs

dµ

µ
�
H

nm =

Z
↵(µh)

↵(µs)

d↵

�(↵)

↵

4⇡
�
(1)

nm =
1

2�0
ln

↵(µs)

↵(µh)
�
(1)

nm . (2.10)

Using the one-loop anomalous-dimension matrix �
(1)

nm yields leading logarithmic accuracy

in the evolution. The prefactor

t =
1

2�0
ln

↵(µs)

↵(µh)
=

↵s
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µs

+O(↵2

s) (2.11)
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X

(ij)

(T1,L · T2,L � T1,R · T2,R)⇧ij (11)

(12)

X

(ij)

Ti,L · Tj,L ln
µ

2Ei
= �

X

i

Ti,L · Ti,L ln
µ

2Ei
= �

X

i

Ci ln
µ

2Ei
(13)

�
X

(ij)

Ti,L � Tj,R �(nk � ni) ln
µ

2Ei
= +

X

i

Ti,L � Ti,R �(nk � ni) ln
µ

2Ei
(14)

� = �+ �G +
X

i

�c
i ln

µ
2

ŝ

�(Q0) =
X

a1,a2=q,q̄,g

Z
dx1dx2

1X

m=4

⌦
Hm({n}, Q, µ)⌦Wm({n}, Q0, x1, x2, µ)

↵
. (15)

Wm({n}, Q0, x1, x2, µs) = fa1(x1) fa2(x2)1 . (16)
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where Etot and ~ptot are the total energy and momentum
of the final-state particles in the partonic center-of-mass
frame. Note that the amplitude is squared in the sense of
a density matrix. We use the color-space formalism [14],
and the color indices of the amplitude |Mm({p})i and
its conjugate are not contracted. The color sum, indi-
cated by h. . . i in (1), is performed after the hard function
is combined with the function Wm, which encodes the
soft and collinear low-energy dynamics. Both quantities
depend on the directions {n} of the hard partons, and
after combining them the integrals over these directions
are performed, as indicated by the symbol ⌦.

The function ⇥hard enforces the constraints on the hard
jets and ensures that no hard radiation enters the veto
region. For the validity of formula (1) it is important
that these constraints are compatible with factorization.
The low-energy matrix elements Wm consist of squared
matrix elements of m soft Wilson lines for the incoming
and outgoing partons together with two collinear fields
for the incoming particles. They need to be evaluated in
SCET with Glauber gluons [16], which can mediate non-
trivial interactions between soft and collinear partons.
The functions Wm contain rapidity logarithms, which in-
duce a logarithmic dependence on the scale ratio

p
ŝ/Q0

[17, 18]. It would be interesting to analyze the structure
of these matrix elements in more detail in future work.
Here we just note that the additional dependence on the
hard scale is single logarithmic, while we focus on the
leading double-logarithmic corrections in this Letter.

To obtain the leading double logarithms, we solve the
RG equation for the hard function iteratively and evolve
it from the hard scale µh ⇠

p
ŝ to the low scale µs ⇠ Q0.

As the starting point of the evolution we use the lowest-
order (Born level) hard function, which for a two-jet cross
section involves four partons. We thus evaluate

H4(µh) U(µh, µs) = H4(µh)P exp

Z µh

µs

dµ

µ
�H(µ)

�

= H4(µh) +

Z µh

µs

dµ

µ
H4(µh)�H(µ) (3)

+

Z µh

µs

dµ

µ

Z µh

µ

dµ0

µ0 H4(µh)�H(µ0)�H(µ) + . . . .

Below, we will identify the SLLs that arise in the prod-
ucts of anomalous dimensions and solve a recursion re-
lation for them. As a final step, we compute the cross
section in (1) using the lowest-order expression for Wm

at the low scale µs ⇠ Q0. At this order the soft Wilson
lines are trivial and the collinear matrix elements reduce
to the usual parton distribution functions, i.e.

Wm({n}, Q0, x1, x2, µs) = fa1(x1) fa2(x2)1 . (4)

The one-loop anomalous dimension matrix in (3) can
be split into two parts: �H = �C 1 + �S . The first
part concerns the purely collinear singularities and is

present also for inclusive cross sections. It is given by
the usual DGLAP kernels and involves a convolution over
the momentum fractions of the incoming partons. The
second part, �S , contains soft as well as soft + collinear
terms. This part is absent for inclusive cross sections,
but present in our case because of the restrictions on
hard radiation in the veto region. The soft + collinear
piece generates the SLLs. The soft part of the anoma-
lous dimension takes the form [8, 9]

�S =
↵s

4⇡

0

BBBBB@

V4 R4 0 0 · · ·
0 V5 R5 0 · · ·
0 0 V6 R6 · · ·
0 0 0 V7 · · ·
...

...
...

...
. . .

1

CCCCCA
+ . . . . (5)

The virtual contributions Vm leave the number of par-
tons unchanged, while the real-emission operators Rm

add one extra parton to a given hard function.
Due to the correspondence between UV and IR sin-

gularities [19], the anomalous dimension �S can be ex-
tracted by considering soft limits of hard-scattering am-
plitudes [9, 13]. For the present discussion, it is useful to
write it in the form [20]

Vm = Vm + V G +
X

i=1,2

V c
i ln

µ2

ŝ
,

Rm = Rm +
X

i=1,2

Rc
i ln

µ2

ŝ
,

(6)

with

Vm = 2
X

(ij)

�
Ti,L · Tj,L + Ti,R · Tj,R

� Z
d⌦(nk)

4⇡
W

k
ij ,

V c
i = 4Ci 1 ,

V G = �8i⇡
�
T1,L · T2,L � T1,R · T2,R

�
, (7)

Rm = �4
X

(ij)

Ti,L � Tj,R W
m+1
ij ⇥hard(nm+1) ,

Rc
i = �4Ti,L � Ti,R �(nk � ni) .

Before discussing the di↵erent parts in detail, let us ex-
plain how they act on a generic hard function Hm. The
color generators Ti,L act on the amplitude and hence
multiply Hm from the left, while the generators Tj,R act
on the conjugate amplitude and stand on the right of
Hm. The color matrices in the virtual part act on the
color indices of the m partons, Ti · Tj =

P
a T a

i T a
j , and

Ti ·Ti = Ci 1 is the quadratic Casimir operator of parton
i. This is the usual color-space notation. The color ma-
trices in the real-emission terms Rm are di↵erent. They
take an amplitude with m partons and associated color
indices and map it to an amplitude with (m+1) partons,
see Figure 1. Explicitly, we have

Hm Ti,L � Tj,R = T a
i Hm T ã

j , (8)

3

HmRm =
P
(ij)

11

22

3

m

i

j
M M†

HmV m =
P
(ij)

ii

j
M M† +

ii

j
M M†

Figure 1: Action of the operator the real part Rm and the virtual piece Vm

of the anomalous dimension on the hard function Hm. The sums run over
all pairs of unordered indices i, j = 1 . . . m. Due to the emitted gluon (blue),
the product HmRm defines a hard function with m + 1 external legs, while
the virtual correction (red) HmVm has m legs.

Hm RC
1 = ...

...

11

22

M M†

Hm V I = M M† + M M†

Figure 2: Action of the imaginary part VI (red dotted line) and the collinear
real-emission piece RC on the hard function. After the simplifications dis-
cussed in the text, these parts only involve legs 1 and 2. The real correc-
tions HmRC involve one additional hard gluon (dashed blue line) which is
collinear to one of the incoming legs.

1

FIG. 1. Action of the real-emission operator Rm and the

virtual piece Vm on a hard function Hm. Due to the emitted

gluon (blue), the product Hm Rm defines a hard function

with (m+ 1) external legs.

where the color indices a and ã refer to the emitted gluon.
We use the symbol � to indicate the presence of the ad-
ditional color space of the emitted parton. Subsequent
applications of the anomalous-dimension matrix can act
on these indices. In the simplest case of a single cut prop-
agator as in Figure 1, the indices are contracted with �ãa.
On the other hand, if an additional gluon with group in-
dex b is attached to the emitted parton, the indices get
contracted with (�if bãa).

The operators Vm and Rm encode soft singularities
arising when a virtual or real soft parton is exchanged
between two di↵erent legs of the hard function. The
squared amplitude for the exchange is a product of the
eikonal factors for each leg, and the notation (ij) on
the sums in (6) indicates a pair of unordered indices
i, j = 1, . . . , m. We use a bar to indicate that the
collinear limits of the emissions are subtracted, i.e.

W
k
ij =

ni · nj

ni · nk nj · nk
� �(nk � ni)

ni · nk
� �(nk � nj)

nj · nk
. (9)

The angular �-distributions only act on the test function.
The collinear singularities in the soft anomalous di-

mension are encoded in Rc
i and V c

i , both of which are
proportional to the cusp anomalous dimension (as indi-
cated by the superscript). These operators multiply a
logarithm of the hard scale, which when inserted into (3)
gives rise to Sudakov double logarithms. We show below
that all final-state collinear singularities cancel between
real and virtual contributions, and for this reason only
the initial-state pieces (with i = 1, 2) must be kept in (6).
The cancellation for the initial-state terms is spoiled by
the complex Glauber phases in V G, also referred to as
Coulomb phases [2]. These arise whenever soft partons
are exchanged between two final-state legs or two initial-
state legs. Using color conservation,

Pm
i=1 Hm T a

i = 0,
the phase terms can be rewritten in the form of V G,
which makes it obvious that they are only relevant for
processes involving (at least) two colored partons in the
initial state.

Three properties of the di↵erent components of the
anomalous dimension greatly simplify our calculations.
Color coherence, the fact that the sum of the soft emis-

sions o↵ two collinear partons has the same e↵ect as a
single soft emission o↵ the parent parton, implies that

Hm �c � = Hm ��c , (10)

where we have defined �c =
P2

i=1(R
c
i+V c

i ) and Hm � ⌘
Hm (Rm + Vm). Next, the cyclicity of the trace ensures
that

hHm �c ⌦ 1i = 0 ,
⌦
Hm V G ⌦ 1

↵
= 0 .

(11)

The first of these relations is a consequence of collinear
safety: the singularity associated with a collinear real
emission cancels against the one in the associated virtual
correction. It is trivial to verify this, because

hHm (Rc
i + V c

i ) ⌦ 1i / hT a
i Hm T a

i � Ci Hmi = 0 .
(12)

The three properties hold for an arbitrary hard function
Hm, which can be obtained from the tree-level hard func-
tion after applying the one-loop anomalous dimension
several times.

We extract the leading contributions to (3) by consid-
ering products of �c, � and V G, only the first of which
gives rise to double logarithms. In the absence of V G,
we could use relation (10) to move all occurrences of �c

to the last step, where they give a vanishing contribution
due to (11). (Even in the presence of V G this can still be
done for all final-state partons, and for this reason we did
not include terms with i 6= 1, 2 in the definition of �c.)
To get the SLLs, we thus need two insertions of V G. A
single insertion gives zero, since the cross section is real.
Due to the two properties in (11) we also need one power
of � in the last step of the evolution. Therefore, the SLLs
at (3 + n)th order in perturbation theory are associated
with color traces of the form

Crn =
⌦
H4 (�c)r V G (�c)n�r V G � ⌦ 1

↵
, (13)

where 0  r  n. This explains why the SLLs first
appear at four-loop order. However, the three-loop term
(n = 0) originates from the same color structures and is
numerically significant, even though it only involves the
imaginary part ⇡ = | ln(�1)| of the large logarithm.

To get the corresponding contribution to the partonic
cross section, we must combine the color traces Crn with
the associated ordered integrals in (3). Each factor of �c

is multiplied by a logarithm of µ, see (6), which produces
a double logarithm upon integration. Neglecting the run-
ning of the coupling ↵s, setting µ2

h = ŝ and evaluating
the integrals, we find with L = ln(

p
ŝ/µs)

�̂SLL
n =

⇣↵s

4⇡

⌘n+3
L2n+3 (�4)n n!

(2n + 3)!

nX

r=0

(2r)!

4r (r!)2
Crn ,

(14)
which makes it explicit that starting from four-loop order
two logarithms per loop arise.
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where Etot and ~ptot are the total energy and momentum
of the final-state particles in the partonic center-of-mass
frame. Note that the amplitude is squared in the sense of
a density matrix. We use the color-space formalism [14],
and the color indices of the amplitude |Mm({p})i and
its conjugate are not contracted. The color sum, indi-
cated by h. . . i in (1), is performed after the hard function
is combined with the function Wm, which encodes the
soft and collinear low-energy dynamics. Both quantities
depend on the directions {n} of the hard partons, and
after combining them the integrals over these directions
are performed, as indicated by the symbol ⌦.

The function ⇥hard enforces the constraints on the hard
jets and ensures that no hard radiation enters the veto
region. For the validity of formula (1) it is important
that these constraints are compatible with factorization.
The low-energy matrix elements Wm consist of squared
matrix elements of m soft Wilson lines for the incoming
and outgoing partons together with two collinear fields
for the incoming particles. They need to be evaluated in
SCET with Glauber gluons [16], which can mediate non-
trivial interactions between soft and collinear partons.
The functions Wm contain rapidity logarithms, which in-
duce a logarithmic dependence on the scale ratio

p
ŝ/Q0

[17, 18]. It would be interesting to analyze the structure
of these matrix elements in more detail in future work.
Here we just note that the additional dependence on the
hard scale is single logarithmic, while we focus on the
leading double-logarithmic corrections in this Letter.

To obtain the leading double logarithms, we solve the
RG equation for the hard function iteratively and evolve
it from the hard scale µh ⇠

p
ŝ to the low scale µs ⇠ Q0.

As the starting point of the evolution we use the lowest-
order (Born level) hard function, which for a two-jet cross
section involves four partons. We thus evaluate

H4(µh) U(µh, µs) = H4(µh)P exp

Z µh

µs

dµ

µ
�H(µ)

�

= H4(µh) +

Z µh

µs

dµ

µ
H4(µh)�H(µ) (3)

+

Z µh

µs

dµ

µ

Z µh

µ

dµ0

µ0 H4(µh)�H(µ0)�H(µ) + . . . .

Below, we will identify the SLLs that arise in the prod-
ucts of anomalous dimensions and solve a recursion re-
lation for them. As a final step, we compute the cross
section in (1) using the lowest-order expression for Wm

at the low scale µs ⇠ Q0. At this order the soft Wilson
lines are trivial and the collinear matrix elements reduce
to the usual parton distribution functions, i.e.

Wm({n}, Q0, x1, x2, µs) = fa1(x1) fa2(x2)1 . (4)

The one-loop anomalous dimension matrix in (3) can
be split into two parts: �H = �C 1 + �S . The first
part concerns the purely collinear singularities and is

present also for inclusive cross sections. It is given by
the usual DGLAP kernels and involves a convolution over
the momentum fractions of the incoming partons. The
second part, �S , contains soft as well as soft + collinear
terms. This part is absent for inclusive cross sections,
but present in our case because of the restrictions on
hard radiation in the veto region. The soft + collinear
piece generates the SLLs. The soft part of the anoma-
lous dimension takes the form [8, 9]

�S =
↵s

4⇡

0

BBBBB@

V4 R4 0 0 · · ·
0 V5 R5 0 · · ·
0 0 V6 R6 · · ·
0 0 0 V7 · · ·
...

...
...

...
. . .

1

CCCCCA
+ . . . . (5)

The virtual contributions Vm leave the number of par-
tons unchanged, while the real-emission operators Rm

add one extra parton to a given hard function.
Due to the correspondence between UV and IR sin-

gularities [19], the anomalous dimension �S can be ex-
tracted by considering soft limits of hard-scattering am-
plitudes [9, 13]. For the present discussion, it is useful to
write it in the form [20]

Vm = Vm + V G +
X

i=1,2

V c
i ln

µ2

ŝ
,

Rm = Rm +
X

i=1,2

Rc
i ln

µ2

ŝ
,

(6)

with

Vm = 2
X

(ij)

�
Ti,L · Tj,L + Ti,R · Tj,R

� Z
d⌦(nk)

4⇡
W

k
ij ,

V c
i = 4Ci 1 ,

V G = �8i⇡
�
T1,L · T2,L � T1,R · T2,R

�
, (7)

Rm = �4
X

(ij)

Ti,L � Tj,R W
m+1
ij ⇥hard(nm+1) ,

Rc
i = �4Ti,L � Ti,R �(nk � ni) .

Before discussing the di↵erent parts in detail, let us ex-
plain how they act on a generic hard function Hm. The
color generators Ti,L act on the amplitude and hence
multiply Hm from the left, while the generators Tj,R act
on the conjugate amplitude and stand on the right of
Hm. The color matrices in the virtual part act on the
color indices of the m partons, Ti · Tj =

P
a T a

i T a
j , and

Ti ·Ti = Ci 1 is the quadratic Casimir operator of parton
i. This is the usual color-space notation. The color ma-
trices in the real-emission terms Rm are di↵erent. They
take an amplitude with m partons and associated color
indices and map it to an amplitude with (m+1) partons,
see Figure 1. Explicitly, we have

Hm Ti,L � Tj,R = T a
i Hm T ã

j , (8)



Superleading logarithms
We obtain:


where the evolved hard function can be expanded as:


For quark-initiated processes, we have succeeded to extract the infinite 
tower of SLLs from this expression!


Gluons are more complicated (work in progress …)

Neubert Part B2 EFT2

amplitude-level parton shower, as envisaged in [54], and in the large-Nc limit it can be solved using
Monte Carlo techniques [55].

The problem is that the relations (4) and (5) are highly formal. Even at leading logarithmic order
one needs to sum over infinite parton multiplicities, and each additional real emission increases the
dimensionality of the color space. Also, while explicit expressions are available for the entries of the
one-loop anomalous-dimension matrix, the structure of the low-energy matrix elements is at present
still unknown. The goal of project A is to explore these structures in as much detail as possible, thereby
entering uncharted territory. If one is interested in the leading logarithmic approximation only, one
can use the tree-level approximation for the low-energy matrix elements to replace the expression in
(5) by

fa1(x1) fa2(x2)
⌦
H4({n}, Q, µh)⌦

1X

l=4

U4l({n}, µh, µs) ⌦̂1
↵
, (8)

where fa(x) are parton distribution functions of the proton. For the simplest case of quark-initiated
scattering, we have succeeded to derive the infinite tower of SLLs ⇠ ↵3+n

s L
3+2n from this structure [50].

The extension to initial-state gluons and to subleading logarithmic order, as well as the exploration
of the structure of the quantities W l beyond tree level, will require breakthrough advances in theory.

Project B – Global analysis of virtual ALP e↵ects on precision observables

During the early years of LHC operation, a strong focus has been placed on discovering new heavy
particles with masses above the scale of electroweak symmetry breaking (v ⇡ 246 GeV). In the absence
of such a discovery, the interest has now shifted toward searches for light new particles, which interact
only feebly with the particles of the SM. An axion or axion-like particle (ALP) – a light new pseudo-
scalar boson a, which arises in the spontaneous breaking of a global symmetry – is a paradigmatic
example of a such a particle. Due to a classical shift symmetry, the leading interactions of an ALP
with the particles of the SM are mediated by dimension-5 operators [56] and hence are suppressed by
one power of a large mass scale f , which is expected to be much larger than the electroweak scale.
Being a pseudo Nambu–Goldstone boson, the ALP itself can naturally be much lighter. In fact, in
classical QCD axion models its mass scales like m

2
⇡/f [57, 58]. Axions and ALPs are well motivated

theoretically. They can solve the “strong CP problem” (the absence of a CP-violating phase in the
QCD Lagrangian) [59–61], are promising candidates for dark matter, and they might explain the
observed value of the anomalous magnetic moment of the muon [62–65].

Below the scale ⇤ = 4⇡f of global symmetry breaking, the most general e↵ective Lagrangian
describing the leading interactions of ALPs with SM particles can be written as [56]

L
D5
e↵ =

1

2
(@µa)(@µa)�

m
2
a

2
a
2 +

@
µ
a

f

X

F

 ̄F cF �µ F + c�
@
µ
a

f

�
�
†
i
 !
Dµ�

�

+ cGG

↵s

4⇡

a

f
G

a

µ⌫ G̃
µ⌫,a + cWW

↵2

4⇡

a

f
W

A

µ⌫ W̃
µ⌫,A + cBB

↵1

4⇡

a

f
Bµ⌫ B̃

µ⌫ + . . . ,

(9)

where the dots refer to operators of dimension 6 and higher. The last two terms in the first line contain
the couplings to the chiral fermion multiplets  F of the SM and to the Higgs doublet, while the second
line shows the couplings to the SM gauge fields. The shift symmetry under a(x) ! a(x) + const. is
manifest in the derivative couplings of the ALP, whereas for the couplings to the U(1)Y and SU(2)L
gauge fields the e↵ect of the shift can be removed by field redefinitions. The ALP coupling to QCD
gauge fields is not invariant under a continuous shift transformation because of instanton e↵ects, which
however preserve a discrete version of the shift symmetry.

The quantities cF are 3 ⇥ 3 hermitian matrices in generation space. Together with the ALP
mass and the four ALP–boson couplings there are thus 1 + 4 + 5 · 9 = 50 real parameters in the
Lagrangian. The five global U(1) symmetries of the SM (individual lepton numbers, baryon number,
and hypercharge) can be used to remove five of these parameters [56]. One can use this freedom to set
c� = 0 and impose the conditions Tr cQ = 0 and [cL]ii = 0. The physical flavor-diagonal ALP–lepton
couplings ceiei = [ce]ii� [cL]ii are unambiguous. One way to reduce the number of parameters further
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define � = Vm + Rm. The collinear singularities in the soft anomalous dimension are encoded in the
quantity

�c =
X

i=1,2

4
⇥
Ci 1� Ti,L � Ti,R �(nm+1 � ni)

⇤
, (12)

which enters the anomalous dimension multiplied by ln(µ2
/ŝ), where

p
ŝ = Q is the partonic center-

of-mass energy. When inserted into (8) this gives rise to double logarithms, which are the source of the
SLLs. All final-state collinear singularities cancel between real and virtual contributions, and for this
reason only the initial-state pieces (with i = 1, 2) must be kept. The cancellation for the initial-state
terms is spoiled by the complex Coulomb phases in (3), which are contained in [17]

V G = �8i⇡ (T1,L · T2,L � T1,R · T2,R) . (13)

Color conservation implies that these phases are only relevant for processes involving (at least) two
colored partons in the initial state. The color generators Ti,L act on the amplitude and hence multiply
the hard functions Hm from the left, while the generators Tj,R act on the conjugate amplitude and
stand on the right of Hm. The color matrices in the virtual part act on the color indices of the m

partons, Ti · Tj =
P

a
T a

i
T a

j
, and Ti · Ti = Ci 1 is the quadratic Casimir operator of parton i. The

color matrices in the real-emission terms Rm and in the second term in (12) are di↵erent. They take
an amplitude with m partons and map it to an amplitude with (m + 1) partons. Explicitly, we have
Hm Ti,L � Tj,R = T a

i
Hm T ã

j
, where the color indices a and ã refer to the emitted gluon. We use the

symbol � to indicate the presence of the additional color space of the emitted parton. Subsequent
applications of the anomalous-dimension matrix can act on these indices.

Collinear safely, the fact that the singularities associated with real and virtual collinear emissions
cancel against each other, ensures that under the color trace in (8) the operator �c vanishes whenever
it stands left to the 1. Combined with the fact that the commutator [�c

,�] vanishes under the trace
in (8), this implies that Sudakov double logarithms arise only in the presence of the Coulomb phases
V G. It follows that for a given 2 ! 2 scattering process the SLL at (3 + n)th order in perturbation
theory is associated with color traces of the form

Crn =
⌦
H4 (�c)r V G (�c)n�r V G �⌦ 1

↵
, (14)

where 0  r  n. Each insertion of �c gives rise to a double logarithm. This explains why the SLLs
first appear at four-loop order. However, the three-loop term (n = 0) originates from the same color
structures and is numerically significant, even though it only involves the imaginary part ⇡ = | ln(�1)|
of the large logarithm. Neglecting the running of the coupling ↵s, setting µh = Q =

p
ŝ and µs = Q0,

and evaluating the integrals over µ arising in the Taylor expansion of the matrix exponential in (8),
we find for the contribution of SLLs to the cross section

�SLL = �Born

1X

n=0

⇣
↵s

4⇡

⌘
n+3

L
2n+3 (�4)n n!

(2n + 3)!

nX

r=0

(2r)!

4r (r!)2
Crn , (15)

where L = ln(Q/Q0). Starting from four-loop order two large logarithms per loop arise.
For the simplest case of quark-initiated 2 ! 2 scattering, we have succeeded to evaluate the color

traces Crn in closed form in terms of only three non-trivial color structures [50]. The result reads
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where �i = 1 for an initial-state antiquark and �i = �1 for an initial-state quark. The sum in the
first term runs over the final-state partons. The structure H4 is normalized such that hH4i = 1. All
information about the phase-space restrictions is contained in the angular integrals
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where Etot and ~ptot are the total energy and momentum
of the final-state particles in the partonic center-of-mass
frame. Note that the amplitude is squared in the sense of
a density matrix. We use the color-space formalism [14],
and the color indices of the amplitude |Mm({p})i and
its conjugate are not contracted. The color sum, indi-
cated by h. . . i in (1), is performed after the hard function
is combined with the function Wm, which encodes the
soft and collinear low-energy dynamics. Both quantities
depend on the directions {n} of the hard partons, and
after combining them the integrals over these directions
are performed, as indicated by the symbol ⌦.

The function ⇥hard enforces the constraints on the hard
jets and ensures that no hard radiation enters the veto
region. For the validity of formula (1) it is important
that these constraints are compatible with factorization.
The low-energy matrix elements Wm consist of squared
matrix elements of m soft Wilson lines for the incoming
and outgoing partons together with two collinear fields
for the incoming particles. They need to be evaluated in
SCET with Glauber gluons [16], which can mediate non-
trivial interactions between soft and collinear partons.
The functions Wm contain rapidity logarithms, which in-
duce a logarithmic dependence on the scale ratio

p
ŝ/Q0

[17, 18]. It would be interesting to analyze the structure
of these matrix elements in more detail in future work.
Here we just note that the additional dependence on the
hard scale is single logarithmic, while we focus on the
leading double-logarithmic corrections in this Letter.

To obtain the leading double logarithms, we solve the
RG equation for the hard function iteratively and evolve
it from the hard scale µh ⇠

p
ŝ to the low scale µs ⇠ Q0.

As the starting point of the evolution we use the lowest-
order (Born level) hard function, which for a two-jet cross
section involves four partons. We thus evaluate

H4(µh) U(µh, µs) = H4(µh)P exp

Z µh

µs

dµ

µ
�H(µ)

�

= H4(µh) +

Z µh

µs
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µ
H4(µh)�H(µ) (3)

+

Z µh

µs

dµ

µ

Z µh

µ

dµ0

µ0 H4(µh)�H(µ0)�H(µ) + . . . .

Below, we will identify the SLLs that arise in the prod-
ucts of anomalous dimensions and solve a recursion re-
lation for them. As a final step, we compute the cross
section in (1) using the lowest-order expression for Wm

at the low scale µs ⇠ Q0. At this order the soft Wilson
lines are trivial and the collinear matrix elements reduce
to the usual parton distribution functions, i.e.

Wm({n}, Q0, x1, x2, µs) = fa1(x1) fa2(x2)1 . (4)

The one-loop anomalous dimension matrix in (3) can
be split into two parts: �H = �C 1 + �S . The first
part concerns the purely collinear singularities and is

present also for inclusive cross sections. It is given by
the usual DGLAP kernels and involves a convolution over
the momentum fractions of the incoming partons. The
second part, �S , contains soft as well as soft + collinear
terms. This part is absent for inclusive cross sections,
but present in our case because of the restrictions on
hard radiation in the veto region. The soft + collinear
piece generates the SLLs. The soft part of the anoma-
lous dimension takes the form [8, 9]

�S =
↵s

4⇡

0

BBBBB@

V4 R4 0 0 · · ·
0 V5 R5 0 · · ·
0 0 V6 R6 · · ·
0 0 0 V7 · · ·
...

...
...

...
. . .

1

CCCCCA
+ . . . . (5)

The virtual contributions Vm leave the number of par-
tons unchanged, while the real-emission operators Rm

add one extra parton to a given hard function.
Due to the correspondence between UV and IR sin-

gularities [19], the anomalous dimension �S can be ex-
tracted by considering soft limits of hard-scattering am-
plitudes [9, 13]. For the present discussion, it is useful to
write it in the form [20]

Vm = Vm + V G +
X

i=1,2

V c
i ln

µ2

ŝ
,

Rm = Rm +
X

i=1,2

Rc
i ln

µ2

ŝ
,

(6)

with

Vm = 2
X

(ij)

�
Ti,L · Tj,L + Ti,R · Tj,R

� Z
d⌦(nk)

4⇡
W

k
ij ,

V c
i = 4Ci 1 ,

V G = �8i⇡
�
T1,L · T2,L � T1,R · T2,R

�
, (7)

Rm = �4
X

(ij)

Ti,L � Tj,R W
m+1
ij ⇥hard(nm+1) ,

Rc
i = �4Ti,L � Ti,R �(nk � ni) .

Before discussing the di↵erent parts in detail, let us ex-
plain how they act on a generic hard function Hm. The
color generators Ti,L act on the amplitude and hence
multiply Hm from the left, while the generators Tj,R act
on the conjugate amplitude and stand on the right of
Hm. The color matrices in the virtual part act on the
color indices of the m partons, Ti · Tj =

P
a T a

i T a
j , and

Ti ·Ti = Ci 1 is the quadratic Casimir operator of parton
i. This is the usual color-space notation. The color ma-
trices in the real-emission terms Rm are di↵erent. They
take an amplitude with m partons and associated color
indices and map it to an amplitude with (m+1) partons,
see Figure 1. Explicitly, we have

Hm Ti,L � Tj,R = T a
i Hm T ã

j , (8)
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SLLs are a subtle effect arising from Coulomb phases associated with soft 
gluon exchange between two energetic partons:
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candidates for dark matter. Because of its feeble interactions with SM particles, finding an ALP is
very challenging, especially because the expected signals depend very sensitively on how the ALP
decays and how long it travels before it decays. This introduces a strong model dependence in the
analysis, which in practice requires one to make drastic assumptions, such as the existence of a single
non-zero coupling, in order to derive useful bounds. But in this way important e↵ects can be missed.
Wouldn’t it be nice to be able to probe all ALP couplings to the SM simultaneously and in a way that
is insensitive to the ALP lifetime and branching fractions?

In project B, I propose a complementary new search strategy for ALPs, which is based on a
systematic, global analysis of virtual ALP e↵ects on precision measurements. Contrary to the
resonant production of ALPs, indirect searches for their contributions in quantum fluctuations
are insensitive to the lifetime of the ALP and the way in which it decays. They can thus provide
largely model-independent bounds on the ALP couplings and mass.

Achieving the two grand goals of the EFT2 proposal will significantly boost the LHC discovery
potential for new phenomena and thus have a transformative impact on the field. This requires
expertise in both SM physics and physics beyond the SM, which has been a hallmark of my research
since over two decades. In EFT2, I plan to approach both challenges using the powerful tools of modern
e↵ective field theories (EFTs). Doing this in the context of a single proposal has the advantage that
important interconnections can be exploited. For example, the global analysis of ALP couplings in
project B will rely on precision measurements of diboson production, top-quark production, and Higgs
production at the LHC. In order not to fake a signal of NP, it is essential that the SM predictions for
these quantities can be calculated reliably and with the highest possible precision. This is exactly the
main goal of project A.

Project A – Theory of non-global observables at hadron colliders

While fixed-order perturbative calculations still define an important frontier in collider physics, in
many cases they do not provide su�ciently accurate predictions. If the radiation in a high-energy
scattering process is restricted by experimental cuts, higher-order terms in the perturbative series can
be enhanced by large logarithms associated with the emission of soft and collinear particles. The
simple structure of these emissions sometimes makes it possible to resum the logarithmic terms to all
orders. An important example are event shapes in e

+
e
� collisions near the two-jet limit [18–22], for

which the cross section can be factorized into a product (in the convolution sense) of a soft function S

accounting for soft gluon emissions, two jet functions J and J̄ describing the collinear radiation inside
the jets, and a hard function H encoding the virtual corrections to the underlying hard-scattering
process e

+
e
�
! q q̄:

� = H J ⇥ J̄ ⇥ S . (1)

Soft-Collinear E↵ective Theory (SCET) o↵ers a convenient framework for performing such resumma-
tions [23–26]. In general, the hard function for a process involving n colored particles with momenta
{p} ⌘ {p1, . . . , pn} is related to the square of a hard-scattering partonic amplitude |Mn({p}, µ)i,
which can be represented as a vector in color space [27]. This object obeys a renormalization-group
(RG) evolution equation with the anomalous dimension [28–32]

�({p}, µ) =
X

(ij)

Ti · Tj

2
�cusp(↵s) ln

µ
2

�sij
+
X

i

�
i(↵s) + O(↵3

s) , (2)

where sij ⌘ 2�ij pi ·pj +i0, and the sign factor �ij = +1 if the momenta pi and pj are both incoming or
outgoing, and �ij = �1 otherwise. The notation (i1 . . . ik) refers to unordered tuples of distinct parton
indices. The cusp anomalous dimension �cusp and the collinear anomalous dimensions �

i are functions
of the QCD coupling. Up to two-loop order the result features only pairwise correlations among the
color charges and momenta of the di↵erent partons. Along with RG evolution equations for the jet
and soft functions, this provides the basis for the systematic resummation of all large logarithmic
corrections to the cross section.
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In more complicated cases, a standard phenomenological approach is to combine fixed-order per-
turbative calculations with parton showers, which simulate the cascades of soft and collinear QCD
radiation produced in high-energy particle collisions. The accuracy of these showers is limited since
they reply on the large-Nc approximation, in which one includes only the leading terms in an expansion
in powers of 1/Nc, where Nc = 3 is the number of colors in QCD. While there is currently a strong
e↵ort under way to extend parton showers beyond the strict Nc ! 1 limit and match them consis-
tently with fixed-order calculations [33–37], obtaining a complete understanding of even the leading
logarithmic e↵ects is a di�cult problem. Dasgupta and Salam showed that observables insensitive to
radiation in certain regions of phase space contain single-logarithmic terms not captured by resumma-
tion techniques based on (1) [38]. These so-called non-global logarithms (NGLs) have a complicated
structure, because they are generated by secondary emissions o↵ the original hard partons. Banfi,
Marchesini and Smye (BMS) derived a non-linear integral equation, which can be used to perform
the resummation of the leading NGLs in the large-Nc limit [39]. Since “strong energy ordering” is
a crucial ingredient for the BMS equation, its logarithmic accuracy cannot easily be improved, even
though important progress in this direction has recently been made in [40]. Since the vast majority
of collider observables include regions of phase space in which radiation is not restricted, the presence
of NGLs severely limits the applicability of higher-order resummation techniques. In [41, 42], we
have generalized the SCET approach to derive a novel factorization theorem for dijet cross sections
in e

+
e
� collisions, based on which all logarithmically enhanced corrections, including the NGLs, can

be controlled by an RG evolution equation. These papers mark a milestone, because they o↵er a
radically new perspective to think about NGLs. Our approach is completely general and works for
any number of colors. In the large-Nc limit, the leading logarithms agree with those derived from the
BMS equation. Related proposals for dealing with NGLs have been put forward in [43, 44].

For hadron-collider processes, in which colored particles appear in both the initial and final states,
the resummation of all logarithmically enhanced terms poses an even more formidable conceptual
problem, which so far has been solved only partially and for a very limited class of observables. The
prototypical non-global observable is the inter-jet energy flow, where a veto associated with a low-
energy scale Q0 is imposed on radiation in a region away from the hard jets with energies of the order
of the collision energy, Q =

p
ŝ � Q0. Being sensitive only to large-angle soft radiation, one naively

expects the leading logarithms to this observable to scale as ↵
n
s L

n (with n � 1), where L = ln(Q/Q0).
This is indeed the case for jet production at lepton colliders, but Forshaw, Kyrieleis and Seymour
argued that at hadron colliders double logarithms arise starting at four-loop order [17], so that the
leading logarithms are, in fact, of the form ↵

3+n
s L

3+2n. The SLLs are a subtle e↵ect, whose origin can
be traced back to the first term in (2). For e

+
e
� collisions all colored particles appear in the final state,

and hence �ij = 1 for all pairs (ij). Color-conservation then ensures that the imaginary part of the
anomalous-dimension matrix is proportional to the unit matrix in color space, and its e↵ect cancels
out when one considers the square of the hard-scattering amplitude. At hadron colliders, however,
the initial-state particles carry color and a non-trivial imaginary part remains,

Im�({p}, µ) = �2⇡ T1 · T2 �cusp(↵s) + . . . , (3)

where the dots represent terms proportional to the unit matrix. This e↵ect gives rise to Coulomb
phases with a highly non-trivial color structure. Their presence spoils the real-virtual cancellations for
collinear emissions o↵ the initial states and thus violates the notion of strict (i.e., process-independent)
factorization [45–47]. Even 15 years after this e↵ect was discovered, remarkably little is known about
it. While the first SLL (⇠ ↵

4
sL

5) has been calculated for arbitrary 2 ! 2 hard processes [48], the
second SLL (⇠ ↵

5
sL

7) is known for some selected partonic channels only [49]. The higher-order
structure of SLLs, their contribution to other hard processes, and their large-order behavior are
completely unknown. Moreover, while the SLLs are responsible for the parametrically leading higher-
order contributions to the cross sections, their e↵ects are not captured in any existing parton shower,
because they appear at subleading order in 1/Nc counting.

In July 2021, my collaborators and I took the first steps toward extending our SCET approach
for non-global observables at lepton colliders to the more complicated case of hadron colliders [50].
As a concrete example, we have considered the pp ! 2 jet cross section with a veto on hard radiation
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of collider observables include regions of phase space in which radiation is not restricted, the presence
of NGLs severely limits the applicability of higher-order resummation techniques. In [41, 42], we
have generalized the SCET approach to derive a novel factorization theorem for dijet cross sections
in e
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� collisions, based on which all logarithmically enhanced corrections, including the NGLs, can

be controlled by an RG evolution equation. These papers mark a milestone, because they o↵er a
radically new perspective to think about NGLs. Our approach is completely general and works for
any number of colors. In the large-Nc limit, the leading logarithms agree with those derived from the
BMS equation. Related proposals for dealing with NGLs have been put forward in [43, 44].

For hadron-collider processes, in which colored particles appear in both the initial and final states,
the resummation of all logarithmically enhanced terms poses an even more formidable conceptual
problem, which so far has been solved only partially and for a very limited class of observables. The
prototypical non-global observable is the inter-jet energy flow, where a veto associated with a low-
energy scale Q0 is imposed on radiation in a region away from the hard jets with energies of the order
of the collision energy, Q =
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ŝ � Q0. Being sensitive only to large-angle soft radiation, one naively

expects the leading logarithms to this observable to scale as ↵
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n (with n � 1), where L = ln(Q/Q0).
This is indeed the case for jet production at lepton colliders, but Forshaw, Kyrieleis and Seymour
argued that at hadron colliders double logarithms arise starting at four-loop order [17], so that the
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The virtual and real contributions in the anomalous dimension contain 
collinear singularities, which must be regularized and subtracted. One finds:


with:

Superleading logarithms
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Comments on the notation:

• color generators Ti,L act on the amplitude and multiply the hard functions 

form the left

• color generators Ti,R act on the complex conjugate amplitude and multiply 

the hard functions form the right

• real-emission terms take an amplitude with m partons and turn it into an 

amplitude with (m+1) partons; then 


where    and    are the color indices of the emitted gluon; the symbol    
indicates the presence of the addition color space of the emitted gluon

Superleading logarithms

M. Neubert                                                                                          Resummation of superleading logarithms                                                                                                       17

2

where Etot and ~ptot are the total energy and momentum
of the final-state particles in the partonic center-of-mass
frame. Note that the amplitude is squared in the sense of
a density matrix. We use the color-space formalism [14],
and the color indices of the amplitude |Mm({p})i and
its conjugate are not contracted. The color sum, indi-
cated by h. . . i in (1), is performed after the hard function
is combined with the function Wm, which encodes the
soft and collinear low-energy dynamics. Both quantities
depend on the directions {n} of the hard partons, and
after combining them the integrals over these directions
are performed, as indicated by the symbol ⌦.

The function ⇥hard enforces the constraints on the hard
jets and ensures that no hard radiation enters the veto
region. For the validity of formula (1) it is important
that these constraints are compatible with factorization.
The low-energy matrix elements Wm consist of squared
matrix elements of m soft Wilson lines for the incoming
and outgoing partons together with two collinear fields
for the incoming particles. They need to be evaluated in
SCET with Glauber gluons [16], which can mediate non-
trivial interactions between soft and collinear partons.
The functions Wm contain rapidity logarithms, which in-
duce a logarithmic dependence on the scale ratio

p
ŝ/Q0

[17, 18]. It would be interesting to analyze the structure
of these matrix elements in more detail in future work.
Here we just note that the additional dependence on the
hard scale is single logarithmic, while we focus on the
leading double-logarithmic corrections in this Letter.

To obtain the leading double logarithms, we solve the
RG equation for the hard function iteratively and evolve
it from the hard scale µh ⇠

p
ŝ to the low scale µs ⇠ Q0.

As the starting point of the evolution we use the lowest-
order (Born level) hard function, which for a two-jet cross
section involves four partons. We thus evaluate

H4(µh) U(µh, µs) = H4(µh)P exp

Z µh

µs

dµ

µ
�H(µ)

�

= H4(µh) +

Z µh

µs

dµ

µ
H4(µh)�H(µ) (3)

+

Z µh

µs

dµ

µ

Z µh

µ

dµ0

µ0 H4(µh)�H(µ0)�H(µ) + . . . .

Below, we will identify the SLLs that arise in the prod-
ucts of anomalous dimensions and solve a recursion re-
lation for them. As a final step, we compute the cross
section in (1) using the lowest-order expression for Wm

at the low scale µs ⇠ Q0. At this order the soft Wilson
lines are trivial and the collinear matrix elements reduce
to the usual parton distribution functions, i.e.

Wm({n}, Q0, x1, x2, µs) = fa1(x1) fa2(x2)1 . (4)

The one-loop anomalous dimension matrix in (3) can
be split into two parts: �H = �C 1 + �S . The first
part concerns the purely collinear singularities and is

present also for inclusive cross sections. It is given by
the usual DGLAP kernels and involves a convolution over
the momentum fractions of the incoming partons. The
second part, �S , contains soft as well as soft + collinear
terms. This part is absent for inclusive cross sections,
but present in our case because of the restrictions on
hard radiation in the veto region. The soft + collinear
piece generates the SLLs. The soft part of the anoma-
lous dimension takes the form [8, 9]

�S =
↵s

4⇡

0

BBBBB@

V4 R4 0 0 · · ·
0 V5 R5 0 · · ·
0 0 V6 R6 · · ·
0 0 0 V7 · · ·
...

...
...

...
. . .

1

CCCCCA
+ . . . . (5)

The virtual contributions Vm leave the number of par-
tons unchanged, while the real-emission operators Rm

add one extra parton to a given hard function.
Due to the correspondence between UV and IR sin-

gularities [19], the anomalous dimension �S can be ex-
tracted by considering soft limits of hard-scattering am-
plitudes [9, 13]. For the present discussion, it is useful to
write it in the form [20]

Vm = Vm + V G +
X

i=1,2

V c
i ln

µ2

ŝ
,

Rm = Rm +
X

i=1,2

Rc
i ln

µ2

ŝ
,

(6)

with

Vm = 2
X

(ij)

�
Ti,L · Tj,L + Ti,R · Tj,R

� Z
d⌦(nk)

4⇡
W

k
ij ,

V c
i = 4Ci 1 ,

V G = �8i⇡
�
T1,L · T2,L � T1,R · T2,R

�
, (7)

Rm = �4
X

(ij)

Ti,L � Tj,R W
m+1
ij ⇥hard(nm+1) ,

Rc
i = �4Ti,L � Ti,R �(nk � ni) .

Before discussing the di↵erent parts in detail, let us ex-
plain how they act on a generic hard function Hm. The
color generators Ti,L act on the amplitude and hence
multiply Hm from the left, while the generators Tj,R act
on the conjugate amplitude and stand on the right of
Hm. The color matrices in the virtual part act on the
color indices of the m partons, Ti · Tj =

P
a T a

i T a
j , and

Ti ·Ti = Ci 1 is the quadratic Casimir operator of parton
i. This is the usual color-space notation. The color ma-
trices in the real-emission terms Rm are di↵erent. They
take an amplitude with m partons and associated color
indices and map it to an amplitude with (m+1) partons,
see Figure 1. Explicitly, we have

Hm Ti,L � Tj,R = T a
i Hm T ã

j , (8)

a
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Figure 1: Action of the operator the real part Rm and the virtual piece Vm

of the anomalous dimension on the hard function Hm. The sums run over
all pairs of unordered indices i, j = 1 . . . m. Due to the emitted gluon (blue),
the product HmRm defines a hard function with m + 1 external legs, while
the virtual correction (red) HmVm has m legs.
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Figure 2: Action of the imaginary part VI (red dotted line) and the collinear
real-emission piece RC on the hard function. After the simplifications dis-
cussed in the text, these parts only involve legs 1 and 2. The real correc-
tions HmRC involve one additional hard gluon (dashed blue line) which is
collinear to one of the incoming legs.
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FIG. 1. Action of the real-emission operator Rm and the

virtual piece Vm on a hard function Hm. Due to the emitted

gluon (blue), the product Hm Rm defines a hard function

with (m+ 1) external legs.

where the color indices a and ã refer to the emitted gluon.
We use the symbol � to indicate the presence of the ad-
ditional color space of the emitted parton. Subsequent
applications of the anomalous-dimension matrix can act
on these indices. In the simplest case of a single cut prop-
agator as in Figure 1, the indices are contracted with �ãa.
On the other hand, if an additional gluon with group in-
dex b is attached to the emitted parton, the indices get
contracted with (�if bãa).

The operators Vm and Rm encode soft singularities
arising when a virtual or real soft parton is exchanged
between two di↵erent legs of the hard function. The
squared amplitude for the exchange is a product of the
eikonal factors for each leg, and the notation (ij) on
the sums in (6) indicates a pair of unordered indices
i, j = 1, . . . , m. We use a bar to indicate that the
collinear limits of the emissions are subtracted, i.e.

W
k
ij =

ni · nj

ni · nk nj · nk
� �(nk � ni)

ni · nk
� �(nk � nj)

nj · nk
. (9)

The angular �-distributions only act on the test function.
The collinear singularities in the soft anomalous di-

mension are encoded in Rc
i and V c

i , both of which are
proportional to the cusp anomalous dimension (as indi-
cated by the superscript). These operators multiply a
logarithm of the hard scale, which when inserted into (3)
gives rise to Sudakov double logarithms. We show below
that all final-state collinear singularities cancel between
real and virtual contributions, and for this reason only
the initial-state pieces (with i = 1, 2) must be kept in (6).
The cancellation for the initial-state terms is spoiled by
the complex Glauber phases in V G, also referred to as
Coulomb phases [2]. These arise whenever soft partons
are exchanged between two final-state legs or two initial-
state legs. Using color conservation,

Pm
i=1 Hm T a

i = 0,
the phase terms can be rewritten in the form of V G,
which makes it obvious that they are only relevant for
processes involving (at least) two colored partons in the
initial state.

Three properties of the di↵erent components of the
anomalous dimension greatly simplify our calculations.
Color coherence, the fact that the sum of the soft emis-

sions o↵ two collinear partons has the same e↵ect as a
single soft emission o↵ the parent parton, implies that

Hm �c � = Hm ��c , (10)

where we have defined �c =
P2

i=1(R
c
i+V c

i ) and Hm � ⌘
Hm (Rm + Vm). Next, the cyclicity of the trace ensures
that

hHm �c ⌦ 1i = 0 ,
⌦
Hm V G ⌦ 1

↵
= 0 .

(11)

The first of these relations is a consequence of collinear
safety: the singularity associated with a collinear real
emission cancels against the one in the associated virtual
correction. It is trivial to verify this, because

hHm (Rc
i + V c

i ) ⌦ 1i / hT a
i Hm T a

i � Ci Hmi = 0 .
(12)

The three properties hold for an arbitrary hard function
Hm, which can be obtained from the tree-level hard func-
tion after applying the one-loop anomalous dimension
several times.

We extract the leading contributions to (3) by consid-
ering products of �c, � and V G, only the first of which
gives rise to double logarithms. In the absence of V G,
we could use relation (10) to move all occurrences of �c

to the last step, where they give a vanishing contribution
due to (11). (Even in the presence of V G this can still be
done for all final-state partons, and for this reason we did
not include terms with i 6= 1, 2 in the definition of �c.)
To get the SLLs, we thus need two insertions of V G. A
single insertion gives zero, since the cross section is real.
Due to the two properties in (11) we also need one power
of � in the last step of the evolution. Therefore, the SLLs
at (3 + n)th order in perturbation theory are associated
with color traces of the form

Crn =
⌦
H4 (�c)r V G (�c)n�r V G � ⌦ 1

↵
, (13)

where 0  r  n. This explains why the SLLs first
appear at four-loop order. However, the three-loop term
(n = 0) originates from the same color structures and is
numerically significant, even though it only involves the
imaginary part ⇡ = | ln(�1)| of the large logarithm.

To get the corresponding contribution to the partonic
cross section, we must combine the color traces Crn with
the associated ordered integrals in (3). Each factor of �c

is multiplied by a logarithm of µ, see (6), which produces
a double logarithm upon integration. Neglecting the run-
ning of the coupling ↵s, setting µ2

h = ŝ and evaluating
the integrals, we find with L = ln(

p
ŝ/µs)

�̂SLL
n =

⇣↵s

4⇡

⌘n+3
L2n+3 (�4)n n!

(2n + 3)!

nX

r=0

(2r)!

4r (r!)2
Crn ,

(14)
which makes it explicit that starting from four-loop order
two logarithms per loop arise.
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define � = Vm + Rm. The collinear singularities in the soft anomalous dimension are encoded in the
quantity

�c =
X

i=1,2

4
⇥
Ci 1� Ti,L � Ti,R �(nm+1 � ni)

⇤
, (12)

which enters the anomalous dimension multiplied by ln(µ2
/ŝ), where

p
ŝ = Q is the partonic center-

of-mass energy. When inserted into (8) this gives rise to double logarithms, which are the source of the
SLLs. All final-state collinear singularities cancel between real and virtual contributions, and for this
reason only the initial-state pieces (with i = 1, 2) must be kept. The cancellation for the initial-state
terms is spoiled by the complex Coulomb phases in (3), which are contained in [17]

V G = �8i⇡ (T1,L · T2,L � T1,R · T2,R) . (13)

Color conservation implies that these phases are only relevant for processes involving (at least) two
colored partons in the initial state. The color generators Ti,L act on the amplitude and hence multiply
the hard functions Hm from the left, while the generators Tj,R act on the conjugate amplitude and
stand on the right of Hm. The color matrices in the virtual part act on the color indices of the m

partons, Ti · Tj =
P

a
T a

i
T a

j
, and Ti · Ti = Ci 1 is the quadratic Casimir operator of parton i. The

color matrices in the real-emission terms Rm and in the second term in (12) are di↵erent. They take
an amplitude with m partons and map it to an amplitude with (m + 1) partons. Explicitly, we have
Hm Ti,L � Tj,R = T a

i
Hm T ã

j
, where the color indices a and ã refer to the emitted gluon. We use the

symbol � to indicate the presence of the additional color space of the emitted parton. Subsequent
applications of the anomalous-dimension matrix can act on these indices.

Collinear safely, the fact that the singularities associated with real and virtual collinear emissions
cancel against each other, ensures that under the color trace in (8) the operator �c vanishes whenever
it stands left to the 1. Combined with the fact that the commutator [�c

,�] vanishes under the trace
in (8), this implies that Sudakov double logarithms arise only in the presence of the Coulomb phases
V G. It follows that for a given 2 ! 2 scattering process the SLL at (3 + n)th order in perturbation
theory is associated with color traces of the form

Crn =
⌦
H4 (�c)r V G (�c)n�r V G �⌦ 1

↵
, (14)

where 0  r  n. Each insertion of �c gives rise to a double logarithm. This explains why the SLLs
first appear at four-loop order. However, the three-loop term (n = 0) originates from the same color
structures and is numerically significant, even though it only involves the imaginary part ⇡ = | ln(�1)|
of the large logarithm. Neglecting the running of the coupling ↵s, setting µh = Q =

p
ŝ and µs = Q0,

and evaluating the integrals over µ arising in the Taylor expansion of the matrix exponential in (8),
we find for the contribution of SLLs to the cross section

�SLL = �Born

1X

n=0

⇣
↵s

4⇡

⌘
n+3

L
2n+3 (�4)n n!

(2n + 3)!

nX

r=0

(2r)!

4r (r!)2
Crn , (15)

where L = ln(Q/Q0). Starting from four-loop order two large logarithms per loop arise.
For the simplest case of quark-initiated 2 ! 2 scattering, we have succeeded to evaluate the color

traces Crn in closed form in terms of only three non-trivial color structures [50]. The result reads

Crn = 28�r
⇡
2 (4Nc)

n

⇢ X

j=3,4

Jj

⌦
H4

⇥
(T2 � T1) · Tj + 2r�1

Nc (�1 � �2) dabc T
a

1 T b

2 T
c

j

⇤↵

+ 2 (1 � �r0) J2
⌦
H4

⇥
CF + (2r � 1)T1 · T2

⇤↵�
,

(16)

where �i = 1 for an initial-state antiquark and �i = �1 for an initial-state quark. The sum in the
first term runs over the final-state partons. The structure H4 is normalized such that hH4i = 1. All
information about the phase-space restrictions is contained in the angular integrals

Jj =

Z
d⌦(nk)

4⇡

⇣
W

k

1j � W
k

2j

⌘
⇥veto(nk) ; with W

k

ij =
ni · nj

ni · nk nj · nk

, (17)
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which enters the anomalous dimension multiplied by ln(µ2
/ŝ), where
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ŝ = Q is the partonic center-

of-mass energy. When inserted into (8) this gives rise to double logarithms, which are the source of the
SLLs. All final-state collinear singularities cancel between real and virtual contributions, and for this
reason only the initial-state pieces (with i = 1, 2) must be kept. The cancellation for the initial-state
terms is spoiled by the complex Coulomb phases in (3), which are contained in [17]

V G = �8i⇡ (T1,L · T2,L � T1,R · T2,R) . (13)

Color conservation implies that these phases are only relevant for processes involving (at least) two
colored partons in the initial state. The color generators Ti,L act on the amplitude and hence multiply
the hard functions Hm from the left, while the generators Tj,R act on the conjugate amplitude and
stand on the right of Hm. The color matrices in the virtual part act on the color indices of the m

partons, Ti · Tj =
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T a
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, and Ti · Ti = Ci 1 is the quadratic Casimir operator of parton i. The

color matrices in the real-emission terms Rm and in the second term in (12) are di↵erent. They take
an amplitude with m partons and map it to an amplitude with (m + 1) partons. Explicitly, we have
Hm Ti,L � Tj,R = T a
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Hm T ã

j
, where the color indices a and ã refer to the emitted gluon. We use the

symbol � to indicate the presence of the additional color space of the emitted parton. Subsequent
applications of the anomalous-dimension matrix can act on these indices.

Collinear safely, the fact that the singularities associated with real and virtual collinear emissions
cancel against each other, ensures that under the color trace in (8) the operator �c vanishes whenever
it stands left to the 1. Combined with the fact that the commutator [�c

,�] vanishes under the trace
in (8), this implies that Sudakov double logarithms arise only in the presence of the Coulomb phases
V G. It follows that for a given 2 ! 2 scattering process the SLL at (3 + n)th order in perturbation
theory is associated with color traces of the form

Crn =
⌦
H4 (�c)r V G (�c)n�r V G �⌦ 1

↵
, (14)

where 0  r  n. Each insertion of �c gives rise to a double logarithm. This explains why the SLLs
first appear at four-loop order. However, the three-loop term (n = 0) originates from the same color
structures and is numerically significant, even though it only involves the imaginary part ⇡ = | ln(�1)|
of the large logarithm. Neglecting the running of the coupling ↵s, setting µh = Q =

p
ŝ and µs = Q0,

and evaluating the integrals over µ arising in the Taylor expansion of the matrix exponential in (8),
we find for the contribution of SLLs to the cross section
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where L = ln(Q/Q0). Starting from four-loop order two large logarithms per loop arise.
For the simplest case of quark-initiated 2 ! 2 scattering, we have succeeded to evaluate the color

traces Crn in closed form in terms of only three non-trivial color structures [50]. The result reads
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where �i = 1 for an initial-state antiquark and �i = �1 for an initial-state quark. The sum in the
first term runs over the final-state partons. The structure H4 is normalized such that hH4i = 1. All
information about the phase-space restrictions is contained in the angular integrals
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Figure 1: Action of the operator the real part Rm and the virtual piece Vm

of the anomalous dimension on the hard function Hm. The sums run over
all pairs of unordered indices i, j = 1 . . . m. Due to the emitted gluon (blue),
the product HmRm defines a hard function with m + 1 external legs, while
the virtual correction (red) HmVm has m legs.
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Figure 2: Action of the imaginary part VI (red dotted line) and the collinear
real-emission piece RC on the hard function. After the simplifications dis-
cussed in the text, these parts only involve legs 1 and 2. The real correc-
tions HmRC involve one additional hard gluon (dashed blue line) which is
collinear to one of the incoming legs.

1

FIG. 1. Action of the real-emission operator Rm and the

virtual piece Vm on a hard function Hm. Due to the emitted

gluon (blue), the product Hm Rm defines a hard function

with (m+ 1) external legs.

where the color indices a and ã refer to the emitted gluon.
We use the symbol � to indicate the presence of the ad-
ditional color space of the emitted parton. Subsequent
applications of the anomalous-dimension matrix can act
on these indices. In the simplest case of a single cut prop-
agator as in Figure 1, the indices are contracted with �ãa.
On the other hand, if an additional gluon with group in-
dex b is attached to the emitted parton, the indices get
contracted with (�if bãa).

The operators Vm and Rm encode soft singularities
arising when a virtual or real soft parton is exchanged
between two di↵erent legs of the hard function. The
squared amplitude for the exchange is a product of the
eikonal factors for each leg, and the notation (ij) on
the sums in (6) indicates a pair of unordered indices
i, j = 1, . . . , m. We use a bar to indicate that the
collinear limits of the emissions are subtracted, i.e.

W
k
ij =

ni · nj

ni · nk nj · nk
� �(nk � ni)

ni · nk
� �(nk � nj)

nj · nk
. (9)

The angular �-distributions only act on the test function.
The collinear singularities in the soft anomalous di-

mension are encoded in Rc
i and V c

i , both of which are
proportional to the cusp anomalous dimension (as indi-
cated by the superscript). These operators multiply a
logarithm of the hard scale, which when inserted into (3)
gives rise to Sudakov double logarithms. We show below
that all final-state collinear singularities cancel between
real and virtual contributions, and for this reason only
the initial-state pieces (with i = 1, 2) must be kept in (6).
The cancellation for the initial-state terms is spoiled by
the complex Glauber phases in V G, also referred to as
Coulomb phases [2]. These arise whenever soft partons
are exchanged between two final-state legs or two initial-
state legs. Using color conservation,

Pm
i=1 Hm T a

i = 0,
the phase terms can be rewritten in the form of V G,
which makes it obvious that they are only relevant for
processes involving (at least) two colored partons in the
initial state.

Three properties of the di↵erent components of the
anomalous dimension greatly simplify our calculations.
Color coherence, the fact that the sum of the soft emis-

sions o↵ two collinear partons has the same e↵ect as a
single soft emission o↵ the parent parton, implies that

Hm �c � = Hm ��c , (10)

where we have defined �c =
P2

i=1(R
c
i+V c

i ) and Hm � ⌘
Hm (Rm + Vm). Next, the cyclicity of the trace ensures
that

hHm �c ⌦ 1i = 0 ,
⌦
Hm V G ⌦ 1

↵
= 0 .

(11)

The first of these relations is a consequence of collinear
safety: the singularity associated with a collinear real
emission cancels against the one in the associated virtual
correction. It is trivial to verify this, because

hHm (Rc
i + V c

i ) ⌦ 1i / hT a
i Hm T a

i � Ci Hmi = 0 .
(12)

The three properties hold for an arbitrary hard function
Hm, which can be obtained from the tree-level hard func-
tion after applying the one-loop anomalous dimension
several times.

We extract the leading contributions to (3) by consid-
ering products of �c, � and V G, only the first of which
gives rise to double logarithms. In the absence of V G,
we could use relation (10) to move all occurrences of �c

to the last step, where they give a vanishing contribution
due to (11). (Even in the presence of V G this can still be
done for all final-state partons, and for this reason we did
not include terms with i 6= 1, 2 in the definition of �c.)
To get the SLLs, we thus need two insertions of V G. A
single insertion gives zero, since the cross section is real.
Due to the two properties in (11) we also need one power
of � in the last step of the evolution. Therefore, the SLLs
at (3 + n)th order in perturbation theory are associated
with color traces of the form

Crn =
⌦
H4 (�c)r V G (�c)n�r V G � ⌦ 1

↵
, (13)

where 0  r  n. This explains why the SLLs first
appear at four-loop order. However, the three-loop term
(n = 0) originates from the same color structures and is
numerically significant, even though it only involves the
imaginary part ⇡ = | ln(�1)| of the large logarithm.

To get the corresponding contribution to the partonic
cross section, we must combine the color traces Crn with
the associated ordered integrals in (3). Each factor of �c

is multiplied by a logarithm of µ, see (6), which produces
a double logarithm upon integration. Neglecting the run-
ning of the coupling ↵s, setting µ2

h = ŝ and evaluating
the integrals, we find with L = ln(

p
ŝ/µs)

�̂SLL
n =

⇣↵s
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⌘n+3
L2n+3 (�4)n n!
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which makes it explicit that starting from four-loop order
two logarithms per loop arise.
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where the color indices a and ã refer to the emitted gluon.
We use the symbol � to indicate the presence of the ad-
ditional color space of the emitted parton. Subsequent
applications of the anomalous-dimension matrix can act
on these indices. In the simplest case of a single cut prop-
agator as in Figure 1, the indices are contracted with �ãa.
On the other hand, if an additional gluon with group in-
dex b is attached to the emitted parton, the indices get
contracted with (�if bãa).

The operators Vm and Rm encode soft singularities
arising when a virtual or real soft parton is exchanged
between two di↵erent legs of the hard function. The
squared amplitude for the exchange is a product of the
eikonal factors for each leg, and the notation (ij) on
the sums in (6) indicates a pair of unordered indices
i, j = 1, . . . , m. We use a bar to indicate that the
collinear limits of the emissions are subtracted, i.e.
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mension are encoded in Rc
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i , both of which are
proportional to the cusp anomalous dimension (as indi-
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logarithm of the hard scale, which when inserted into (3)
gives rise to Sudakov double logarithms. We show below
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real and virtual contributions, and for this reason only
the initial-state pieces (with i = 1, 2) must be kept in (6).
The cancellation for the initial-state terms is spoiled by
the complex Glauber phases in V G, also referred to as
Coulomb phases [2]. These arise whenever soft partons
are exchanged between two final-state legs or two initial-
state legs. Using color conservation,
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i = 0,
the phase terms can be rewritten in the form of V G,
which makes it obvious that they are only relevant for
processes involving (at least) two colored partons in the
initial state.
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anomalous dimension greatly simplify our calculations.
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single soft emission o↵ the parent parton, implies that
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where we have defined �c =
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Hm (Rm + Vm). Next, the cyclicity of the trace ensures
that

hHm �c ⌦ 1i = 0 ,
⌦
Hm V G ⌦ 1

↵
= 0 .

(11)

The first of these relations is a consequence of collinear
safety: the singularity associated with a collinear real
emission cancels against the one in the associated virtual
correction. It is trivial to verify this, because

hHm (Rc
i + V c

i ) ⌦ 1i / hT a
i Hm T a

i � Ci Hmi = 0 .
(12)

The three properties hold for an arbitrary hard function
Hm, which can be obtained from the tree-level hard func-
tion after applying the one-loop anomalous dimension
several times.

We extract the leading contributions to (3) by consid-
ering products of �c, � and V G, only the first of which
gives rise to double logarithms. In the absence of V G,
we could use relation (10) to move all occurrences of �c

to the last step, where they give a vanishing contribution
due to (11). (Even in the presence of V G this can still be
done for all final-state partons, and for this reason we did
not include terms with i 6= 1, 2 in the definition of �c.)
To get the SLLs, we thus need two insertions of V G. A
single insertion gives zero, since the cross section is real.
Due to the two properties in (11) we also need one power
of � in the last step of the evolution. Therefore, the SLLs
at (3 + n)th order in perturbation theory are associated
with color traces of the form

Crn =
⌦
H4 (�c)r V G (�c)n�r V G � ⌦ 1

↵
, (13)

where 0  r  n. This explains why the SLLs first
appear at four-loop order. However, the three-loop term
(n = 0) originates from the same color structures and is
numerically significant, even though it only involves the
imaginary part ⇡ = | ln(�1)| of the large logarithm.

To get the corresponding contribution to the partonic
cross section, we must combine the color traces Crn with
the associated ordered integrals in (3). Each factor of �c

is multiplied by a logarithm of µ, see (6), which produces
a double logarithm upon integration. Neglecting the run-
ning of the coupling ↵s, setting µ2

h = ŝ and evaluating
the integrals, we find with L = ln(

p
ŝ/µs)
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(14)
which makes it explicit that starting from four-loop order
two logarithms per loop arise.
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where the color indices a and ã refer to the emitted gluon.
We use the symbol � to indicate the presence of the ad-
ditional color space of the emitted parton. Subsequent
applications of the anomalous-dimension matrix can act
on these indices. In the simplest case of a single cut prop-
agator as in Figure 1, the indices are contracted with �ãa.
On the other hand, if an additional gluon with group in-
dex b is attached to the emitted parton, the indices get
contracted with (�if bãa).

The operators Vm and Rm encode soft singularities
arising when a virtual or real soft parton is exchanged
between two di↵erent legs of the hard function. The
squared amplitude for the exchange is a product of the
eikonal factors for each leg, and the notation (ij) on
the sums in (6) indicates a pair of unordered indices
i, j = 1, . . . , m. We use a bar to indicate that the
collinear limits of the emissions are subtracted, i.e.

W
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ni · nj

ni · nk nj · nk
� �(nk � ni)

ni · nk
� �(nk � nj)

nj · nk
. (9)

The angular �-distributions only act on the test function.
The collinear singularities in the soft anomalous di-

mension are encoded in Rc
i and V c

i , both of which are
proportional to the cusp anomalous dimension (as indi-
cated by the superscript). These operators multiply a
logarithm of the hard scale, which when inserted into (3)
gives rise to Sudakov double logarithms. We show below
that all final-state collinear singularities cancel between
real and virtual contributions, and for this reason only
the initial-state pieces (with i = 1, 2) must be kept in (6).
The cancellation for the initial-state terms is spoiled by
the complex Glauber phases in V G, also referred to as
Coulomb phases [2]. These arise whenever soft partons
are exchanged between two final-state legs or two initial-
state legs. Using color conservation,

Pm
i=1 Hm T a

i = 0,
the phase terms can be rewritten in the form of V G,
which makes it obvious that they are only relevant for
processes involving (at least) two colored partons in the
initial state.

Three properties of the di↵erent components of the
anomalous dimension greatly simplify our calculations.
Color coherence, the fact that the sum of the soft emis-

sions o↵ two collinear partons has the same e↵ect as a
single soft emission o↵ the parent parton, implies that
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where we have defined �c =
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that
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The first of these relations is a consequence of collinear
safety: the singularity associated with a collinear real
emission cancels against the one in the associated virtual
correction. It is trivial to verify this, because
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The three properties hold for an arbitrary hard function
Hm, which can be obtained from the tree-level hard func-
tion after applying the one-loop anomalous dimension
several times.

We extract the leading contributions to (3) by consid-
ering products of �c, � and V G, only the first of which
gives rise to double logarithms. In the absence of V G,
we could use relation (10) to move all occurrences of �c

to the last step, where they give a vanishing contribution
due to (11). (Even in the presence of V G this can still be
done for all final-state partons, and for this reason we did
not include terms with i 6= 1, 2 in the definition of �c.)
To get the SLLs, we thus need two insertions of V G. A
single insertion gives zero, since the cross section is real.
Due to the two properties in (11) we also need one power
of � in the last step of the evolution. Therefore, the SLLs
at (3 + n)th order in perturbation theory are associated
with color traces of the form

Crn =
⌦
H4 (�c)r V G (�c)n�r V G � ⌦ 1
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, (13)

where 0  r  n. This explains why the SLLs first
appear at four-loop order. However, the three-loop term
(n = 0) originates from the same color structures and is
numerically significant, even though it only involves the
imaginary part ⇡ = | ln(�1)| of the large logarithm.

To get the corresponding contribution to the partonic
cross section, we must combine the color traces Crn with
the associated ordered integrals in (3). Each factor of �c

is multiplied by a logarithm of µ, see (6), which produces
a double logarithm upon integration. Neglecting the run-
ning of the coupling ↵s, setting µ2

h = ŝ and evaluating
the integrals, we find with L = ln(
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ŝ/µs)

�̂SLL
n =

⇣↵s

4⇡

⌘n+3
L2n+3 (�4)n n!

(2n + 3)!

nX

r=0

(2r)!

4r (r!)2
Crn ,

(14)
which makes it explicit that starting from four-loop order
two logarithms per loop arise.
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define � = Vm + Rm. The collinear singularities in the soft anomalous dimension are encoded in the
quantity

�c =
X

i=1,2

4
⇥
Ci 1� Ti,L � Ti,R �(nm+1 � ni)

⇤
, (12)

which enters the anomalous dimension multiplied by ln(µ2
/ŝ), where

p
ŝ = Q is the partonic center-

of-mass energy. When inserted into (8) this gives rise to double logarithms, which are the source of the
SLLs. All final-state collinear singularities cancel between real and virtual contributions, and for this
reason only the initial-state pieces (with i = 1, 2) must be kept. The cancellation for the initial-state
terms is spoiled by the complex Coulomb phases in (3), which are contained in [17]

V G = �8i⇡ (T1,L · T2,L � T1,R · T2,R) . (13)

Color conservation implies that these phases are only relevant for processes involving (at least) two
colored partons in the initial state. The color generators Ti,L act on the amplitude and hence multiply
the hard functions Hm from the left, while the generators Tj,R act on the conjugate amplitude and
stand on the right of Hm. The color matrices in the virtual part act on the color indices of the m

partons, Ti · Tj =
P

a
T a

i
T a

j
, and Ti · Ti = Ci 1 is the quadratic Casimir operator of parton i. The

color matrices in the real-emission terms Rm and in the second term in (12) are di↵erent. They take
an amplitude with m partons and map it to an amplitude with (m + 1) partons. Explicitly, we have
Hm Ti,L � Tj,R = T a

i
Hm T ã

j
, where the color indices a and ã refer to the emitted gluon. We use the

symbol � to indicate the presence of the additional color space of the emitted parton. Subsequent
applications of the anomalous-dimension matrix can act on these indices.

Collinear safely, the fact that the singularities associated with real and virtual collinear emissions
cancel against each other, ensures that under the color trace in (8) the operator �c vanishes whenever
it stands left to the 1. Combined with the fact that the commutator [�c

,�] vanishes under the trace
in (8), this implies that Sudakov double logarithms arise only in the presence of the Coulomb phases
V G. It follows that for a given 2 ! 2 scattering process the SLL at (3 + n)th order in perturbation
theory is associated with color traces of the form

Crn =
⌦
H4 (�c)r V G (�c)n�r V G �⌦ 1

↵
, (14)

where 0  r  n. Each insertion of �c gives rise to a double logarithm. This explains why the SLLs
first appear at four-loop order. However, the three-loop term (n = 0) originates from the same color
structures and is numerically significant, even though it only involves the imaginary part ⇡ = | ln(�1)|
of the large logarithm. Neglecting the running of the coupling ↵s, setting µh = Q =

p
ŝ and µs = Q0,

and evaluating the integrals over µ arising in the Taylor expansion of the matrix exponential in (8),
we find for the contribution of SLLs to the cross section

�SLL = �Born

1X

n=0

⇣
↵s

4⇡

⌘
n+3

L
2n+3 (�4)n n!

(2n + 3)!

nX

r=0

(2r)!

4r (r!)2
Crn , (15)

where L = ln(Q/Q0). Starting from four-loop order two large logarithms per loop arise.
For the simplest case of quark-initiated 2 ! 2 scattering, we have succeeded to evaluate the color

traces Crn in closed form in terms of only three non-trivial color structures [50]. The result reads

Crn = 28�r
⇡
2 (4Nc)

n

⇢ X

j=3,4

Jj

⌦
H4

⇥
(T2 � T1) · Tj + 2r�1

Nc (�1 � �2) dabc T
a

1 T b

2 T
c

j

⇤↵

+ 2 (1 � �r0) J2
⌦
H4

⇥
CF + (2r � 1)T1 · T2

⇤↵�
,

(16)

where �i = 1 for an initial-state antiquark and �i = �1 for an initial-state quark. The sum in the
first term runs over the final-state partons. The structure H4 is normalized such that hH4i = 1. All
information about the phase-space restrictions is contained in the angular integrals

Jj =

Z
d⌦(nk)

4⇡

⇣
W

k

1j � W
k

2j

⌘
⇥veto(nk) ; with W

k

ij =
ni · nj

ni · nk nj · nk

, (17)
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The SLLs arise from the terms with the highest number of insertions of     


Three properties of the different components of the anomalous dimension 
greatly simplify the calculation of the SLLs

• color coherence — the sum of soft emissions off two collinear partons 

has the same effect as a single soft emission off the parent parton:


• collinear safety — collinear singularities from real and virtual emissions 
cancel each other:


• cyclicity of the trace: 
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where the color indices a and ã refer to the emitted gluon.
We use the symbol � to indicate the presence of the ad-
ditional color space of the emitted parton. Subsequent
applications of the anomalous-dimension matrix can act
on these indices. In the simplest case of a single cut prop-
agator as in Figure 1, the indices are contracted with �ãa.
On the other hand, if an additional gluon with group in-
dex b is attached to the emitted parton, the indices get
contracted with (�if bãa).

The operators Vm and Rm encode soft singularities
arising when a virtual or real soft parton is exchanged
between two di↵erent legs of the hard function. The
squared amplitude for the exchange is a product of the
eikonal factors for each leg, and the notation (ij) on
the sums in (6) indicates a pair of unordered indices
i, j = 1, . . . , m. We use a bar to indicate that the
collinear limits of the emissions are subtracted, i.e.

W
k
ij =

ni · nj

ni · nk nj · nk
� �(nk � ni)

ni · nk
� �(nk � nj)

nj · nk
. (9)

The angular �-distributions only act on the test function.
The collinear singularities in the soft anomalous di-

mension are encoded in Rc
i and V c

i , both of which are
proportional to the cusp anomalous dimension (as indi-
cated by the superscript). These operators multiply a
logarithm of the hard scale, which when inserted into (3)
gives rise to Sudakov double logarithms. We show below
that all final-state collinear singularities cancel between
real and virtual contributions, and for this reason only
the initial-state pieces (with i = 1, 2) must be kept in (6).
The cancellation for the initial-state terms is spoiled by
the complex Glauber phases in V G, also referred to as
Coulomb phases [2]. These arise whenever soft partons
are exchanged between two final-state legs or two initial-
state legs. Using color conservation,

Pm
i=1 Hm T a

i = 0,
the phase terms can be rewritten in the form of V G,
which makes it obvious that they are only relevant for
processes involving (at least) two colored partons in the
initial state.

Three properties of the di↵erent components of the
anomalous dimension greatly simplify our calculations.
Color coherence, the fact that the sum of the soft emis-

sions o↵ two collinear partons has the same e↵ect as a
single soft emission o↵ the parent parton, implies that

Hm �c � = Hm ��c , (10)

where we have defined �c =
P2

i=1(R
c
i+V c

i ) and Hm � ⌘
Hm (Rm + Vm). Next, the cyclicity of the trace ensures
that

hHm �c ⌦ 1i = 0 ,
⌦
Hm V G ⌦ 1

↵
= 0 .

(11)

The first of these relations is a consequence of collinear
safety: the singularity associated with a collinear real
emission cancels against the one in the associated virtual
correction. It is trivial to verify this, because

hHm (Rc
i + V c

i ) ⌦ 1i / hT a
i Hm T a

i � Ci Hmi = 0 .
(12)

The three properties hold for an arbitrary hard function
Hm, which can be obtained from the tree-level hard func-
tion after applying the one-loop anomalous dimension
several times.

We extract the leading contributions to (3) by consid-
ering products of �c, � and V G, only the first of which
gives rise to double logarithms. In the absence of V G,
we could use relation (10) to move all occurrences of �c

to the last step, where they give a vanishing contribution
due to (11). (Even in the presence of V G this can still be
done for all final-state partons, and for this reason we did
not include terms with i 6= 1, 2 in the definition of �c.)
To get the SLLs, we thus need two insertions of V G. A
single insertion gives zero, since the cross section is real.
Due to the two properties in (11) we also need one power
of � in the last step of the evolution. Therefore, the SLLs
at (3 + n)th order in perturbation theory are associated
with color traces of the form

Crn =
⌦
H4 (�c)r V G (�c)n�r V G � ⌦ 1

↵
, (13)

where 0  r  n. This explains why the SLLs first
appear at four-loop order. However, the three-loop term
(n = 0) originates from the same color structures and is
numerically significant, even though it only involves the
imaginary part ⇡ = | ln(�1)| of the large logarithm.

To get the corresponding contribution to the partonic
cross section, we must combine the color traces Crn with
the associated ordered integrals in (3). Each factor of �c

is multiplied by a logarithm of µ, see (6), which produces
a double logarithm upon integration. Neglecting the run-
ning of the coupling ↵s, setting µ2

h = ŝ and evaluating
the integrals, we find with L = ln(

p
ŝ/µs)

�̂SLL
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⇣↵s
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which makes it explicit that starting from four-loop order
two logarithms per loop arise.
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where the color indices a and ã refer to the emitted gluon.
We use the symbol � to indicate the presence of the ad-
ditional color space of the emitted parton. Subsequent
applications of the anomalous-dimension matrix can act
on these indices. In the simplest case of a single cut prop-
agator as in Figure 1, the indices are contracted with �ãa.
On the other hand, if an additional gluon with group in-
dex b is attached to the emitted parton, the indices get
contracted with (�if bãa).

The operators Vm and Rm encode soft singularities
arising when a virtual or real soft parton is exchanged
between two di↵erent legs of the hard function. The
squared amplitude for the exchange is a product of the
eikonal factors for each leg, and the notation (ij) on
the sums in (6) indicates a pair of unordered indices
i, j = 1, . . . , m. We use a bar to indicate that the
collinear limits of the emissions are subtracted, i.e.

W
k
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ni · nk nj · nk
� �(nk � ni)
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. (9)

The angular �-distributions only act on the test function.
The collinear singularities in the soft anomalous di-

mension are encoded in Rc
i and V c

i , both of which are
proportional to the cusp anomalous dimension (as indi-
cated by the superscript). These operators multiply a
logarithm of the hard scale, which when inserted into (3)
gives rise to Sudakov double logarithms. We show below
that all final-state collinear singularities cancel between
real and virtual contributions, and for this reason only
the initial-state pieces (with i = 1, 2) must be kept in (6).
The cancellation for the initial-state terms is spoiled by
the complex Glauber phases in V G, also referred to as
Coulomb phases [2]. These arise whenever soft partons
are exchanged between two final-state legs or two initial-
state legs. Using color conservation,

Pm
i=1 Hm T a

i = 0,
the phase terms can be rewritten in the form of V G,
which makes it obvious that they are only relevant for
processes involving (at least) two colored partons in the
initial state.

Three properties of the di↵erent components of the
anomalous dimension greatly simplify our calculations.
Color coherence, the fact that the sum of the soft emis-

sions o↵ two collinear partons has the same e↵ect as a
single soft emission o↵ the parent parton, implies that

Hm �c � = Hm ��c , (10)

where we have defined �c =
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i=1(R
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i ) and Hm � ⌘
Hm (Rm + Vm). Next, the cyclicity of the trace ensures
that

hHm �c ⌦ 1i = 0 ,
⌦
Hm V G ⌦ 1

↵
= 0 .

(11)

The first of these relations is a consequence of collinear
safety: the singularity associated with a collinear real
emission cancels against the one in the associated virtual
correction. It is trivial to verify this, because

hHm (Rc
i + V c

i ) ⌦ 1i / hT a
i Hm T a

i � Ci Hmi = 0 .
(12)

The three properties hold for an arbitrary hard function
Hm, which can be obtained from the tree-level hard func-
tion after applying the one-loop anomalous dimension
several times.

We extract the leading contributions to (3) by consid-
ering products of �c, � and V G, only the first of which
gives rise to double logarithms. In the absence of V G,
we could use relation (10) to move all occurrences of �c

to the last step, where they give a vanishing contribution
due to (11). (Even in the presence of V G this can still be
done for all final-state partons, and for this reason we did
not include terms with i 6= 1, 2 in the definition of �c.)
To get the SLLs, we thus need two insertions of V G. A
single insertion gives zero, since the cross section is real.
Due to the two properties in (11) we also need one power
of � in the last step of the evolution. Therefore, the SLLs
at (3 + n)th order in perturbation theory are associated
with color traces of the form

Crn =
⌦
H4 (�c)r V G (�c)n�r V G � ⌦ 1
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, (13)

where 0  r  n. This explains why the SLLs first
appear at four-loop order. However, the three-loop term
(n = 0) originates from the same color structures and is
numerically significant, even though it only involves the
imaginary part ⇡ = | ln(�1)| of the large logarithm.

To get the corresponding contribution to the partonic
cross section, we must combine the color traces Crn with
the associated ordered integrals in (3). Each factor of �c

is multiplied by a logarithm of µ, see (6), which produces
a double logarithm upon integration. Neglecting the run-
ning of the coupling ↵s, setting µ2

h = ŝ and evaluating
the integrals, we find with L = ln(
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ŝ/µs)

�̂SLL
n =

⇣↵s

4⇡

⌘n+3
L2n+3 (�4)n n!

(2n + 3)!

nX

r=0

(2r)!

4r (r!)2
Crn ,

(14)
which makes it explicit that starting from four-loop order
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define � = Vm + Rm. The collinear singularities in the soft anomalous dimension are encoded in the
quantity

�c =
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which enters the anomalous dimension multiplied by ln(µ2
/ŝ), where
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ŝ = Q is the partonic center-

of-mass energy. When inserted into (8) this gives rise to double logarithms, which are the source of the
SLLs. All final-state collinear singularities cancel between real and virtual contributions, and for this
reason only the initial-state pieces (with i = 1, 2) must be kept. The cancellation for the initial-state
terms is spoiled by the complex Coulomb phases in (3), which are contained in [17]
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, where the color indices a and ã refer to the emitted gluon. We use the

symbol � to indicate the presence of the additional color space of the emitted parton. Subsequent
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,�] vanishes under the trace
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structures and is numerically significant, even though it only involves the imaginary part ⇡ = | ln(�1)|
of the large logarithm. Neglecting the running of the coupling ↵s, setting µh = Q =
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ŝ and µs = Q0,

and evaluating the integrals over µ arising in the Taylor expansion of the matrix exponential in (8),
we find for the contribution of SLLs to the cross section
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where L = ln(Q/Q0). Starting from four-loop order two large logarithms per loop arise.
For the simplest case of quark-initiated 2 ! 2 scattering, we have succeeded to evaluate the color

traces Crn in closed form in terms of only three non-trivial color structures [50]. The result reads
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where �i = 1 for an initial-state antiquark and �i = �1 for an initial-state quark. The sum in the
first term runs over the final-state partons. The structure H4 is normalized such that hH4i = 1. All
information about the phase-space restrictions is contained in the angular integrals
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Figure 1: Action of the operator the real part Rm and the virtual piece Vm

of the anomalous dimension on the hard function Hm. The sums run over
all pairs of unordered indices i, j = 1 . . . m. Due to the emitted gluon (blue),
the product HmRm defines a hard function with m + 1 external legs, while
the virtual correction (red) HmVm has m legs.
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Figure 2: Action of the imaginary part VI (red dotted line) and the collinear
real-emission piece RC on the hard function. After the simplifications dis-
cussed in the text, these parts only involve legs 1 and 2. The real correc-
tions HmRC involve one additional hard gluon (dashed blue line) which is
collinear to one of the incoming legs.
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FIG. 1. Action of the real-emission operator Rm and the

virtual piece Vm on a hard function Hm. Due to the emitted

gluon (blue), the product Hm Rm defines a hard function

with (m+ 1) external legs.

where the color indices a and ã refer to the emitted gluon.
We use the symbol � to indicate the presence of the ad-
ditional color space of the emitted parton. Subsequent
applications of the anomalous-dimension matrix can act
on these indices. In the simplest case of a single cut prop-
agator as in Figure 1, the indices are contracted with �ãa.
On the other hand, if an additional gluon with group in-
dex b is attached to the emitted parton, the indices get
contracted with (�if bãa).

The operators Vm and Rm encode soft singularities
arising when a virtual or real soft parton is exchanged
between two di↵erent legs of the hard function. The
squared amplitude for the exchange is a product of the
eikonal factors for each leg, and the notation (ij) on
the sums in (6) indicates a pair of unordered indices
i, j = 1, . . . , m. We use a bar to indicate that the
collinear limits of the emissions are subtracted, i.e.

W
k
ij =

ni · nj

ni · nk nj · nk
� �(nk � ni)

ni · nk
� �(nk � nj)

nj · nk
. (9)

The angular �-distributions only act on the test function.
The collinear singularities in the soft anomalous di-

mension are encoded in Rc
i and V c

i , both of which are
proportional to the cusp anomalous dimension (as indi-
cated by the superscript). These operators multiply a
logarithm of the hard scale, which when inserted into (3)
gives rise to Sudakov double logarithms. We show below
that all final-state collinear singularities cancel between
real and virtual contributions, and for this reason only
the initial-state pieces (with i = 1, 2) must be kept in (6).
The cancellation for the initial-state terms is spoiled by
the complex Glauber phases in V G, also referred to as
Coulomb phases [2]. These arise whenever soft partons
are exchanged between two final-state legs or two initial-
state legs. Using color conservation,

Pm
i=1 Hm T a

i = 0,
the phase terms can be rewritten in the form of V G,
which makes it obvious that they are only relevant for
processes involving (at least) two colored partons in the
initial state.

Three properties of the di↵erent components of the
anomalous dimension greatly simplify our calculations.
Color coherence, the fact that the sum of the soft emis-

sions o↵ two collinear partons has the same e↵ect as a
single soft emission o↵ the parent parton, implies that

Hm �c � = Hm ��c , (10)

where we have defined �c =
P2

i=1(R
c
i+V c

i ) and Hm � ⌘
Hm (Rm + Vm). Next, the cyclicity of the trace ensures
that

hHm �c ⌦ 1i = 0 ,
⌦
Hm V G ⌦ 1

↵
= 0 .

(11)

The first of these relations is a consequence of collinear
safety: the singularity associated with a collinear real
emission cancels against the one in the associated virtual
correction. It is trivial to verify this, because

hHm (Rc
i + V c

i ) ⌦ 1i / hT a
i Hm T a

i � Ci Hmi = 0 .
(12)

The three properties hold for an arbitrary hard function
Hm, which can be obtained from the tree-level hard func-
tion after applying the one-loop anomalous dimension
several times.

We extract the leading contributions to (3) by consid-
ering products of �c, � and V G, only the first of which
gives rise to double logarithms. In the absence of V G,
we could use relation (10) to move all occurrences of �c

to the last step, where they give a vanishing contribution
due to (11). (Even in the presence of V G this can still be
done for all final-state partons, and for this reason we did
not include terms with i 6= 1, 2 in the definition of �c.)
To get the SLLs, we thus need two insertions of V G. A
single insertion gives zero, since the cross section is real.
Due to the two properties in (11) we also need one power
of � in the last step of the evolution. Therefore, the SLLs
at (3 + n)th order in perturbation theory are associated
with color traces of the form

Crn =
⌦
H4 (�c)r V G (�c)n�r V G � ⌦ 1

↵
, (13)

where 0  r  n. This explains why the SLLs first
appear at four-loop order. However, the three-loop term
(n = 0) originates from the same color structures and is
numerically significant, even though it only involves the
imaginary part ⇡ = | ln(�1)| of the large logarithm.

To get the corresponding contribution to the partonic
cross section, we must combine the color traces Crn with
the associated ordered integrals in (3). Each factor of �c

is multiplied by a logarithm of µ, see (6), which produces
a double logarithm upon integration. Neglecting the run-
ning of the coupling ↵s, setting µ2

h = ŝ and evaluating
the integrals, we find with L = ln(

p
ŝ/µs)

�̂SLL
n =

⇣↵s

4⇡

⌘n+3
L2n+3 (�4)n n!

(2n + 3)!

nX

r=0

(2r)!

4r (r!)2
Crn ,

(14)
which makes it explicit that starting from four-loop order
two logarithms per loop arise.



The SLLs arise from the terms with the highest number of insertions of     


Under the color trace these insertions are non-zero only if they come in 
conjunction with (at least) two insertions of the Coulomb phase        and one 
insertion of     . The relevant color traces are:


For initial-state particles transforming in the fundamental representation of 
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which enters the anomalous dimension multiplied by ln(µ2
/ŝ), where

p
ŝ = Q is the partonic center-

of-mass energy. When inserted into (8) this gives rise to double logarithms, which are the source of the
SLLs. All final-state collinear singularities cancel between real and virtual contributions, and for this
reason only the initial-state pieces (with i = 1, 2) must be kept. The cancellation for the initial-state
terms is spoiled by the complex Coulomb phases in (3), which are contained in [17]

V G = �8i⇡ (T1,L · T2,L � T1,R · T2,R) . (13)

Color conservation implies that these phases are only relevant for processes involving (at least) two
colored partons in the initial state. The color generators Ti,L act on the amplitude and hence multiply
the hard functions Hm from the left, while the generators Tj,R act on the conjugate amplitude and
stand on the right of Hm. The color matrices in the virtual part act on the color indices of the m

partons, Ti · Tj =
P

a
T a

i
T a

j
, and Ti · Ti = Ci 1 is the quadratic Casimir operator of parton i. The

color matrices in the real-emission terms Rm and in the second term in (12) are di↵erent. They take
an amplitude with m partons and map it to an amplitude with (m + 1) partons. Explicitly, we have
Hm Ti,L � Tj,R = T a

i
Hm T ã

j
, where the color indices a and ã refer to the emitted gluon. We use the

symbol � to indicate the presence of the additional color space of the emitted parton. Subsequent
applications of the anomalous-dimension matrix can act on these indices.

Collinear safely, the fact that the singularities associated with real and virtual collinear emissions
cancel against each other, ensures that under the color trace in (8) the operator �c vanishes whenever
it stands left to the 1. Combined with the fact that the commutator [�c

,�] vanishes under the trace
in (8), this implies that Sudakov double logarithms arise only in the presence of the Coulomb phases
V G. It follows that for a given 2 ! 2 scattering process the SLL at (3 + n)th order in perturbation
theory is associated with color traces of the form

Crn =
⌦
H4 (�c)r V G (�c)n�r V G �⌦ 1

↵
, (14)

where 0  r  n. Each insertion of �c gives rise to a double logarithm. This explains why the SLLs
first appear at four-loop order. However, the three-loop term (n = 0) originates from the same color
structures and is numerically significant, even though it only involves the imaginary part ⇡ = | ln(�1)|
of the large logarithm. Neglecting the running of the coupling ↵s, setting µh = Q =

p
ŝ and µs = Q0,

and evaluating the integrals over µ arising in the Taylor expansion of the matrix exponential in (8),
we find for the contribution of SLLs to the cross section
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where L = ln(Q/Q0). Starting from four-loop order two large logarithms per loop arise.
For the simplest case of quark-initiated 2 ! 2 scattering, we have succeeded to evaluate the color

traces Crn in closed form in terms of only three non-trivial color structures [50]. The result reads
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where �i = 1 for an initial-state antiquark and �i = �1 for an initial-state quark. The sum in the
first term runs over the final-state partons. The structure H4 is normalized such that hH4i = 1. All
information about the phase-space restrictions is contained in the angular integrals
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Collinear safely, the fact that the singularities associated with real and virtual collinear emissions
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it stands left to the 1. Combined with the fact that the commutator [�c

,�] vanishes under the trace
in (8), this implies that Sudakov double logarithms arise only in the presence of the Coulomb phases
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where 0  r  n. Each insertion of �c gives rise to a double logarithm. This explains why the SLLs
first appear at four-loop order. However, the three-loop term (n = 0) originates from the same color
structures and is numerically significant, even though it only involves the imaginary part ⇡ = | ln(�1)|
of the large logarithm. Neglecting the running of the coupling ↵s, setting µh = Q =
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ŝ and µs = Q0,

and evaluating the integrals over µ arising in the Taylor expansion of the matrix exponential in (8),
we find for the contribution of SLLs to the cross section
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where L = ln(Q/Q0). Starting from four-loop order two large logarithms per loop arise.
For the simplest case of quark-initiated 2 ! 2 scattering, we have succeeded to evaluate the color

traces Crn in closed form in terms of only three non-trivial color structures [50]. The result reads
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where �i = 1 for an initial-state antiquark and �i = �1 for an initial-state quark. The sum in the
first term runs over the final-state partons. The structure H4 is normalized such that hH4i = 1. All
information about the phase-space restrictions is contained in the angular integrals
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Figure 1: Action of the operator the real part Rm and the virtual piece Vm

of the anomalous dimension on the hard function Hm. The sums run over
all pairs of unordered indices i, j = 1 . . . m. Due to the emitted gluon (blue),
the product HmRm defines a hard function with m + 1 external legs, while
the virtual correction (red) HmVm has m legs.
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Figure 2: Action of the imaginary part VI (red dotted line) and the collinear
real-emission piece RC on the hard function. After the simplifications dis-
cussed in the text, these parts only involve legs 1 and 2. The real correc-
tions HmRC involve one additional hard gluon (dashed blue line) which is
collinear to one of the incoming legs.
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We use the symbol � to indicate the presence of the ad-
ditional color space of the emitted parton. Subsequent
applications of the anomalous-dimension matrix can act
on these indices. In the simplest case of a single cut prop-
agator as in Figure 1, the indices are contracted with �ãa.
On the other hand, if an additional gluon with group in-
dex b is attached to the emitted parton, the indices get
contracted with (�if bãa).

The operators Vm and Rm encode soft singularities
arising when a virtual or real soft parton is exchanged
between two di↵erent legs of the hard function. The
squared amplitude for the exchange is a product of the
eikonal factors for each leg, and the notation (ij) on
the sums in (6) indicates a pair of unordered indices
i, j = 1, . . . , m. We use a bar to indicate that the
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that all final-state collinear singularities cancel between
real and virtual contributions, and for this reason only
the initial-state pieces (with i = 1, 2) must be kept in (6).
The cancellation for the initial-state terms is spoiled by
the complex Glauber phases in V G, also referred to as
Coulomb phases [2]. These arise whenever soft partons
are exchanged between two final-state legs or two initial-
state legs. Using color conservation,

Pm
i=1 Hm T a

i = 0,
the phase terms can be rewritten in the form of V G,
which makes it obvious that they are only relevant for
processes involving (at least) two colored partons in the
initial state.

Three properties of the di↵erent components of the
anomalous dimension greatly simplify our calculations.
Color coherence, the fact that the sum of the soft emis-

sions o↵ two collinear partons has the same e↵ect as a
single soft emission o↵ the parent parton, implies that

Hm �c � = Hm ��c , (10)

where we have defined �c =
P2

i=1(R
c
i+V c

i ) and Hm � ⌘
Hm (Rm + Vm). Next, the cyclicity of the trace ensures
that

hHm �c ⌦ 1i = 0 ,
⌦
Hm V G ⌦ 1

↵
= 0 .

(11)

The first of these relations is a consequence of collinear
safety: the singularity associated with a collinear real
emission cancels against the one in the associated virtual
correction. It is trivial to verify this, because

hHm (Rc
i + V c

i ) ⌦ 1i / hT a
i Hm T a

i � Ci Hmi = 0 .
(12)

The three properties hold for an arbitrary hard function
Hm, which can be obtained from the tree-level hard func-
tion after applying the one-loop anomalous dimension
several times.

We extract the leading contributions to (3) by consid-
ering products of �c, � and V G, only the first of which
gives rise to double logarithms. In the absence of V G,
we could use relation (10) to move all occurrences of �c

to the last step, where they give a vanishing contribution
due to (11). (Even in the presence of V G this can still be
done for all final-state partons, and for this reason we did
not include terms with i 6= 1, 2 in the definition of �c.)
To get the SLLs, we thus need two insertions of V G. A
single insertion gives zero, since the cross section is real.
Due to the two properties in (11) we also need one power
of � in the last step of the evolution. Therefore, the SLLs
at (3 + n)th order in perturbation theory are associated
with color traces of the form

Crn =
⌦
H4 (�c)r V G (�c)n�r V G � ⌦ 1

↵
, (13)

where 0  r  n. This explains why the SLLs first
appear at four-loop order. However, the three-loop term
(n = 0) originates from the same color structures and is
numerically significant, even though it only involves the
imaginary part ⇡ = | ln(�1)| of the large logarithm.

To get the corresponding contribution to the partonic
cross section, we must combine the color traces Crn with
the associated ordered integrals in (3). Each factor of �c

is multiplied by a logarithm of µ, see (6), which produces
a double logarithm upon integration. Neglecting the run-
ning of the coupling ↵s, setting µ2

h = ŝ and evaluating
the integrals, we find with L = ln(

p
ŝ/µs)

�̂SLL
n =

⇣↵s

4⇡

⌘n+3
L2n+3 (�4)n n!

(2n + 3)!

nX

r=0

(2r)!

4r (r!)2
Crn ,

(14)
which makes it explicit that starting from four-loop order
two logarithms per loop arise.

4

The relations (11) imply that the color traces Crn can
be simplified by working out the commutators [V G,� ]
and [�c, [V G,� ]]. Under the trace, we find that both
commutators evaluate to the same structure apart from
a factor (4Nc). We thus obtain

Crn = �64⇡ (4Nc)
n�r fabc

X

j>2

⌦
H4 (�c)r V GT a

1 T b
2 T c

j

↵

⇥
Z

d⌦(nk)

4⇡

⇣
W

k
1j � W

k
2j

⌘
⇥veto(nk) . (15)

The sum over j contains the final-state partons of the
Born process and the collinear gluons emitted from the r
remaining insertions of �c, but not the initial-state par-
tons 1 and 2. The contributions where j refers to one
of the collinear gluons emitted from the first (n � r) in-
sertions of �c in (13) vanish. The gluon with label k
originates from the insertion of � and must be attached
to one initial-state and one final-state parton. The con-
straint ⇥veto(nk) = 1 � ⇥hard(nk) restricts the emission
to the veto region and arises from the incomplete cancel-
lation of real and virtual terms in �. Since the direction
nk in (15) is in the veto region, it cannot be collinear
to the directions n1, n2 or nj . As a consequence, the
collinear subtraction terms in (9) vanish, and one can

replace W
k
ij ! W k

ij in (15).
All information about the phase-space restrictions on

the direction of parton k are contained in the angular
integrals

Jj =

Z
d⌦(nk)

4⇡

�
W k

1j � W k
2j

�
⇥veto(nk) . (16)

The parton j can either move along the directions n1

and n2, when it is attached to one of the collinear gluons
emitted by the insertions of Rc

i , or it is one of the final-
state partons. Since W k

ii vanishes we have J1 = �J2.
There are thus (l + 1) independent kinematic structures
for a 2 ! l jet process. For the gap between jets case, we
find that Jj = +�Y if the rapidities of particles j and 1
have opposite signs, and Jj = ��Y otherwise.

A more complicated structure arises when one com-
mutes the remaining insertion of V G in (15) all the way
to the right. This leads to an expression involving anti-
commutators of color generators, which in general cannot
be simplified using the Lie algebra of SU(Nc). Here we
consider the important special case where particles 1 and
2 transform in the fundamental representation. We can
then use the relation

{T a
i , T b

i } =
1

Nc
�ab1 + �i dabc T c

i ; i = 1, 2 , (17)

where the color-space formalism implies that �i = 1 for
an initial-state anti-quark and �i = �1 for an initial-
state quark. In this case a closed expression for the color
traces Crn can be obtained, which involves only three

non-trivial color structures:

Crn = 28�r⇡2 (4Nc)
n

⇢ X

j>2

Jj

⌦
H4

⇥
(T2 � T1) · Tj

+ 2r�1Nc (�1 � �2) dabc T a
1 T b

2 T c
j

⇤↵
(18)

+ 2 (1 � �r0) J2

⌦
H4

⇥
CF + (2r � 1) T1 · T2

⇤↵�
.

The generalization of this result to the case of arbitrary
representations involves a significantly larger number of
color structures and will be discussed elsewhere [20].

As a first application of the general result (18) we con-
sider quark-quark scattering. In this case the tree-level
hard function has two possible color structures, octet or
singlet, corresponding to gluon or photon exchange be-
tween the quarks. For the two cases, we get

C(O)
rn = �̂B 28�r⇡2 (4Nc)

n

CFJ43

+
J2

Nc

�
N2

c � 2r+1 + 1
�
(1 � �r0)

�
, (19)

C(S)
rn = �̂B 28�r⇡2 (4Nc)

n CF

⇥
� J43 + 2J2(1 � �r0)

⇤
,

with J43 = J4 � J3, and �̂B = hH4i is the Born-level
partonic cross section. Assuming forward scattering as in
[2], the angular integrals evaluate to J2 = J43/2 = �Y .
Using these expressions in (14) and setting n = 1, we
recover the results of [2]. Repeating the calculation for
n = 2 we confirm the findings of [7]. As a further check of
(18), we have written a computer code based on Color-
Math [15] to directly evaluate the color structures Crn

for fixed values of r and n. Using this code, we have
checked the general formula for qq ! qq, qq̄ ! qq̄ and
qq̄ ! gg scattering up to eight-loop order.

The dependence of Crn in (18) on n and r is powerlike,
and it is possible to perform the sum over the infinite
tower of SLLs in closed form:

��̂ =
1X

n=0

�̂SLL
n = �̂B

⇣↵s

4⇡

⌘3
L3f(w) , (20)

where w = Nc↵s
⇡ L2 encodes the double-logarithmic de-

pendence. The function f(w) can be expressed in terms
of hypergeometric and related functions [20]. For the
singlet case, we get for forward scattering

��̂(S) = ��̂B
4CF

3⇡
↵3
s L3�Y 2F2

�
1, 1; 2, 5

2 ; �w
�
. (21)

While the explicit form is not particularly illuminating, it
is interesting to study the asymptotic behavior for w !
1. Ordinary Sudakov double logarithms are resummed
to the form e�cw and are thus strongly suppressed in this
limit, while the function f(w) ⇠ (ln w)/w falls o↵ much
slower.

 for ,  for σ = 1 q σ = − 1 q̄

M. Neubert                                                                                          Resummation of superleading logarithms                                                                                                       19



General result involving only three color traces:


All angular information is contained in:


From this formula we have rederived all that is known about SLLs!       
But it contains infinitely much more information…

Superleading logarithms

Neubert Part B2 EFT2

define � = Vm + Rm. The collinear singularities in the soft anomalous dimension are encoded in the
quantity

�c =
X

i=1,2

4
⇥
Ci 1� Ti,L � Ti,R �(nm+1 � ni)

⇤
, (12)

which enters the anomalous dimension multiplied by ln(µ2
/ŝ), where

p
ŝ = Q is the partonic center-

of-mass energy. When inserted into (8) this gives rise to double logarithms, which are the source of the
SLLs. All final-state collinear singularities cancel between real and virtual contributions, and for this
reason only the initial-state pieces (with i = 1, 2) must be kept. The cancellation for the initial-state
terms is spoiled by the complex Coulomb phases in (3), which are contained in [17]

V G = �8i⇡ (T1,L · T2,L � T1,R · T2,R) . (13)

Color conservation implies that these phases are only relevant for processes involving (at least) two
colored partons in the initial state. The color generators Ti,L act on the amplitude and hence multiply
the hard functions Hm from the left, while the generators Tj,R act on the conjugate amplitude and
stand on the right of Hm. The color matrices in the virtual part act on the color indices of the m

partons, Ti · Tj =
P

a
T a

i
T a

j
, and Ti · Ti = Ci 1 is the quadratic Casimir operator of parton i. The

color matrices in the real-emission terms Rm and in the second term in (12) are di↵erent. They take
an amplitude with m partons and map it to an amplitude with (m + 1) partons. Explicitly, we have
Hm Ti,L � Tj,R = T a

i
Hm T ã

j
, where the color indices a and ã refer to the emitted gluon. We use the

symbol � to indicate the presence of the additional color space of the emitted parton. Subsequent
applications of the anomalous-dimension matrix can act on these indices.

Collinear safely, the fact that the singularities associated with real and virtual collinear emissions
cancel against each other, ensures that under the color trace in (8) the operator �c vanishes whenever
it stands left to the 1. Combined with the fact that the commutator [�c

,�] vanishes under the trace
in (8), this implies that Sudakov double logarithms arise only in the presence of the Coulomb phases
V G. It follows that for a given 2 ! 2 scattering process the SLL at (3 + n)th order in perturbation
theory is associated with color traces of the form

Crn =
⌦
H4 (�c)r V G (�c)n�r V G �⌦ 1

↵
, (14)

where 0  r  n. Each insertion of �c gives rise to a double logarithm. This explains why the SLLs
first appear at four-loop order. However, the three-loop term (n = 0) originates from the same color
structures and is numerically significant, even though it only involves the imaginary part ⇡ = | ln(�1)|
of the large logarithm. Neglecting the running of the coupling ↵s, setting µh = Q =

p
ŝ and µs = Q0,

and evaluating the integrals over µ arising in the Taylor expansion of the matrix exponential in (8),
we find for the contribution of SLLs to the cross section

�SLL = �Born

1X

n=0

⇣
↵s

4⇡

⌘
n+3

L
2n+3 (�4)n n!

(2n + 3)!

nX

r=0

(2r)!

4r (r!)2
Crn , (15)

where L = ln(Q/Q0). Starting from four-loop order two large logarithms per loop arise.
For the simplest case of quark-initiated 2 ! 2 scattering, we have succeeded to evaluate the color

traces Crn in closed form in terms of only three non-trivial color structures [50]. The result reads

Crn = 28�r
⇡
2 (4Nc)

n

⇢ X

j=3,4

Jj

⌦
H4

⇥
(T2 � T1) · Tj + 2r�1

Nc (�1 � �2) dabc T
a

1 T b

2 T
c

j

⇤↵

+ 2 (1 � �r0) J2
⌦
H4

⇥
CF + (2r � 1)T1 · T2

⇤↵�
,

(16)

where �i = 1 for an initial-state antiquark and �i = �1 for an initial-state quark. The sum in the
first term runs over the final-state partons. The structure H4 is normalized such that hH4i = 1. All
information about the phase-space restrictions is contained in the angular integrals

Jj =

Z
d⌦(nk)

4⇡

⇣
W

k

1j � W
k

2j

⌘
⇥veto(nk) ; with W

k

ij =
ni · nj

ni · nk nj · nk

, (17)
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Neubert Part B2 EFT2

define � = Vm + Rm. The collinear singularities in the soft anomalous dimension are encoded in the
quantity

�c =
X

i=1,2

4
⇥
Ci 1� Ti,L � Ti,R �(nm+1 � ni)

⇤
, (12)

which enters the anomalous dimension multiplied by ln(µ2
/ŝ), where

p
ŝ = Q is the partonic center-

of-mass energy. When inserted into (8) this gives rise to double logarithms, which are the source of the
SLLs. All final-state collinear singularities cancel between real and virtual contributions, and for this
reason only the initial-state pieces (with i = 1, 2) must be kept. The cancellation for the initial-state
terms is spoiled by the complex Coulomb phases in (3), which are contained in [17]

V G = �8i⇡ (T1,L · T2,L � T1,R · T2,R) . (13)

Color conservation implies that these phases are only relevant for processes involving (at least) two
colored partons in the initial state. The color generators Ti,L act on the amplitude and hence multiply
the hard functions Hm from the left, while the generators Tj,R act on the conjugate amplitude and
stand on the right of Hm. The color matrices in the virtual part act on the color indices of the m

partons, Ti · Tj =
P

a
T a

i
T a

j
, and Ti · Ti = Ci 1 is the quadratic Casimir operator of parton i. The

color matrices in the real-emission terms Rm and in the second term in (12) are di↵erent. They take
an amplitude with m partons and map it to an amplitude with (m + 1) partons. Explicitly, we have
Hm Ti,L � Tj,R = T a

i
Hm T ã

j
, where the color indices a and ã refer to the emitted gluon. We use the

symbol � to indicate the presence of the additional color space of the emitted parton. Subsequent
applications of the anomalous-dimension matrix can act on these indices.

Collinear safely, the fact that the singularities associated with real and virtual collinear emissions
cancel against each other, ensures that under the color trace in (8) the operator �c vanishes whenever
it stands left to the 1. Combined with the fact that the commutator [�c

,�] vanishes under the trace
in (8), this implies that Sudakov double logarithms arise only in the presence of the Coulomb phases
V G. It follows that for a given 2 ! 2 scattering process the SLL at (3 + n)th order in perturbation
theory is associated with color traces of the form

Crn =
⌦
H4 (�c)r V G (�c)n�r V G �⌦ 1

↵
, (14)

where 0  r  n. Each insertion of �c gives rise to a double logarithm. This explains why the SLLs
first appear at four-loop order. However, the three-loop term (n = 0) originates from the same color
structures and is numerically significant, even though it only involves the imaginary part ⇡ = | ln(�1)|
of the large logarithm. Neglecting the running of the coupling ↵s, setting µh = Q =

p
ŝ and µs = Q0,

and evaluating the integrals over µ arising in the Taylor expansion of the matrix exponential in (8),
we find for the contribution of SLLs to the cross section

�SLL = �Born

1X

n=0

⇣
↵s

4⇡

⌘
n+3

L
2n+3 (�4)n n!

(2n + 3)!

nX

r=0

(2r)!

4r (r!)2
Crn , (15)

where L = ln(Q/Q0). Starting from four-loop order two large logarithms per loop arise.
For the simplest case of quark-initiated 2 ! 2 scattering, we have succeeded to evaluate the color

traces Crn in closed form in terms of only three non-trivial color structures [50]. The result reads

Crn = 28�r
⇡
2 (4Nc)

n

⇢ X

j=3,4

Jj

⌦
H4

⇥
(T2 � T1) · Tj + 2r�1

Nc (�1 � �2) dabc T
a

1 T b

2 T
c

j

⇤↵

+ 2 (1 � �r0) J2
⌦
H4

⇥
CF + (2r � 1)T1 · T2

⇤↵�
,

(16)

where �i = 1 for an initial-state antiquark and �i = �1 for an initial-state quark. The sum in the
first term runs over the final-state partons. The structure H4 is normalized such that hH4i = 1. All
information about the phase-space restrictions is contained in the angular integrals

Jj =

Z
d⌦(nk)

4⇡

⇣
W

k

1j � W
k

2j

⌘
⇥veto(nk) ; with W

k

ij =
ni · nj

ni · nk nj · nk

, (17)
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The contribution of SLLs to a cross section is given by: 

Superleading logarithms

Neubert Part B2 EFT2

define � = Vm + Rm. The collinear singularities in the soft anomalous dimension are encoded in the
quantity

�c =
X

i=1,2

4
⇥
Ci 1� Ti,L � Ti,R �(nm+1 � ni)

⇤
, (12)

which enters the anomalous dimension multiplied by ln(µ2
/ŝ), where

p
ŝ = Q is the partonic center-

of-mass energy. When inserted into (8) this gives rise to double logarithms, which are the source of the
SLLs. All final-state collinear singularities cancel between real and virtual contributions, and for this
reason only the initial-state pieces (with i = 1, 2) must be kept. The cancellation for the initial-state
terms is spoiled by the complex Coulomb phases in (3), which are contained in [17]

V G = �8i⇡ (T1,L · T2,L � T1,R · T2,R) . (13)

Color conservation implies that these phases are only relevant for processes involving (at least) two
colored partons in the initial state. The color generators Ti,L act on the amplitude and hence multiply
the hard functions Hm from the left, while the generators Tj,R act on the conjugate amplitude and
stand on the right of Hm. The color matrices in the virtual part act on the color indices of the m

partons, Ti · Tj =
P

a
T a

i
T a

j
, and Ti · Ti = Ci 1 is the quadratic Casimir operator of parton i. The

color matrices in the real-emission terms Rm and in the second term in (12) are di↵erent. They take
an amplitude with m partons and map it to an amplitude with (m + 1) partons. Explicitly, we have
Hm Ti,L � Tj,R = T a

i
Hm T ã

j
, where the color indices a and ã refer to the emitted gluon. We use the

symbol � to indicate the presence of the additional color space of the emitted parton. Subsequent
applications of the anomalous-dimension matrix can act on these indices.

Collinear safely, the fact that the singularities associated with real and virtual collinear emissions
cancel against each other, ensures that under the color trace in (8) the operator �c vanishes whenever
it stands left to the 1. Combined with the fact that the commutator [�c

,�] vanishes under the trace
in (8), this implies that Sudakov double logarithms arise only in the presence of the Coulomb phases
V G. It follows that for a given 2 ! 2 scattering process the SLL at (3 + n)th order in perturbation
theory is associated with color traces of the form

Crn =
⌦
H4 (�c)r V G (�c)n�r V G �⌦ 1

↵
, (14)

where 0  r  n. Each insertion of �c gives rise to a double logarithm. This explains why the SLLs
first appear at four-loop order. However, the three-loop term (n = 0) originates from the same color
structures and is numerically significant, even though it only involves the imaginary part ⇡ = | ln(�1)|
of the large logarithm. Neglecting the running of the coupling ↵s, setting µh = Q =

p
ŝ and µs = Q0,

and evaluating the integrals over µ arising in the Taylor expansion of the matrix exponential in (8),
we find for the contribution of SLLs to the cross section

�SLL = �Born

1X

n=0

⇣
↵s

4⇡

⌘
n+3

L
2n+3 (�4)n n!

(2n + 3)!

nX

r=0

(2r)!

4r (r!)2
Crn , (15)

where L = ln(Q/Q0). Starting from four-loop order two large logarithms per loop arise.
For the simplest case of quark-initiated 2 ! 2 scattering, we have succeeded to evaluate the color

traces Crn in closed form in terms of only three non-trivial color structures [50]. The result reads

Crn = 28�r
⇡
2 (4Nc)
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⇢ X

j=3,4

Jj

⌦
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⇥
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CF + (2r � 1)T1 · T2
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,

(16)

where �i = 1 for an initial-state antiquark and �i = �1 for an initial-state quark. The sum in the
first term runs over the final-state partons. The structure H4 is normalized such that hH4i = 1. All
information about the phase-space restrictions is contained in the angular integrals
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L = ln(Q/Q0)

SLLs start at 4-loop order, but n=0 term is of the same origin
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The contribution of SLLs to a cross section is given by:


Example:  scatteringqq → qq

Superleading logarithms
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FIG. 2. Super-leading logarithms in quark-quark scattering

summed up to four-loop (red), five-loop (blue) and infinite

order (black). The solid and dashed lines refer to the color

octet and singlet channel, respectively.

In Figure 2, we evaluate the partonic qq ! qq scatter-
ing cross sections for the octet and singlet channels. In
order to only show the e↵ect of SLLs, we plot the partial
sums

PN
n=1 �̂SLL

n for di↵erent values of N . This omits
the three-loop contribution from ��̂, but note that also
this term is due to complex phases not captured in con-
ventional parton showers, see e.g. [21]. Due to the high
power of ↵s, the SLLs are only significant if the loga-
rithms are sizeable, and their e↵ect is quite sensitive to
the choice of scale in ↵s(µ). In the plot we set µ = Q0.

So far we have discussed the case of 2 ! 2 scatter-
ing, but an analogous relation with H4 replaced by H2+l

holds for a (anti-)quark-initiated 2 ! l jet process with
l � 0. In particular, we find that SLLs also arise for
processes with less than two final-state jets, a fact that
has not been appreciated in the literature. For 2 ! 0
processes such as qq̄ ! V , where V = �, Z0, W± is a col-
orless boson, the sum over j in (18) is absent, and color
conservation implies that

Crn = ��̂B 29�r⇡2CF (4Nc)
n(2r � 2)(1 � �r0) J2 , (22)

which vanishes for n = 1. The SLLs therefore start at
5-loop order, one order higher than in the general case.
For 2 ! 1 scattering processes such as qq̄ ! V + jet, the
only term in the sum has j = 3, and one can use color
conservation to obtain

Crn = �̂B 210�r⇡2 (4Nc)
n�1 �

N2
c + 2r � 2

�
(1 � �r0) J2 .

(23)
These contributions start at four-loop order. In the liter-
ature [2, 7], it has been stated that SLLs only arise when
there are at least two colored partons in the final state,
but as we have shown the emission into the gap originat-
ing from � supplies the necessary additional parton for
the 2 ! 1 case. For 2 ! 0 scattering the second final-
state parton arises from a collinear emission in �c, which
explains why the e↵ect is delayed by one order.

In this Letter we have solved the outstanding open
problem of resumming SLLs for a large class of non-global
observables at hadron colliders, thereby accounting for
the leading logarithmic corrections to such processes for
the first time. Our RG-based approach provides a trans-
parent understanding of the underlying physics, and our
analytical results should be useful in the ongoing e↵ort to
generalize parton showers to finite Nc, see e.g. [22–25]. It
will be interesting to perform a detailed analysis of SLLs
for an observable such as the gap fraction, including the
full set of partonic channels and accounting for running-
coupling e↵ects. Our findings indicate that SLLs could
have an appreciable e↵ect on precision observables, in
particular in Higgs production, where higher-order e↵ects
are generally large. Indeed, we find that the perturba-
tive coe�cients in gluon-induced 2 ! 0 processes are an
order of magnitude larger than in the quark case studied
here [20].
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define � = Vm + Rm. The collinear singularities in the soft anomalous dimension are encoded in the
quantity

�c =
X

i=1,2

4
⇥
Ci 1� Ti,L � Ti,R �(nm+1 � ni)

⇤
, (12)

which enters the anomalous dimension multiplied by ln(µ2
/ŝ), where

p
ŝ = Q is the partonic center-

of-mass energy. When inserted into (8) this gives rise to double logarithms, which are the source of the
SLLs. All final-state collinear singularities cancel between real and virtual contributions, and for this
reason only the initial-state pieces (with i = 1, 2) must be kept. The cancellation for the initial-state
terms is spoiled by the complex Coulomb phases in (3), which are contained in [17]

V G = �8i⇡ (T1,L · T2,L � T1,R · T2,R) . (13)

Color conservation implies that these phases are only relevant for processes involving (at least) two
colored partons in the initial state. The color generators Ti,L act on the amplitude and hence multiply
the hard functions Hm from the left, while the generators Tj,R act on the conjugate amplitude and
stand on the right of Hm. The color matrices in the virtual part act on the color indices of the m

partons, Ti · Tj =
P

a
T a

i
T a

j
, and Ti · Ti = Ci 1 is the quadratic Casimir operator of parton i. The

color matrices in the real-emission terms Rm and in the second term in (12) are di↵erent. They take
an amplitude with m partons and map it to an amplitude with (m + 1) partons. Explicitly, we have
Hm Ti,L � Tj,R = T a

i
Hm T ã

j
, where the color indices a and ã refer to the emitted gluon. We use the

symbol � to indicate the presence of the additional color space of the emitted parton. Subsequent
applications of the anomalous-dimension matrix can act on these indices.

Collinear safely, the fact that the singularities associated with real and virtual collinear emissions
cancel against each other, ensures that under the color trace in (8) the operator �c vanishes whenever
it stands left to the 1. Combined with the fact that the commutator [�c

,�] vanishes under the trace
in (8), this implies that Sudakov double logarithms arise only in the presence of the Coulomb phases
V G. It follows that for a given 2 ! 2 scattering process the SLL at (3 + n)th order in perturbation
theory is associated with color traces of the form

Crn =
⌦
H4 (�c)r V G (�c)n�r V G �⌦ 1

↵
, (14)

where 0  r  n. Each insertion of �c gives rise to a double logarithm. This explains why the SLLs
first appear at four-loop order. However, the three-loop term (n = 0) originates from the same color
structures and is numerically significant, even though it only involves the imaginary part ⇡ = | ln(�1)|
of the large logarithm. Neglecting the running of the coupling ↵s, setting µh = Q =

p
ŝ and µs = Q0,

and evaluating the integrals over µ arising in the Taylor expansion of the matrix exponential in (8),
we find for the contribution of SLLs to the cross section

�SLL = �Born

1X

n=0

⇣
↵s

4⇡

⌘
n+3

L
2n+3 (�4)n n!

(2n + 3)!

nX

r=0

(2r)!

4r (r!)2
Crn , (15)

where L = ln(Q/Q0). Starting from four-loop order two large logarithms per loop arise.
For the simplest case of quark-initiated 2 ! 2 scattering, we have succeeded to evaluate the color

traces Crn in closed form in terms of only three non-trivial color structures [50]. The result reads

Crn = 28�r
⇡
2 (4Nc)

n

⇢ X

j=3,4

Jj

⌦
H4

⇥
(T2 � T1) · Tj + 2r�1

Nc (�1 � �2) dabc T
a

1 T b

2 T
c

j

⇤↵

+ 2 (1 � �r0) J2
⌦
H4

⇥
CF + (2r � 1)T1 · T2

⇤↵�
,

(16)

where �i = 1 for an initial-state antiquark and �i = �1 for an initial-state quark. The sum in the
first term runs over the final-state partons. The structure H4 is normalized such that hH4i = 1. All
information about the phase-space restrictions is contained in the angular integrals

Jj =

Z
d⌦(nk)

4⇡

⇣
W

k

1j � W
k

2j

⌘
⇥veto(nk) ; with W

k

ij =
ni · nj

ni · nk nj · nk

, (17)
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NX

n=1

. . .
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The contribution of SLLs to a cross section is given by:


Simple, closed-form expression for the color-singlet channel:


For  we find:Q/Q0 → ∞

Superleading logarithms
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Figure 3: Super-leading logarithms in quark-quark scattering summed up to four-loop (red), five-loop (blue)
and infinite order (black). The solid and dashed lines refer to the color octet and singlet channel, respectively.
We use ↵s = ↵s(Q0).

where the function ⇥veto(nk) ensures that the direction nk is integrated over the veto region. The
result (16), which can be used to reproduce all known results about SLLs [17, 48, 49], goes beyond
the state-of-the-art in several important ways: First, it predicts the all-order structure of the infinite
series of SLLs, extending existing results not only by one order in perturbation theory, but by infinitely
many orders. Secondly, it can be generalized in a straightforward way from 2 ! 2 hard processes to
processes containing an arbitrary number of final-state jets. It follows, in particular, that SLLs also
exist for 2 ! 1 and 2 ! 0 processes, a fact that had not been appreciated before. Finally, by studying
the asymptotic behavior of the infinite series in (15), one finds that in the asymptotic limit Q/Q0 ! 1

the sum of the SLLs evaluates to functions which fall o↵ much slower than the sum of ordinary Sudakov
double logarithms.

As a concrete application, we have studied in [50] the case of qq ! qq scattering in the color-
singlet and color-octet channels. Considering the singlet case for concreteness, and assuming forward
scattering, in which case the angular integrals evaluate to J2 = 1

2 (J4 � J3) = �Y , where �Y is the
size of the veto region in rapidity. One finds that

�
(S)
SLL = ��Born

2↵sL

3⇡Nc

�Y

✓
1 �

1

N2
c

◆
w⇡w 2F2

�
1, 1; 2,

5
2 ;�w

�
, (18)

where w = Nc↵s
⇡

L
2 encodes the double-logarithmic dependence, and w⇡ = Nc↵s

⇡
⇡
2 is a “⇡

2-enhanced”
single-logarithmic term. For typical values Q = 500GeV and Q0 = 25GeV, and setting ↵s = ↵s(Q0),
both w and w⇡ are of O(1), and w⇡w 2F2

�
1, 1; 2,

5
2 ;�w

�
⇡ 1.4. Therefore, the numerical e↵ect of the

SLLs is of the same order as a logarithmically enhanced, 1/N
2
c -suppressed one-loop contribution to

the cross section. In Figure 3, we evaluate the partonic qq ! qq scattering cross sections for the octet
and singlet channels. In order to only show the e↵ect of SLLs, we plot the partial sums over the SLLs
from n = 1 to N for di↵erent values of N . This omits the three-loop contribution from n = 0, but
also this term is due to complex phases not captured in conventional parton showers, see e.g. [85].

A.1 Initial-state gluons and massive particles in the final state

Quark-initiated processes are relatively simple, because in the fundamental representation of SU(Nc)
arbitrary products of color generators can be expressed as linear combinations of the unit matrix and
the generators themselves:

{T a

i ,T b

i } =
1

Nc

�ab 1 + �i dabc T
c

i , (19)

where the color-space formalism implies that �i = 1 for an initial-state antiquark and �i = �1 for
an initial-state quark. It is of paramount importance for many important LHC processes (such as
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Figure 3: Super-leading logarithms in quark-quark scattering summed up to four-loop (red), five-loop (blue)
and infinite order (black). The solid and dashed lines refer to the color octet and singlet channel, respectively.
We use ↵s = ↵s(Q0).
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define � = Vm + Rm. The collinear singularities in the soft anomalous dimension are encoded in the
quantity

�c =
X

i=1,2

4
⇥
Ci 1� Ti,L � Ti,R �(nm+1 � ni)

⇤
, (12)

which enters the anomalous dimension multiplied by ln(µ2
/ŝ), where

p
ŝ = Q is the partonic center-

of-mass energy. When inserted into (8) this gives rise to double logarithms, which are the source of the
SLLs. All final-state collinear singularities cancel between real and virtual contributions, and for this
reason only the initial-state pieces (with i = 1, 2) must be kept. The cancellation for the initial-state
terms is spoiled by the complex Coulomb phases in (3), which are contained in [17]

V G = �8i⇡ (T1,L · T2,L � T1,R · T2,R) . (13)

Color conservation implies that these phases are only relevant for processes involving (at least) two
colored partons in the initial state. The color generators Ti,L act on the amplitude and hence multiply
the hard functions Hm from the left, while the generators Tj,R act on the conjugate amplitude and
stand on the right of Hm. The color matrices in the virtual part act on the color indices of the m

partons, Ti · Tj =
P

a
T a

i
T a

j
, and Ti · Ti = Ci 1 is the quadratic Casimir operator of parton i. The

color matrices in the real-emission terms Rm and in the second term in (12) are di↵erent. They take
an amplitude with m partons and map it to an amplitude with (m + 1) partons. Explicitly, we have
Hm Ti,L � Tj,R = T a

i
Hm T ã

j
, where the color indices a and ã refer to the emitted gluon. We use the

symbol � to indicate the presence of the additional color space of the emitted parton. Subsequent
applications of the anomalous-dimension matrix can act on these indices.

Collinear safely, the fact that the singularities associated with real and virtual collinear emissions
cancel against each other, ensures that under the color trace in (8) the operator �c vanishes whenever
it stands left to the 1. Combined with the fact that the commutator [�c

,�] vanishes under the trace
in (8), this implies that Sudakov double logarithms arise only in the presence of the Coulomb phases
V G. It follows that for a given 2 ! 2 scattering process the SLL at (3 + n)th order in perturbation
theory is associated with color traces of the form

Crn =
⌦
H4 (�c)r V G (�c)n�r V G �⌦ 1

↵
, (14)

where 0  r  n. Each insertion of �c gives rise to a double logarithm. This explains why the SLLs
first appear at four-loop order. However, the three-loop term (n = 0) originates from the same color
structures and is numerically significant, even though it only involves the imaginary part ⇡ = | ln(�1)|
of the large logarithm. Neglecting the running of the coupling ↵s, setting µh = Q =

p
ŝ and µs = Q0,

and evaluating the integrals over µ arising in the Taylor expansion of the matrix exponential in (8),
we find for the contribution of SLLs to the cross section

�SLL = �Born

1X

n=0

⇣
↵s

4⇡

⌘
n+3

L
2n+3 (�4)n n!

(2n + 3)!

nX

r=0

(2r)!

4r (r!)2
Crn , (15)

where L = ln(Q/Q0). Starting from four-loop order two large logarithms per loop arise.
For the simplest case of quark-initiated 2 ! 2 scattering, we have succeeded to evaluate the color

traces Crn in closed form in terms of only three non-trivial color structures [50]. The result reads

Crn = 28�r
⇡
2 (4Nc)

n

⇢ X

j=3,4

Jj

⌦
H4

⇥
(T2 � T1) · Tj + 2r�1

Nc (�1 � �2) dabc T
a

1 T b

2 T
c

j

⇤↵

+ 2 (1 � �r0) J2
⌦
H4

⇥
CF + (2r � 1)T1 · T2

⇤↵�
,

(16)

where �i = 1 for an initial-state antiquark and �i = �1 for an initial-state quark. The sum in the
first term runs over the final-state partons. The structure H4 is normalized such that hH4i = 1. All
information about the phase-space restrictions is contained in the angular integrals

Jj =

Z
d⌦(nk)

4⇡

⇣
W

k

1j � W
k

2j

⌘
⇥veto(nk) ; with W

k

ij =
ni · nj

ni · nk nj · nk

, (17)
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The contribution of SLLs to a cross section is given by:


Simple, closed-form expression for the color-singlet channel:


Even though it starts at 3-loop order, this corrections is numerically of the 
order of a typical one-loop correction → important for phenomenology!

Superleading logarithms
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Figure 3: Super-leading logarithms in quark-quark scattering summed up to four-loop (red), five-loop (blue)
and infinite order (black). The solid and dashed lines refer to the color octet and singlet channel, respectively.
We use ↵s = ↵s(Q0).

where the function ⇥veto(nk) ensures that the direction nk is integrated over the veto region. The
result (16), which can be used to reproduce all known results about SLLs [17, 48, 49], goes beyond
the state-of-the-art in several important ways: First, it predicts the all-order structure of the infinite
series of SLLs, extending existing results not only by one order in perturbation theory, but by infinitely
many orders. Secondly, it can be generalized in a straightforward way from 2 ! 2 hard processes to
processes containing an arbitrary number of final-state jets. It follows, in particular, that SLLs also
exist for 2 ! 1 and 2 ! 0 processes, a fact that had not been appreciated before. Finally, by studying
the asymptotic behavior of the infinite series in (15), one finds that in the asymptotic limit Q/Q0 ! 1

the sum of the SLLs evaluates to functions which fall o↵ much slower than the sum of ordinary Sudakov
double logarithms.

As a concrete application, we have studied in [50] the case of qq ! qq scattering in the color-
singlet and color-octet channels. Considering the singlet case for concreteness, and assuming forward
scattering, in which case the angular integrals evaluate to J2 = 1

2 (J4 � J3) = �Y , where �Y is the
size of the veto region in rapidity. One finds that

�
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where w = Nc↵s
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L
2 encodes the double-logarithmic dependence, and w⇡ = Nc↵s

⇡
⇡
2 is a “⇡

2-enhanced”
single-logarithmic term. For typical values Q = 500GeV and Q0 = 25GeV, and setting ↵s = ↵s(Q0),
both w and w⇡ are of O(1), and w⇡w 2F2
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5
2 ;�w

�
⇡ 1.4. Therefore, the numerical e↵ect of the

SLLs is of the same order as a logarithmically enhanced, 1/N
2
c -suppressed one-loop contribution to

the cross section. In Figure 3, we evaluate the partonic qq ! qq scattering cross sections for the octet
and singlet channels. In order to only show the e↵ect of SLLs, we plot the partial sums over the SLLs
from n = 1 to N for di↵erent values of N . This omits the three-loop contribution from n = 0, but
also this term is due to complex phases not captured in conventional parton showers, see e.g. [85].

A.1 Initial-state gluons and massive particles in the final state

Quark-initiated processes are relatively simple, because in the fundamental representation of SU(Nc)
arbitrary products of color generators can be expressed as linear combinations of the unit matrix and
the generators themselves:

{T a

i ,T b

i } =
1

Nc

�ab 1 + �i dabc T
c

i , (19)

where the color-space formalism implies that �i = 1 for an initial-state antiquark and �i = �1 for
an initial-state quark. It is of paramount importance for many important LHC processes (such as
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define � = Vm + Rm. The collinear singularities in the soft anomalous dimension are encoded in the
quantity

�c =
X

i=1,2

4
⇥
Ci 1� Ti,L � Ti,R �(nm+1 � ni)

⇤
, (12)

which enters the anomalous dimension multiplied by ln(µ2
/ŝ), where

p
ŝ = Q is the partonic center-

of-mass energy. When inserted into (8) this gives rise to double logarithms, which are the source of the
SLLs. All final-state collinear singularities cancel between real and virtual contributions, and for this
reason only the initial-state pieces (with i = 1, 2) must be kept. The cancellation for the initial-state
terms is spoiled by the complex Coulomb phases in (3), which are contained in [17]

V G = �8i⇡ (T1,L · T2,L � T1,R · T2,R) . (13)

Color conservation implies that these phases are only relevant for processes involving (at least) two
colored partons in the initial state. The color generators Ti,L act on the amplitude and hence multiply
the hard functions Hm from the left, while the generators Tj,R act on the conjugate amplitude and
stand on the right of Hm. The color matrices in the virtual part act on the color indices of the m

partons, Ti · Tj =
P

a
T a

i
T a

j
, and Ti · Ti = Ci 1 is the quadratic Casimir operator of parton i. The

color matrices in the real-emission terms Rm and in the second term in (12) are di↵erent. They take
an amplitude with m partons and map it to an amplitude with (m + 1) partons. Explicitly, we have
Hm Ti,L � Tj,R = T a

i
Hm T ã

j
, where the color indices a and ã refer to the emitted gluon. We use the

symbol � to indicate the presence of the additional color space of the emitted parton. Subsequent
applications of the anomalous-dimension matrix can act on these indices.

Collinear safely, the fact that the singularities associated with real and virtual collinear emissions
cancel against each other, ensures that under the color trace in (8) the operator �c vanishes whenever
it stands left to the 1. Combined with the fact that the commutator [�c

,�] vanishes under the trace
in (8), this implies that Sudakov double logarithms arise only in the presence of the Coulomb phases
V G. It follows that for a given 2 ! 2 scattering process the SLL at (3 + n)th order in perturbation
theory is associated with color traces of the form

Crn =
⌦
H4 (�c)r V G (�c)n�r V G �⌦ 1

↵
, (14)

where 0  r  n. Each insertion of �c gives rise to a double logarithm. This explains why the SLLs
first appear at four-loop order. However, the three-loop term (n = 0) originates from the same color
structures and is numerically significant, even though it only involves the imaginary part ⇡ = | ln(�1)|
of the large logarithm. Neglecting the running of the coupling ↵s, setting µh = Q =

p
ŝ and µs = Q0,

and evaluating the integrals over µ arising in the Taylor expansion of the matrix exponential in (8),
we find for the contribution of SLLs to the cross section
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where L = ln(Q/Q0). Starting from four-loop order two large logarithms per loop arise.
For the simplest case of quark-initiated 2 ! 2 scattering, we have succeeded to evaluate the color

traces Crn in closed form in terms of only three non-trivial color structures [50]. The result reads
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where �i = 1 for an initial-state antiquark and �i = �1 for an initial-state quark. The sum in the
first term runs over the final-state partons. The structure H4 is normalized such that hH4i = 1. All
information about the phase-space restrictions is contained in the angular integrals
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• While we have discussed  processes, our results holds for arbitrary 
 hard-scattering processes, including the cases where  —   

a fact that was not appreciated before


• SLLs also arise in  as well as in  or  with a 
central jet veto (starting at 5 loops, but with the same scaling as above)!


• They can thus play an important role for Higgs phenomenology at the LHC!

2 → 2
2 → n n = 0,1

qq → Z + j qq → Z gg → h

Other  processes2 → n
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Conclusions and outlook
• First factorization theorem for non-global observables at hadron colliders


• First all-order resummation for SLLs, extending existing results by infinitely 
many orders and to arbitrary processes (quark-initiated, for now …)


• Derived asymptotic behavior of SLLs, finding no Sudakov-like behavior


• Important to go beyond the leading SLLs and analyze the structure of the 
low-energy matrix elements        in detail


• SCET-based approach offers a path toward a complete theory of non-
global observables, including all logarithmically enhanced contributions


• Accurate calculation of these effects is of utmost importance!
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Jet cross sections at high-energy colliders exhibit intricate patterns of logarithmically enhanced

higher-order corrections. In particular, so-called non-global logarithms emerge from soft radiation

emitted o↵ energetic partons inside jets. While this is a single-logarithmic e↵ect at lepton colliders,

at hadron colliders phase factors in the amplitudes lead to double-logarithmic corrections starting

at four-loop order. This e↵ect was discovered a long time ago, but not much is known about the

higher-order behavior of these terms and their process dependence. We derive, for the first time,

the all-order structure of these “super-leading logarithms” for generic 2 ! l scattering processes at

hadron colliders and resum them in closed form.

If the radiation in a high-energy scattering process is
restricted by experimental cuts, higher-order terms in the
perturbative series are enhanced by large logarithms as-
sociated with soft and collinear emissions. The simple
structure of these emissions often makes it possible to
resum the logarithmic terms to all orders, either analyt-
ically or using parton-shower methods. For non-global
observables, such as exclusive jet cross sections in which
a veto on radiation is imposed only in certain angular
regions, even the leading logarithms have a complicated
structure due to the fact that they are generated by sec-
ondary emissions o↵ the original hard partons [1].

The prototypical non-global observable is the interjet
energy flow, where a veto associated with a low scale Q0

is imposed on radiation in a region away from the hard
jets with energy of the order of the collision energy Q.
Being sensitive only to large-angle soft radiation, one ex-
pects the leading logarithms to this observable to scale as
↵n
s Ln, where L = ln(Q/Q0). This is indeed the case for

e+e� colliders, but Forshaw, Kyrieleis and Seymour [2]
argued that at hadron colliders double logarithms arise
at four-loop order, so that the leading logarithm at this
order is ↵4

sL
5. These so-called super-leading logarithms

(SLLs) are a subtle e↵ect generated by complex phases in
the amplitudes, which spoil the real-virtual cancellation
for collinear emissions o↵ the initial states [3–5]. The
e↵ect is absent in the large-Nc limit and not captured
by any of the existing parton showers, which therefore
do not account for the leading-logarithmic corrections to
non-global observables at hadron colliders.

Even 15 years after this e↵ect was discovered, remark-
ably little is known about it. While the first SLL is known
for arbitrary 2 ! 2 hard processes [6], the second SLL
(⇠ ↵5

sL7) is known for some selected partonic channels
only [7]. The all-order structure of SLLs, their contribu-
tion to other hard processes and their large-order behav-
ior are completely unknown. One reason for this lack of
understanding lies in the fact that one needs to perform
calculations in the full color space, whose dimension is

rapidly growing with the number of emitted partons.
In [8, 9] we have derived factorization theorems for

non-global observables in Soft-Collinear E↵ective The-
ory (SCET) [10–12] and found that non-global logarithms
are governed by a renormalization-group (RG) equation.
Here we apply this method to non-global logarithms at
hadron colliders and derive the all-order structure of the
SLLs ↵3

sL
3 ⇥ ↵n

s L2n for arbitrary 2 ! l processes. We
further show that the e↵ect already arises for l = 0, rel-
evant e.g. to Higgs production with a central jet veto.

As a concrete example, we consider the pp ! 2 jet
cross section with a veto on hard radiation in a rapidity
region �Y in between the two leading jets. This can be
imposed by requiring that any additional jet in the veto
region has a transverse momentum smaller than Q0. At
leading logarithmic accuracy, there is no sensitivity to
how the radiation is vetoed but only to the scale hier-
archy between Q0 and the transverse momentum of the
hard jets, which is of order the partonic center-of-mass
energy, Q =

p
ŝ =

p
x1x2s. For this “gap between jets”

observable, the following factorization formula holds [13]:

�(Q0) =
X

a1,a2=q,q̄,g

Z
dx1dx2

⇥
1X

m=4

⌦
Hm({n}, Q, µ) ⌦ Wm({n}, Q0, x1, x2, µ)

↵
.

(1)

The hard functions Hm describe all possible m-parton
processes a1 + a2 ! a3 + · · · + am and are obtained after
imposing appropriate kinematic constraints, such as cuts
on the transverse momenta and rapidities of the leading
jets. One then integrates over the phase space but for
fixed directions {n} = {n1, . . . , nm} of the m partons,
i.e.

Hm =
1

2ŝ

mY

i=3

Z
dEi E

d�3
i

(2⇡)d�2
|Mm({p})ihMm({p})|

⇥ (2⇡)d �(
p

ŝ � Etot) �(d�1)(~ptot) ⇥hard

��
p
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,
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gap:

 2Egap < Q0

unrestricted Ein ~ Q

Thank you!


