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Introduction

LHC cross sections are usually computed in terms of convolutions of
partonic cross sections with parton distribution functions

Partonic cross sections are calculated at some fixed order in perturbation
theory (NNLO or N3LO)

In many cases this is insufficient, because in the presence of experimental
cuts the cross sections are sensitive to very different energy scales

Fixed-order results are affected by large logarithmic corrections, which
need to be resummed to all orders; often this is done using parton showers

(large-N¢: approximation)

This talk i1s about “strange logarithms” and a clever way to resum them ...
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Introduction

Consider the “gap between jets” observable (inter-jet energy flow):

gap

A“ (artwork by Thomas Becher)
W AY ~ 1 ‘

The cross section contains large logarithms o/ L™ with L = In(Q/Qp)

> for ete- collisions: m < n, leading logs have m = n

. 2 12 4 2

> for hadron colliders: agL, o L~ oz‘ng ,ozSL5 . ,Oz§+”L3+ "
superleading logs (SLLSs)

> not contained In existing parton showers! [Forshaw, Kyrieleis, Seymour (2006, 2008)]
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Introduction

In general, large logarithms arise from an incomplete cancellation of soft and

collinear IR divergences:
2L

(XSCF ,u_2 ‘ 4 §+
¢ 47 ()? e e

soft+collinear divergence

: < asCp (12\[ 4 6 4ln(r)
. o0 ) |+ - - +...
§ A ()? € € €

wide-angle soft
asCr (12 \ [41n(r)
00 9 ..
47 Qg €

CVSCF DQQ |

M. Neubert Resummation of superleading logarithms 3

r = tan®(o/2)

41n(r)l

00



Introduction

Since the effect arises first at 4-loop order, little is known about SLLs:

> discovered in "gaps between jets” calculation for gg — gq [rForshaw, Kyrieleis, Seymour (2008)]

- calculation of first SLL ~ a*L> for arbitrary 2 — 2 hard processes using the color-
Space formalism [Forshaw, Kyrieleis, Seymour (2008)]

> diagrammatic calculation of the first two SLLs for some selected 2-parton channels
[Keates, Seymour (2009)]

All-order structure of SLLs, their contributions to other scattering processes,
and their asymptotic behavior for Q/(, — oo are completely unknown!
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gap.
2Egap < Qo
As

/‘ e s

unrestricted Ein ~ Q

| el

The SLLs are the parametrically leading contributions to exclusive LHC cross sections,
yet these effects are currently not understood in higher orders
and not included in existing parton showers!

We will argue that the contributions of SLLs can numerically be as large as a
one-loop effect, and we will present a complete theory of their all-order contributions.



Soft radiation in global observables

Consider the thrust distribution in e+e- collisions near T~1:

M. Neubert

W lt,Re) do
d1’

> soft radiation does not resolve individual
energetic partons; sensitive only to the

—HJRJR S

direction and total color charge of the jets

»  soft function:

(@rtwork by Thomas Becher) _
S~ [{Xs[S(n)S(n)|0)
Xs

> simple structure — NSLL resummation
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NGLs in ete- collisions

Non-global observables are insensitive to radiation in certain regions of phase
space:

< exclusive jet cross sections

> soft radiation from secondary emissions inside the jets leads to a complicated pattern

of large logs ~ (a,L)" with L = In(Q/(,), which do not exponentiate [Dasgupta, Salam (2002)
non-global logs (NGLSs)

> In large-N¢ limit, the NGLs can be obtained by solving the non-linear BMS integral

equation [Banfi, Marchesini, Smye (2002)]; 1/N¢ corrections worked out in [Weigert (2003); Hatta, Ueda (2013);
Hagiwara (2015)]

> no generalization to hadron colliders exists!
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Factorization theorem for NGLs

For the “gap between jets” cross section at ete- colliders, we have derived a
factorization theorem using soft-collinear effective theory: [Becher, MN, Rothen, shao (2015, 2016)

Hard function

m hard partons along squared amplitude
fixed directions {n1, ..., Nm}

with m Wilson lines
Hop X [ M) (M|

\ /

U(Qa QO) — Z gHm({ﬂ}W Qa :u) oY Sm({ﬂ}v QO» :u)>

m—=2 t

Soft function

|
color trace integration over directions
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Factorization theorem for NGLs

Factorization theorem:

O

U(QaQO) — Z <Hm({ﬂ}7Qmu) ) Sm({ﬂ}vQOaﬂ)>

m=2
> separates contributions from scales Q and Qo

> operator definitions of all ingredients:

d—3
(1), @10 = 5 S TI / o [Mu{p}) (Mun({p})] (27 6(Q ZE)W D (ror) Oin ({})

spins i=1

Sm({n}, Qo, 1) :Zé (0 Si(nl) ‘o Sjn(nm) [ Xs)(Xs| S1(n1) -« Si(nm) [0) 0(Qo — Eout)

Xs
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Factorization theorem for NGLs

Factorization theorem:

O

U(QaQO) — Z <%m({ﬂ}7Qmu) ) Sm({ﬂ}7QOau)>

m=2
> separates contributions from scales Q and Qo

> crucial new ingredient is the sum over parton multiplicities!

> provides a natural way to perform resummation using RG equations
(including NGLs)

> not limited to leading logarithms or leading color

> sum over m accounts for possibility of branchings; hard and
soft functions depend on all n; vectors
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Factorization theorem for NGLs

Similar formula holds for hadron colliders:

o(@QQo) = Y [ doide, Z ({0}, Q, 1) & Win({n}, Qo, 1, 22, 1))

ai,a2—=q,q,9
Differences are:

> hard functions H,,, describe m-parton processes a1 +as — az+ -+ ap,

> low-energy matrix elements W,, now contain soft Wilson lines plus collinear fields

for the incoming partons; they also contain single-logarithmic Q dependence from
the collinear anomaly [Becher, MN (2010); Chiu, Jain, Neill, Rothstein (2012)]

> low-energy theory involves Glauber gluons, which mediate non-trivial interactions
between soft and collinear particles [Rothstein, Stewart (2016)]
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Factorization theorem for NGLs

RG evolution of hard functions:

d ™m
e Hm(Qp) = = ) Hi(Q, 1) Ty (Qs 1) Ho T ¢
H [ =4 -
)
> key feature: hard functions with lower parton multiplicities mix into g
higher-multiplicity functions! g-
Strategy for resumming NGLs: V
> compute hard functions at a scale pn, ~ @ o 4
. . b
> evolve them to a low scale us ~ Qo by solving the RG equation o
> evaluate low-energy matrix elements at the scale us ~ Qo f a; Agcp
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Factorization theorem for NGLs

Formal solution:

o(@Q, Q)= > /d:vlda:z Z m({n}, Q, 1) @ Wy ({n}, Qo, 21,72, 11)q) H,, O

a1,a2=4,q,9
/ By
0,
qp
o0 v C<l
Z {n} Q :uh & ZUml {TL} Hh Ms)@)Wz({n} Q07$17$2,M3)Q> g—
=4 l=m T
integration over (I-m) unresolved partons
with: Wi QO
O
Kh d,u 2
U({n}, s, ) = P exp / 21 ({u), H) :
_J Us

This object is an operator in color space but also in the (infinite) f a; Aoco
space of parton multiplicities!
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gap:
2Egap < QO
RS

/‘ e

unrestricted Ein ~ Q

—

Our factorization formula provides a complete description of
non-global observables at hadron colliders.

From the leading terms, we have obtained an all-order understanding
of SLLs for arbitrary exclusive 2—n LHC cross sections.

15



Superleading logarithms

The leading logarithms are obtained using the lowest-multiplicity hard

function H4 (since H,, ~ oz:';“_"“ H ), the lowest-order result for the matrix
elements

Wm({ﬂ}a Q()a L1, L2, :us) — fal (331) fag (372) 1

and the soft anomalous dimension at 1-loop order (withT'y; = I'c1 + I'g):

Vi R, 0 0 --- 5’;
0 Vs Ry 0 - HoR, = Y ]%(
ro_ %0 0 Ve Ry | B g

it 1 0 0 0 Vo --. N
(25) J J
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Superleading logarithms

We obtain:

OSLL — OBorn <7’L4({ﬂ}, Q, ,uh) X Z U4l({ﬂ}a Hh, MS) ® 1>
(=4

where the evolved hard function can be expanded as:

Mhd Mhd Mhd
’H4(uh)+/ 7“%4 pn) T (p / ”/ iw () T (p' ) Ta(p) + - ..

s

For quark-initiated processes, we have succeeded to extract the infinite
tower of SLLs from this expression!

Gluons are more complicated (work in progress ...)
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Superleading logarithms

SLLs are a subtle effect arising from Coulomb phases associated with soft
gluon exchange between two energetic partonS'

1; - 1;
F({]_?}, ,u) = Z 5 ”YCUSp Oés
(25)
where s;; = 2p; - p; + 10 If particles / and j are both in the final state or in the

nyas ) + O(« )

initial state (— imaginary part), and s;; = —2p; - p; otherwise
This generates the imaginary part: not relevant
/
iImIg({g},,u) = 427 i Yeusp(as) T - T + ( . ) 1
T non-trivial Coulomb phase only
Qs L at hadron colliders
-
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Superleading logarithms

The virtual and real contributions in the anomalous dimension contain
collinear singularities, which must be regularized and subtracted. One finds:

2

- u
' =T+1I¢ '¢1ln =
- +§; In =

with: - |
VY = 8ir (Tvp - Tor — Ti.r - To.r) Coulomb phase

Ve =14C; 1
Soft+collinear terms
Rf — _41-172,L O T:’,;,R 5(le — nz)
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Superleading logarithms

Comments on the notation:

e color generators T;; act on the amplitude and multiply the hard functions
form the left

* color generators T;r act on the complex conjugate amplitude and multiply
the hard functions form the right

e real-emission terms take an amplitude with m partons and turn it into an
amplitude with (m+1) partons; then

Ho, E,L O CFj,R — 1-1ia Hu Tj&

where a and a are the color indices of the emitted gluon; the symbol o
iIndicates the presence of the addition color space of the emitted gluon
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Superleading logarithms

The SLLs arise from the terms with the highest number of insertions of I'“

Three properties of the different components of the anomalous dimension
greatly simplify the calculation of the SLLs
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Superleading logarithms

The SLLs arise from the terms with the highest number of insertions of I'“

Three properties of the different components of the anomalous dimension
greatly simplify the calculation of the SLLs

* color coherence — the sum of soft emissions off two collinear partons
has the same effect as a single soft emission off the parent parton:

H, [T =H,, T
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Superleading logarithms

The SLLs arise from the terms with the highest number of insertions of I'“

Three properties of the different components of the anomalous dimension
greatly simplify the calculation of the SLLs

* color coherence — the sum of soft emissions off two collinear partons
has the same effect as a single soft emission off the parent parton:

H,, T°T =H,, T
» collinear safety — collinear singularities from real and virtual emissions

cancel each other:
(H,,T°®1)=0
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Superleading logarithms

The SLLs arise from the terms with the highest number of insertions of I'“
Three properties of the different components of the anomalous dimension
greatly simplify the calculation of the SLLs

* color coherence — the sum of soft emissions off two collinear partons
has the same effect as a single soft emission off the parent parton:

H, T°T =H, I'T°

» collinear safety — collinear singularities from real and virtual emissions
cancel each other:
(H,,T°®1)=0

e cyclicity of the trace:
(H, VE@1) =0
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Superleading logarithms

The SLLs arise from the terms with the highest number of insertions of I'“

Under the color trace these insertions are non-zero only if they come In
conjunction with (at least) two insertions of the Coulomb phase V% and one
insertion of I'. The relevant color traces are:

Con = (Hs () V@) " "VET®1)

For initial-state particles transforming in the fundamental representation of
SU(N:) — quarks or antiquarks — one can use

1
{fl-'ia,T,L-b} — ﬁéabl +o;dape Ty ; 1=1,2 c=1forg,c =—1forg

C

to simplify the color algebra
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Superleading logarithms

General result involving only three color traces:

D @

Crp, = 257712 (4N:)" 4 Z J <'H4 [(TQ —T)-Tj + 2" N, (01 — 02) dape TY T2b TJCD

.
}

+2(1=00) 2 (Ha [Cp + (2" = 1) T1 - T3] )

All angular information is contained in:

TLZ'°7’Lj

df)
Jj - / (nk) (Wlkj _ W2k]> @Veto(nk) . with Wz]; —

4 N; * NE 1N - N

From this formula we have rederived all that is known about SLLSs!
But it contains infinitely much more information...
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Superleading Iogarithms

The contribution of SLLs to a cross section is given by: = In(Q/Qo)

0

_ s n+3 2n+3 \ ~
O'SLLO'Bornnz:O(M)T LT 2n+3 ' Z 4r

SLLs start at 4-loop order, but n=0 term is of the same origin
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Superleading logarithms

The contribution of SLLs to a cross section is given by: L =In(Q/Qo)

AN (=)™ n! < (2r)!
— rn — LQTH_S Crn
7SLL = @Bo nz::o (47'(') (2n + 3)! ; 47 (r!)?
Example: gg — gg scattering . %
s-._ >~ singlet VE=500GeV, AY =2
singlet % S i\f:
2

SLLs only
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Superleading logarithms

The contribution of SLLs to a cross section is given by: L =In(Q/Qo)

0

T
as>n+3 2n+3 \
S Ys L.
OSLL = OBorn ) (47r 2n—|—3 | Z 4?“

n=0

Simple, closed-form expression for the color-singlet channel:

9 QOéSL 1
O-éL)L — —O0Born 37N, AY (1 N2> U{Ww 2F2(171727 27_?])
W, = N¢ ag 7_‘_2 W — N¢ ag LQ
For Q/Q, — oo we find:
d 3 not suppressed at all
w 2F2 (17 1; 27 53 —QU) — 3 [111(410) +VE — 2} unlike Sudakov double logs!
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Superleading logarithms

The contribution of SLLs to a cross section is given by: L =In(Q/Qo)

0

T
as>n+3 2n+3 \
—— s L
USLL = 9Bo Z (47r 2n—|—3 | Z 4?“

n=0

Simple, closed-form expression for the color-singlet channel:

(S) 200 L 1
Ogqr, — —9Born 37N, AY (1 NQ)UTJWQU 2F2(17172727_7f)
T
subleading color Wr = Niras s W = N(;TO‘S L?

Even though it starts at 3-loop order, this corrections is numerically of the
order of a typical one-loop correction — important for pnenomenology!
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Other 2 — n processes

» While we have discussed 2 — 2 processes, our results holds for arbitrary

2 — n hard-scattering processes, including the cases wheren = 0,1 —
a fact that was not appreciated before

e Sllsalsoariseingg — Z+jaswellasinqgqg — Zor gg — h with a
central jet veto (starting at 5 loops, but with the same scaling as above)!

* They can thus play an important role for Higgs phenomenology at the LHC!
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M. Neubert

Conclusions and outlook

First factorization theorem for non-global observables at hadron colliders

First all-order resummation for SLLs, extending existing results by infinitely
many orders and to arbitrary processes (quark-initiated, for now ...)

Derived asymptotic behavior of SLLs, finding no Sudakov-like behavior

Important to go beyond the leading SLLs and analyze the structure of the
low-energy matrix elements W,, in detall

SCET-based approach offers a path toward a complete theory of non-
global observables, including all logarithmically enhanced contributions

Accurate calculation of these effects is of utmost importance!
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gap.
2Egap < Qo
. S
restricted Ein ~ Q

Thank you!



