Production of (anti-)matter and exotics at the LHC

14. Dezember 2021 Physics Colloquium Mainz

Benjamin Dönigus

Institut für Kernphysik Goethe Universität Frankfurt

Content

- Introduction
- Nuclei and Exotica
 - (Anti-)nuclei
 - (Anti-)hypertriton
 - (Anti-)hypermatter
- Summary & Outlook

From Chemisty to Physics

 Chemical elemente grupped in periodic table

From Chemisty to Physics

- Chemical elements and chemical properties are defined by the charge number, i.e. the number of protons
- Number of protons and neutrones define (nuclear) physical properties, such as stabilty or type of decay

Zoo of hadrons

Baryons

Proton (p) \rightarrow uud Neutron (n) \rightarrow udd Lambda (Λ) \rightarrow uds

<u>Mesons</u>

 π -Meson $\rightarrow d\bar{u}$ K-Meson $\rightarrow u\bar{s}$

- Hadrons are consisting of quarks, anti-quarks und gluons
- Strangeness as new quark flavour not part of every-day matter, but is created for instance in high-energy particle collisions
- Theoretical description of hadrons through quantum chromo dynamics (QCD)

Collisions

- Nuclei are accelerated to high energies, i.e. speeds close to the speed of light, and are the collided
- This leads to the creation of (new) particles that can be detected in the experiments sorrounding the collision point

Asterix & Obelix, Der große Graben, Ehapa VerlagPhysics Colloquium Mainz- Benjamin Dönigus9

Collisions

- Nuclei are accelerated to high energies, i.e. speeds close to the speed of light, and are the collided
- This leads to the creation of (new) particles that can be detected in the experiments sorrounding the collision point

Large Hadron Collider at CERN

Large Hadron Collider at CERN

ALICE

visios colloquium Mainz - Benjamin Donigus

Experiment: ALICE

Pb

Pb

Interlude: Centrality

Central Pb-Pb collision: High multiplicity = large $dN/d\eta$ High number of tracks (more than 2000 tracks in the detector)

Peripheral Pb-Pb collision: Low multiplicity = small $dN/d\eta$ Low number of tracks (less than 100 tracks in the detector)

Introduction

Time →

Cartoon of a Ultra-relativistic heavy-ion collision

Left to right:

- the two Lorentz contracted nuclei approach,
- collide,
- form a Quark-Gluon Plasma (QGP),
- the QGP expands and hadronizes,
- finally hadrons rescatter and freeze

Plot by S. Bass, Duke University; http://www.phy.duke.edu/research/NPTheory/QGP/transport/evo.jpg

The fireball evolution:

- Starts with a "pre-equilibrium state"
- Forms a Quark-Gluon Plasma phase (if T is larger than T_c)
- At chemical freeze-out, T_{ch}, hadrons stop being produced
- At kinetic freeze-out, T_{fo}, hadrons stop scattering

Lattice QCD results

A. Bazavov et al. (hotQCD) Phys. Rev. D90 (2014) 094503 Similar results from Budapest-Wuppertal group: S. Borsányi et al. JHEP 09 (2010) 073

Temperature of the source

Analogy:

Light source \rightarrow particle source

 Multiplicity described best with T = 1 900 000 000 000 °C (1,9 trillion degree centigrade)

 \rightarrow 100 000 times hotter than in the interior of the sun!

1/40 eV = 20 °C

Plot by A. Andronic, GSI-Heidelberg group arXiv:1407.5003 [nucl-ex]

Thermal model

• Statistical (thermal) model with only three parameters able to describe particle yields (grand chanonical ensemble)

- chemical freezeout temperature T_{ch}
- baryo-chemical potential μ_B
- Volume V
- → Using particle yields as input to extract parameters

A. Andronic et al., PLB 673 (2009) 142, updated

Predicting yields of bound states

Key parameter at LHC energies:

chemical freeze-out temperature T_{ch}

Strong sensitivity of

abundance of nuclei

to choice of T_{ch} due to:

1. large mass m

2. exponential dependence of the yield ~ $exp(-m/T_{ch})$

→ Binding energies small compared to T_{ch}

(Anti-)Nuclei

Coalescence

J. I. Kapusta, PRC 21, 1301 (1980)

Nuclei are formed by protons and neutrons which are nearby and have similar velocities (after kinetic freezeout)

Produced nuclei

- → can break apart
- → created again by final-state coalescence

Particle Identification

Low momenta:

GOETHE

UNIVERSITÄT

Nuclei are identified using the d*E*/d*x* measurement in the Time Projection Chamber (TPC)

Higher momenta:

Velocity measurement with the Time-of-Flight (TOF) detector is used to calculate the m^2 distribution

Anti-Alpha

For the full statistics of 2011 ALICE identified 10 Anti-Alphas using TPC and TOF

STAR observed the Anti-Alpha in 2010: *Nature 473, 353 (2011)*

- *p*_T-spectra getting harder for more central collisions (from pp to Pb-Pb) → showing clear radial flow
- Blast-Wave fits describe the data in Pb-Pb very well
- No hint for radial flow in pp
 Bhysics Colloquium Ma

(Anti-)Deuteron ratio

Combined Blast-Wave fit

ALICE Collaboration, arXiv:1910.07678

- Simultaneous Blast-Wave fit of π^+ , K⁺, p, d, t, ³He and ⁴He spectra for central Pb-Pb collisions leads to values for $\langle \beta \rangle$ and T_{kin} close to those obtained when only π ,K,p are used
- All particles are described rather well with this simultaneous fit

AI TCF

Mass dependence

GOETHE

ALICE Production of (anti-) nuclei is follwing an exponential, and decreases with mass as expected from thermal model In Pb-Pb the "penalty factor" for each additional baryon ~300 (for particles and antiparticles)

ALICE Collaboration, arXiv:1710.07531, NPA 971, 1 (2018)

Mass dependence

ALICE

- Production of (anti-) nuclei is follwing an exponential, and decreases with mass as expected from thermal model
- In Pb-Pb the "penalty factor" for each additional baryon ~300, in p-Pb ~600 and in pp ~1000

d/p ratio rather well described by coalescence and (canonical) thermal model

Physics Colloquium Mainz - Benjamin Dönigus

ALICE

³He/p vs. multiplicity

³He/p and ³H/p ratios are similarly well described by coalescence and (canonical) thermal model

 Different model implementations describe the production probability, including light nuclei and hyper-nuclei, rather well at a temperture of about T_{ch} =156 MeV

Hypernuclei

Hypertriton

Bound state of Λ , p, n m = 2.991 GeV/ c^2 (B_{Λ} =130 keV)

Hypertriton

Bound state of Λ , p, n m = 2.991 GeV/ c^2 (B_{Λ} =130 keV)

Physics Colloquium Mainz - Benjamin Dönigus

Hypertriton

Bound state of Λ , p, n m = 2.991 GeV/c² (B_{Λ} =130 keV)

GOETHE CONTRACT Hypertriton Identification

Bound state of Λ , p, n $m = 2.991 \text{ GeV}/c^2 (B_{\Lambda} = 130 \text{ keV})$ \rightarrow Radius of about 10.6 fm Decay modes:

$${}^{3}_{\Lambda} H \rightarrow^{3} H e + \pi^{-}$$

$${}^{3}_{\Lambda} H \rightarrow^{3} H + \pi^{0}$$

$${}^{3}_{\Lambda} H \rightarrow d + p + \pi^{-}$$

$${}^{3}_{\Lambda} H \rightarrow d + n + \pi^{0}$$

+ anti-particles

→ Anti-Hypertriton first observed by STAR Collaboration:

38

Science 328,58 (2010) Physics Colloquium Mainz - Benjamin Dönigus

- Clear signal reconstructed by decay products
- Spectra can also be described by Blast-Wave model
 → Hypertriton flows as all other particles

Hypertriton spectra

• Anti-hypertriton/Hypertriton ratio consistent with unity vs. p_{T}

- Hypertriton signal recently also extracted in pp and p-Pb collisions
- Stronger separation between models as for other particle ratios, mainly due to the size of the hypertriton

Hypertriton in pp & p-Pb

- Hypertriton signal recently also extracted in pp and p-Pb collisions
- Stronger separation between models as for other particle ratios, mainly due to the size of the hypertriton

Hypertriton in pp & p-Pb

Hypertriton "Puzzle"

• Recently measured lifetimes are significantly below the lifetime of the free $\Lambda \rightarrow$ new ALICE results agree with the

world average of all known measurements and with the free Λ lifetime

 Most recent calculations include "final-state" interaction and agree well with the data

BD, Eur. Phys. J 56 (2020) 258

Hypertriton "Puzzle"

• Recently measured lifetimes are significantly below the lifetime of the free $\Lambda \rightarrow$ new ALICE results agree with the

world average of all known measurements and with the free Λ lifetime

 Most recent calculations include "final-state" interaction and agree well with the data

Binding Energy

- Preliminary Result for SQM2019
- Current studies show a better constraint and smaller statistical uncertainties (will be published soon)
- The value obtained by this fit is $B_{\Lambda} = 55 \pm 62 \text{ keV}$

ALI-PREL-486366

Binding Energy

- Preliminary Result for SQM2019
- Current studies show a better constraint and smaller statistical uncertainties (will be published soon)
- The value obtained by this fit is $B_{\Lambda} = 55 \pm 62 \text{ keV}$
- Is compatible within the theoretical predictions

ALI-PREL-486370

Exotica Searches

HypHI Collaboration observed signals in the $t+\pi$ and $d+\pi$ invariant mass distributions

C. Rappold et al., PRC 88, 041001 (2013)

Physics Colloquium Mainz - Benjamin Dönigus

H-Dibaryon

- Hypothetical bound state of *uuddss* ($\Lambda\Lambda$)
- First predicted by Jaffe in a bag model calculation (*PRL 195, 38* +617 (1977))
- Recent lattice calculations suggest (Inoue et al., PRL 106, 162001 (2011) and Beane et al., PRL 106, 162002 (2011)) a bound state (20-50 MeV/c² or 13 MeV/c²)
- Shanahan et al., PRL 107, 092004 (2011) and Haidenbauer, Meißner, PLB 706, 100 (2011) made chiral extrapolation to a physical pion mass and got as result:
 - the H is unbound by 13±14 MeV/c²
 or lies close to the Ξp threshold
- \rightarrow Renewed interest in experimental searches

Searches for bound states

ALICE Collaboration: PLB 752, 267 (2016)

Invariant mass analyses of the two hypothetical particles lead to no visible signal \rightarrow Upper limits set

Search for a bound state of Λn and $\Lambda \Lambda$, shows no hint of signal \rightarrow upper limits set (for different lifetimes assumed for the bound states)

Hypertriton (B_{Λ} : 130 keV) and Anti-Alpha (B/A: 7 MeV) yields fit well with the thermal model expectations

ALICE

→ Upper limits of $\Lambda\Lambda$ and Λ n are factors of >25 below the model values Physics Colloquium Mainz - Benjamin Dönigus 52

Outlook & Summary

Outlook

A. Andronic, private communication, model described in A. Andronic et al., PLB 697, 203 (2011) and references therein

- Explore QCD and QCD inspired model predictions for (unusual) multi-baryon states
- Search for rarely produced anti- and hyper-matter
- Test model predictions, e.g. thermal and coalescence

Expectations

- Results shown before are based on data gathered in the Run 1 and Run 2 of the LHC with different peculiarities
- Run 3 & Run 4 of LHC will deliver much more statistics (50 kHz Pb-Pb collision rate)
- Upgraded ALICE detector will be able to cope with the high luminosity
- TPC Upgrade: GEMs for continous readout

- ITS Upgrade: less material budget and more precise tracking for the identification of hyper-nuclei
- Physics which is now done for A = 2 and A = 3 (hyper-)nuclei will be done for A = 4

Expectations

Expected significance >5 σ for the full data set to be collected in Run 3 & 4

Conclusion

57

- ALICE@LHC is well suited to study light (anti-)(hyper-) nuclei and perform searches for exotic bound states (A<5)
- Copious production of loosely bound objects measured by ALICE as predicted by the thermal model
- Models describe the (anti-)(hyper-)nuclei data rather well
- Ratios vs. multiplicity trend described by both models
- New and more precise data can be expected in the next years

