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Introduction

Gauge theories are the only renormalizable theories of force we know.

Perturbative theories have UV poles  (caveat the possibility of asymptotic safety             
with scalars)

Asymptotically free theories have strong coupling in the IR but are well defined 

We still know relatively little about the ”periodic table” of SCGTs…

Are they mostly like QCD:  entry to strong coupling, chiral symmetry breaking 
and confinement all happen together at one scale.

Are these scales generically or occasionally separated?



Strongly Coupled BSM (with Erdmenger & Porod)

The ideas I present emerged from BSM logic and studying SCGT that underly 
composite higgs models using holography. Eg. Sp(4) gauge theory with 4 
fundamentals and 6 sextet quarks….

AdS/Sp(4) AdS/Sp(4) AdS/Sp(4) lattice [78] lattice [79] AdS/Sp(4)

no decouple A2 decouple quench quench unquench + NJL

f⇡A2 0.120 0.120 0.103 0.1453(12) 0.120

f⇡F 0.0569 0.0701 0.0756 0.1079(52) 0.1018(83) 0.160

MV A2 1* 1* 1* 1.000(32) 1*

fV A2 0.517 0.517 0.518 0.508(18) 0.517

MV F 0.61 0.814 0.962 0.83(19) 0.83(27) 1.03

fV F 0.271 0.364 0.428 0.411(58) 0.430(86) 0.449

MAA2 1.35 1.35 1.28 1.75 (13) 1.35

fAA2 0.520 0.520 0.524 0.794(70) 0.520

MAF 0.938 1.19 1.36 1.32(18) 1.34(14) 1.70

fAF 0.303 0.399 0.462 0.54(11) 0.559(76) 0.449

MSA2 0.375 0.375 1.14 1.65(15) 0.375

MSF 0.325 0.902 1.25 1.52 (11) 1.40(19) 0.375

MBA2 1.85 1.85 1.86 1.85

MBF 1.13 1.53 1.79 1.88

Table 4: AdS/Sp(4) 4F, 6A2. Ground state spectra and decay constants for our various

holographic models and comparison to lattice results - we use the subscript A2 and F for the

quantity in each of the two di↵erent representation sectors. Note here for the unquenched

lattice results, which do not include the A2 fields, we have normalized the F vector meson

mass to that of the quenched computation.

Similarly we split the normalizations for the external currents in eq. (2.17).

We show the resulting spectrum for each of the cases we consider in Table 4 for the case

where all fermion representations are massless.

In each case, without a NJL term, the bound states of the A2 fields are heavier and

have higher decay constants than those made of the fundamental fields F , reflecting the A2s’

higher condensation scale. The separation in scale between the two sectors does depend quite

strongly on the decoupling assumptions. If the A2s are not decoupled at all, the separation,

as measured by the vector meson masses, is almost a factor of two whilst in the quenched

limit it barely exists. The slowing of the running of the gauge coupling with the inclusion of

flavours is important. The case where the A2s are integrated out at their IR mass scale lies

between these two extremes.

The greatest impact in the spectrum shows up in the scalar meson (S) masses. The rate

of running measures the departure from conformality which shows up in the flatness of the

e↵ective potential for the quark condensates. The slower the running the lighter the resultant

scalar - here there is as much as a factor of four in the prediction.

When the NJL term is used to enforce equal IR mass scales for the two fermion species

the bound states of the fundamental fields become just slightly heavier than those with A2

– 32 –

Has a gap 
between the 
F and A2
sectors..

Holographic 
predictions  
depend on a 
number of 
guesses…



Here I want to present our questions/speculations mostly divorced from holography.

I don’t really know the answer to any of the questions – but maybe the lattice can 
eventually tell us the clear answers – I’m trying to highlight the best places to look for 
those answers. 



Asymptotic Freedom in QCD: 

Quarks on top of each other are 
free…

As they separate coupling strength 
grows and perturbation theory 
breaks down…

• Confinement

• Chiral symmetry breaking
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Evidence: lack of parity doubling, proton mass, Goldstone pions

Chiral Symmetry Breaking
The u and d quarks are basically massless



Localized, magnetically charged, scalar 
gauge configurations form and 
condense leading to a dual Meissner 
effect (?)….

‘tHooft speculation

Seiberg Witten N=2 
SYM realization

Confinement

Coulomb law 
vs linearity



Compressed scales in QCD: 

pure glue

+ quarks

g = 1   chiral symmetry breaking
confinement

In QCD  all scales are very close 
– the thermal transition is a 
cross over with no distinction 
between the phenomena.cSBing

enter strong coupling

22 Frithjof Karsch
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Fig. 10. Pressure of the SU(3) gauge theory calculated on lattices with different
temporal extent and extrapolated to the continuum limit. Shown are results from
calculations with the standard Wilson (1 × 1)-action [36] and several improved
actions [38,39], which are defined in the Appendix. The broad band shows the
approximately self-consistent HTL calculation of [41].

various actions in the pure gauge sector one finds that for temperatures T<∼5Tc

the cut-off dependence of thermodynamic shows the pattern predicted by the in-
finite temperature perturbative calculation. The absolute magnitude of the cut-off
effects, however, is smaller by about a factor of two. This, of course, is reassuring
for the numerical calculations performed with light quarks, where such a detailed
systematic study of the cut-off dependence at present does not exist.

6.2 Thermodynamics of the SU(3) gauge theory

Before entering a discussion of bulk thermodynamics in two and three flavour QCD
it is worthwhile to discuss some results on the equation of state in the heavy quark
mass limit of QCD – the SU(3) gauge theory. In this case the temperature de-
pendence of the pressure and energy density has been studied in great detail, cal-
culations with the standard action [36] and various improved actions [37,38,39]
have been performed, the cut-off dependence has explicitly been analyzed through
calculations on lattices with varying temporal extent Nτ and results have been ex-
trapolated to the continuum limit. In Fig. 10 we show some results for the pressure
obtained from such detailed analyzes with different actions [36,38,39]. This figure
shows the basic features of the temperature dependence of bulk thermodynamic
quantities in QCD, which also carry over to the case of QCD with light quarks.
The pressure stays small for almost all temperatures below Tc; this is expected, as
the only degrees of freedom in the low temperature phase are glueballs which are
rather heavy and thus lead to an exponential suppression of pressure and energy
density at low temperature. Above Tc the pressure rises rapidly and reaches about
70% of the asymptotic ideal gas value at T = 2 Tc. For even larger temperatures



Walking – separating the entry to strong coupling 
and the IR mass gap (Holdom) 

4
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TABLE I. Group theory factors for SU(N) gauge theory representations and the maximum number of flavours for asymptotic
freedom to be present at one loop. For SU(2) only the F,G and Sn represntations exist (here G = S2). For SU(3) the A2 = F ,
G = R2 and R3 = S2. For SU(4) the R2 becomes distinct and R3 = R2. For Nc > 5 all the representations are distinct.

from the IR theory below ⇤�SB . Now we are left in the
IR with a pure glue theory which runs with b0 = 11N/6⇡
so

↵(Q2) =
↵c

1 + bglue0 ↵c log(Q/⇤�)
, (5)

and the IR pole is then given by

⇤pole = ⇤�SBexp

"
1

bglue0 ↵c

#
. (6)

We can combine these equations, to obtain and expres-
sion for the ratio of the two scales

R(R) =
⇤�SB

⇤pole
= exp

✓
9

11

N2 � 1

N

T (R)

d(R)

◆
. (7)

We will use this R(R) as a measure of the gap between
the confinement scale and the chiral symmetry breaking
scale. It is crude because: the perturbative results may
not be a good description of the non-perturbative regime;
confinement may happen before the Yang Mills theory
pole (lowering the gap); the fermions may not sharply de-
couple from the running (potentially increasing the gap
between the scales); and at strong coupling the two phe-
nomena might become intertwined triggering each other.
Nevertheless it stands as a straw man that can be used
to ask questions on precisely these points.

2. Conformal Window Constraint

There is one additional constraint on the maximum
number of Nf (R) that we will note. It has been sug-
gested [34, 35] that some of these theories have IR fixed
points and if the fixed point value lies below ↵c then they
live in the “conformal window” and will not break chiral
symmetry, nor confine. For example the two loop beta

function result for ↵ is [35]

µ
d↵

dµ
= �b0↵

2 � b1↵
3 , (8)

with

b1 =
1

24⇡2

 
34C2

2 (G)�
X

R

(20C2(G)+

12C2(R))T (R)N(R)

◆
.

(9)

� vanishes at the fixed point so when

↵? = � b0
b1

. (10)

Now one can compare this to the value of ↵c. We now
find a new upper limit on the number of flavours (lower
than that at which asymptotic feedom is lost) given by

N?
f (R)max =

d(G)

d(R)

C2(G)

C2(R)

17 C2(G) + 66 C2(R)

10 C2(G) + 30 C2(R)
. (11)

3. Results and Outlook for One Representation SU(Nc)

In Figure 1 we plot the ratio R = ⇤pole/⇤�SB , which
measures the split between the chiral symmetry breaking
scale and the confinement scale, for all the asymptoti-
cally free theories containing the representations we have
listed. The points are labelled by the (integer) maximum
value of flavours N(R) for the theory to be asymptoti-
cally free. For SU(2) where representations are real, and
generically for the real adjoint representation, we allow
1/2 integer values of Nf . We also include in the label the
maximum number of flavours for the theory to lie below

The two loop beta function has IR fixed 
points for some Nf Nc..

Near the edge of the AF region this is a 
perturbative fixed point (at large Nc 
Nf) – Banks Zak FP

It grows as Nf decreases
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The computations showed a mass forms if    
g (anomalous dimension of  q  q) > 1.                                                            

At one loop:  

higher values of � for a given base ↵s and this would tend to raise the scale of the chiral symmetry
breaking. In [] it was ambitiously questioned whether a higher dimension representation quark in
QCD might even provide a separation in symmetry breaking scales of 100 to allow QCD to break
electroweak symmetry. The separations in scales are not expected to be this big as we will see
but the philosophy remains.

To make proposals for theories with separated scales we will perform here a very simple
analysis. We will initially take the one loop results for the running of the gauge coupling and
anomalous dimension and determine the value of ↵c

s when � = 1 in all asymptotically free theories.
One can associate this value of the coupling with the scale of the quark mass or chiral symmetry
breaking ⇤�SB. We then set that value of ↵s as the UV boundary condition on the pure Yang
Mills theory below the quark mass scale. We simply compute the ratio of the Landau pole, as a
measure of the confinement scale to ⇤�SB.

2 Setting up the arena

We will need the two-loop result which -for a non-supersymmetric theory with multi-representational
matter- is given by [2]
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where N(R) is the number flavours for a given representation, and the one-loop anomalous di-
mension is given by

� =
3 C2(R)

2⇡
↵ (2.3)

where in the above C2(R) is the quadratic Casimir of the representation.

In what follows we will use the same notation as in [1], namely by G we denote the adjoint rep-
resentation, by F the fundamental, by Sn the n-dimensional symmetric and An the n-dimensional
antisymmetric representation. We chose to reproduce Table II from the aforementioned paper for
convenience and because we have di↵erent conventions from that paper - see appendix B.

In order to examine whether or not the theory is asymptotically free, we need to examine if
and where a change in the sign of the one-loop �-function occurs. Hence, we are looking for the
zeroes of the b0-coe�cient. Below, the number of flavours for which the theory loses asymptotic
freedom, there exists the possibility that the theory develops a fixed point in the IR. A su�cient
condition is that the two-loop coe�cient of the �-function changes sign, and hence we are looking
for a condition such that b1 vanishes.

However, before we specify certain relations we can work out the necessary relations for the
b0 and b1 vanishing. In order to do so, we need to combine eq. (2.2), (B.1) and obtain:
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_

Presumably at some point, lowering Nf, the coupling at the fixed point is sufficient to trigger 
chiral symmetry breaking and confinement…. Appelquist, Terning and Wijewardhana tried 
to  quantify this first… hep-ph/9602385
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A scalar in AdS represents the 
dimension 3 quark condensate…



Holography Supports This Criteria:
Matti Jarvinen, Elias Kiritsis. 1112.1261. Raul Alvares, Nick Evans, Keun-Young Kim 1204.2474

A scalar in AdS represents the 
dimension 3 quark condensate…

If the dimension falls to 2 the BF 
bound is violated in AdS. ie g = 1 .

There’s a pesky factor of 2 that 
Appelquist and Terning used to 
reduce the criteria to ½…. We’ll keep 
their convention…
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FIG. 1: Phase diagram for theories with fermions in the (from
top to bottom in the plot; colour online): i) fundamental
representation (grey), ii) two-index antisymmetric (blue), iii)
two-index symmetric (red), iv) adjoint representation (green)
as a function of the number of flavours and the number of
colours. The shaded areas depict the corresponding conformal
windows. The upper solid curve represents N

I
f [R(N)] (loss of

asymptotic freedom), the lower N
II
f [R(N)] (loss of chiral sym-

metry breaking). The dashed curves show N
III
f [R(N)] (exis-

tence of a Banks–Zaks fixed point). Note how consistently
the various representations merge into each other when, for a
specific value of N , they are actually the same representation.

groups in a larger extended technicolour gauge group.
The gauge bosons of the extended technicolour model
couple the fermions of the standard model to the techni-
quarks and their condensate, which renders the standard
model fermions massive.

Like all other mechanisms for electroweak symmetry
breaking, technicolour has to face constraints derived
from experimental data. In the case of technicolour
the two main aspects are additional contributions to
the vacuum polarisation of the electroweak gauge bosons
(oblique parameters) and flavour changing neutral cur-
rents as well as lepton number violation due to the ex-
tended technicolour dynamics. These issues have been
discussed in great detail in the literature (see, for example
[20, 21]). Experimental data (see, for example [22, 23])
tells us that the above mentioned contributions must be
small. Here, let us only recall that flavour changing neu-
tral currents and lepton number violation are suppressed
in walking technicolour theories, that is technicolour the-
ories with nearly conformal dynamics. Through non-
perturbative effects, quasi-conformality also helps reduc-
ing the techniquarks’ contribution to the oblique param-
eters [11, 12, 13, 14, 24]. (In the absence of quasi-

conformal dynamics the S parameter can be larger than
its perturbative value.) On top of that, potential ad-
ditional Goldstone bosons, beyond the three which are
absorbed as the longitudinal degrees of freedom of the
electroweak gauge bosons, become very heavy, thereby
alleviating bounds set by them not having been detected
to date. Therefore, candidates for realistic technicolour
theories should feature quasi-conformal dynamics and
should contribute little to the oblique parameters already
at the perturbative level. In what follows, we will quan-
tify these criteria.
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candidates. Perturbatively, it is given by

S =
1

6π

Nf

2
d(R). (17)

The values for S are given in Table I. Drawing the line at
S < π−1—somewhat arbitrarily but in accordance with
the experimental limits [22, 23]—leaves us with three
candidates which, characterised by their Dynkin indices
are: (1) with six flavours, (2) with two flavours, and (20)
with two flavours. Doubling the value of the cut on the S
parameter (S < 2π−1) would admit two more: (11) with
two flavours and (200) with two flavours.

The estimate for the lower bound (critical number of
flavours) of the conformal window is based on the point
where the critical coupling and the fixed point value co-
incide. This critical number of flavours is, in general, not
an even integer. A quasi-conformal physical realisation
of a technicolour theory is, however, constructed from
complete families of techniquarks.5

From the difference of the two scales, the amount of
walking, that is the ratio of the scale can be estimated
[8, 11],

λ∗ ≈ exp(π/
√

α∗/αc − 1). (18)

λ∗ is the ratio of the scale from which onwards the cou-
pling constant stays approximately constant divided by
the scale for which it starts running again. For this walk-
ing mechanism to be effective it must typically cover sev-
eral decades. Setting the cut at λ∗ > 103 leaves (2) with
two flavours (see Table I). [If the weaker bound on the S
parameter is chosen also (11) with two flavours survives.]
Weakening the requirement on the range of the walking
to λ∗ > 102 leads to no supplementary candidates.

1. Two flavours, SU(2), adjoint representation: (2)

The technicolour theory with two techniquarks in the
two-index symmetric/adjoint representation of SU(2),

5 Generalisations with an odd number of Dirac or even Weyl
flavours are conceivable. A corresponding example is given in
Sect. IIIC.
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is possible, if our estimates are imperfect, that some of
these theories truly enter the conformal window in the
IR and the gap is much bigger. There has already been a
small amount of lattice work on two representation the-
ories which we review in this light.

Note that amongst the theories we consider are chi-
ral theories with just a single Weyl fermion in some real
representation. Such theories are a challenge for the lat-
tice since they potentially have a sign problem. However,
there has been work on such theories where a Majorana
mass is included and then it is experimentally tested in
the simulations whether there is in fact a sign problem as
the mass is reduced - see [37, 38] for example. Progress
has been made in this way and it may be possible by
a judicious combination of continuum limit and chiral
limit to avoid the sign problem completely (note that to
identify the chiral symmetry breaking scale it is only nec-
essary for the quark mass to lie at a lower scale, not to
be formally zero). We include these theories therefore.
Amongst our results though are plenty where Dirac rep-
resentations are all that are needed to see gaps between
confinement and chiral symmetry breaking.

The theories we propose with large gaps between the
chiral symmetry breaking and confinement scales can in
principle teach us about many aspects of strong cou-
pling dynamics. Not only whether the two phenomena
are truly separate but also, for example, how fermions
decouple at strong coupling and how well the two loop
running describes the non-perturbative walking regime
of the gauge theories? We hope this work will inspire
lattice studies of the phenomena we uncover.

II. MATTER IN ONE REPRESENTATION

Asymptotic freedom in gauge theories was first com-
puted at one loop in [39, 40] giving the classic result for
the gauge coupling ↵

µ
d↵

dµ
= �b0↵

2,

b0 =
1

2⇡
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The running of the anomalous dimension for the quark
bilinear operator is given by

� =
3 C2(R)

2⇡
↵ . (2)

In these equations T is half the Dynkin index, C2 is the
quadratic Casimir, and Nf (R) is the number of flavours
of the representation. The values of these constants (and
the dimension of the representation d(R)) are given for
the representations we will consider for SU(N) theories
in [41] and we reproduce them in Table I. The normal-
ization for these group invariants that we choose is such
that the Dynkin index in the fundamental representation

is equal to 1. The maximum number of flavours of any
representation for the theory to be asymptotically free is
controlled by requiring b0 > 0.
In this paper we will consider fermion representations

that give asymptotically free theories for some choice of
the number of flavours Nf (R). Representations can be
specified by their Dynkin indices or Young tableaux. The
Dynkin indices of the singlet is just (0 0 0 · · · 0 0) and
the Young diagram is •. The fundamental representation
is F = (1 0 0 · · · 0 0) and the Young tableaux . The

remaining representations we consider are:

Rank-n anti- Adjoint (G) Rank-n
symmetric (An) symmetric (Sn)

n

N
�
2

n

(n 0 0 · · · 0 0) (1 0 0 · · · 0 1) (0 0 0 · · · 1 · · · 0 0)

R1 R2 R3

N
�
3

(0 2 0 · · · 0), (1 1 0 · · · 0 0) (1 0 · · · 0 1 0)

Theories with fermions in these representations only
are asymptotically free.

1. R = ⇤pole/⇤�SB

To progress we must now specify a criteria for chiral
symmetry breaking. We follow the logic of the papers
[30, 34, 35]. For example, in the holographic models if
one relates the mass squared of the scalar in AdS5 to the
dimension of the operator in the perturbative regime one
has

m2 = �(�� 4)
= (3� �)(�� � 1)
' �3� 2�.

(3)

Thus extrapolating the perturbative result for � to the
non-perturbative regime leads to the BF bound being
violated when the perturbative running � = 1/2. Putting
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F 1
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2N N 11N
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G N N N2 � 1 11
4

Sn
(N�1)(N+n)(N+n�1)!
2N(N2�1)(n�1)!(N�1)!

n(N�1)(N+n)
2N

(N+n�1)!
n!(N�1)!

11N2(N+1)(n�1)!(N�1)!
2(N+n)(N+n�1)!
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(N+1)(N�n)(N�1)!
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2(N�2)(3N+1)

TABLE I. Group theory factors for SU(N) gauge theory representations and the maximum number of flavours for asymptotic
freedom to be present at one loop. For SU(2) only the F,G and Sn represntations exist (here G = S2). For SU(3) the A2 = F ,
G = R2 and R3 = S2. For SU(4) the R2 becomes distinct and R3 = R2. For Nc > 5 all the representations are distinct.

together (2) and this factor of 2 we find a critical value
of ↵ for chiral symmetry breaking

↵c =
⇡

3 C2(R)
. (4)

We can now perform a very simple computation, al-
beit improperly extending the one loop results beyond
the perturbative regime. We assume that at a scale ⇤�SB

the SU(N) theory with N(R) fermions in a given repre-
sentation has ↵ = ↵c. We assume that at this scale the
fermions will become massive and should be integrated
from the IR theory below ⇤�SB . Now we are left in the
IR with a pure glue theory which runs with b0 = 11N/6⇡
so

↵(Q2) =
↵c

1 + bglue0 ↵c log(Q/⇤�)
, (5)

and the IR pole is then given by

⇤pole = ⇤�SBexp

"
1

bglue0 ↵c

#
. (6)

We can combine these equations, to obtain and expres-
sion for the ratio of the two scales

R(R) =
⇤�SB

⇤pole
= exp
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We will use this R(R) as a measure of the gap between
the confinement scale and the chiral symmetry breaking
scale. It is crude because: the perturbative results may
not be a good description of the non-perturbative regime;
confinement may happen before the Yang Mills theory
pole (lowering the gap); the fermions may not sharply de-
couple from the running (potentially increasing the gap
between the scales); and at strong coupling the two phe-
nomena might become intertwined triggering each other.
Nevertheless it stands as a straw man that can be used
to ask questions on precisely these points.

2. Conformal Window Constraint

There is one additional constraint on the maximum
number of Nf (R) that we will note. It has been sug-
gested [34, 35] that some of these theories have IR fixed
points and if the fixed point value lies below ↵c then they
live in the “conformal window” and will not break chiral
symmetry, nor confine. For example the two loop beta
function result for ↵ is [35]

µ
d↵

dµ
= �b0↵

2 � b1↵
3 , (8)

with

b1 =
1
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� vanishes at the fixed point so when

↵? = � b0
b1

. (10)

Now one can compare this to the value of ↵c. We now
find a new upper limit on the number of flavours (lower
than that at which asymptotic feedom is lost) given by

N?
f (R)max =

d(G)

d(R)
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17 C2(G) + 66 C2(R)

10 C2(G) + 30 C2(R)
. (11)

4

R T(R) C2(R) d(R) N(R)max

F 1
2

N2�1
2N N 11N

2

G N N N2 � 1 11
4

Sn
(N�1)(N+n)(N+n�1)!
2N(N2�1)(n�1)!(N�1)!

n(N�1)(N+n)
2N

(N+n�1)!
n!(N�1)!

11N2(N+1)(n�1)!(N�1)!
2(N+n)(N+n�1)!

An
(N+1)(N�n)(N�1)!

2(N2�1)(N�n)!(n�1)!
n(N�n)(N+1)

2N
N !

n!(N�n)!
11N(n�1)!(N�n)!
2(N�n)(N�2)!

R1
N2�4

6
2(N2�4)

N
(N�1)N2(N+1)

12
33N

2(N2�4)

R2
N2�3

2
3(N2�3)

2N
(N�1)N(N+1)

3
11N

2(N2�3)

R3
(N�2)(3N+1)

2
(N�1)(3N+1)

2N
(N�2)N(N+1)

2
11N

2(N�2)(3N+1)

TABLE I. Group theory factors for SU(N) gauge theory representations and the maximum number of flavours for asymptotic
freedom to be present at one loop. For SU(2) only the F,G and Sn represntations exist (here G = S2). For SU(3) the A2 = F ,
G = R2 and R3 = S2. For SU(4) the R2 becomes distinct and R3 = R2. For Nc > 5 all the representations are distinct.

together (2) and this factor of 2 we find a critical value
of ↵ for chiral symmetry breaking

↵c =
⇡

3 C2(R)
. (4)

We can now perform a very simple computation, al-
beit improperly extending the one loop results beyond
the perturbative regime. We assume that at a scale ⇤�SB

the SU(N) theory with N(R) fermions in a given repre-
sentation has ↵ = ↵c. We assume that at this scale the
fermions will become massive and should be integrated
from the IR theory below ⇤�SB . Now we are left in the
IR with a pure glue theory which runs with b0 = 11N/6⇡
so

↵(Q2) =
↵c

1 + bglue0 ↵c log(Q/⇤�)
, (5)

and the IR pole is then given by

⇤pole = ⇤�SBexp

"
1

bglue0 ↵c

#
. (6)

We can combine these equations, to obtain and expres-
sion for the ratio of the two scales

R(R) =
⇤�SB

⇤pole
= exp

✓
9

11

N2 � 1

N

T (R)

d(R)

◆
. (7)

We will use this R(R) as a measure of the gap between
the confinement scale and the chiral symmetry breaking
scale. It is crude because: the perturbative results may
not be a good description of the non-perturbative regime;
confinement may happen before the Yang Mills theory
pole (lowering the gap); the fermions may not sharply de-
couple from the running (potentially increasing the gap
between the scales); and at strong coupling the two phe-
nomena might become intertwined triggering each other.
Nevertheless it stands as a straw man that can be used
to ask questions on precisely these points.

2. Conformal Window Constraint

There is one additional constraint on the maximum
number of Nf (R) that we will note. It has been sug-
gested [34, 35] that some of these theories have IR fixed
points and if the fixed point value lies below ↵c then they
live in the “conformal window” and will not break chiral
symmetry, nor confine. For example the two loop beta
function result for ↵ is [35]

µ
d↵

dµ
= �b0↵

2 � b1↵
3 , (8)

with

b1 =
1

24⇡2

 
34C2

2 (G)�
X

R

(20C2(G)+

12C2(R))T (R)N(R)

◆
.

(9)

� vanishes at the fixed point so when

↵? = � b0
b1

. (10)

Now one can compare this to the value of ↵c. We now
find a new upper limit on the number of flavours (lower
than that at which asymptotic feedom is lost) given by

N?
f (R)max =

d(G)

d(R)

C2(G)

C2(R)

17 C2(G) + 66 C2(R)

10 C2(G) + 30 C2(R)
. (11)



The numbers are Nf for AF 
and Nf not to lie in the CW 
below gc



Fundamental matter has a 
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this is not observable…
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lattice SU(3) Nf=2 had a gap 
between confinement and chiral 
symmetry breaking of 8!



Now lattice results suggest in 
continuum limit it is conformal…

But what about the Nf=1 theory?



Anomaly Alert!!!

Nf=1 theories have anomalous chiral symmetries… so 
how can you look for chiral symmetry breaking?

The anomaly’s size is determined by the vev of

Which might also be of order the confinement scale… 
if there’s a big gap then the symmetry may effectively 
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FIG. 1. Plot of R(R) = ⇤�SB/⇤pole against Nc for various single representation theories: we have used red for the fundamental,
green for the adjoint, cyan for the rank-2 symmetric, gray for three-rank symmetric, gold for the rank-2 antisymmetric, pink for
the A3, maroon for the A4, and blue, orange, black for the R1,2,3 respectively. The points are marked by the maximum number
of flavours for which the theory is asymptotically free and the lower number of flavours that marks the last chiral symmetry
breaking theory before the conformal window begins.

3. Results and Outlook for One Representation SU(Nc)

In Figure 1 we plot the ratio R = ⇤pole/⇤�SB , which
measures the split between the chiral symmetry breaking
scale and the confinement scale, for all the asymptoti-
cally free theories containing the representations we have
listed. The points are labelled by the (integer) maximum
value of flavours N(R) for the theory to be asymptoti-
cally free. For SU(2) where representations are real, and
generically for the real adjoint representation, we allow
1/2 integer values of Nf . We also include in the label the
maximum number of flavours for the theory to lie below
the conformal window at the level of the two loop ap-
proximation - this is the second number associated with
each point in Figure 1.

An important point to note here is that we include the-
ories with Nf = 1, 1/2 where the axial symmetry is ex-
pected to be anomalous. The reason is that the anomaly
is driven by the operator TrF F̃ but this vacuum expecta-
tion value may be associated with the confinement scale.
If there is a big gap between the confinement and chiral
symmetry breaking scales then the anomaly may be a

minor issue at the fermion condensation scale.
Note that in the large-N limit we can explicitly com-

pute the limiting value for the ratio of scales for the 4
representations that remain asymptotically free at large
N

R(F ) = e
9
11 = 2.27, R(G) = e

18
11 = 5.14

R(S2) = e
18
11 = 5.14, R(A2) = e

18
11 = 5.14

(12)

We will now review our results and relevant lattice
simulation results. Note that the lattice e↵ort to date
has largely been concentrated on Beyond the Standard
Model (BSM) physics and seeking walking gauge theo-
ries. This is neccesarily challenging on the lattice since
these theories have an indistinct chiral symmetry break-
ing scale (the coupling runs slowly at ↵c) and there can
be a large gap in scales between the weak coupling and
chiral symmetry breaking scale. Whether a theory lives
in the conformal window or breaks chiral symmetry at a
low scale is often hard to determine so many questions
remain to be resolved.
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(n 0 0 · · · 0 0) (1 0 0 · · · 0 1) (0 0 0 · · · 1 · · · 0 0)

R1 R2 R3

N
�
3

(0 2 0 · · · 0), (1 1 0 · · · 0 0) (1 0 · · · 0 1 0)

Theories with fermions in these representations only
are asymptotically free.

1. R = ⇤pole/⇤�SB

To progress we must now specify a criteria for chiral
symmetry breaking. We follow the logic of the papers
[30, 34, 35]. For example, in the holographic models if
one relates the mass squared of the scalar in AdS5 to the
dimension of the operator in the perturbative regime one
has

m2 = �(�� 4)
= (3� �)(�� � 1)
' �3� 2�.

(3)

Thus extrapolating the perturbative result for � to the
non-perturbative regime leads to the BF bound being
violated when the perturbative running � = 1/2. Putting
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Fundamental Matter: To begin to place the plot in Fig-
ure 1 in context let us begin by considering the case of
fundamental representation fermions. Here the plot has
R ' 2 in all cases. However, we know of no lattice results
that have claimed to see a clear distinction between the
chiral and deconfinement transition at finite temperature
(see for example [13, 14]). We must therefore take R = 2
to represent no observable gap.

There has been considerable work on studying SU(3)
theories with varying numbers of fundamental fields. The
Nf = 8 theory is known to likely break chiral symmetries
[42–44]. The Nf = 12 theory is likely in the conformal
window (with g2⇤ = 6.2(2) [45–48]) . Recent work [49] has
centred on testing Nf = 10 with hints that it lies in the
conformal window or has a very slow IR running. The
two loop prediction that the critical value of Nf is 11 is
still a reasonable estimate. SU(2) theories have also been
studied - see [50]. Here signs of IR fixed point behaviour
are observed above Nf = 6 so the two loop prediction for
the edge of the conformal window may be a little high.

Adjoint Matter: for which R = 5 for all Nc might be the
first case on our plot when we begin to have some confi-
dence that an observable gap could be found. The SU(3)
theory with two Dirac flavours has been studied on the
lattice in [51] and there a gap size of a factor of 8 is found
between the confinement and chiral symmetry breaking
scales (the former is a first order transition, whilst the lat-
ter is continuous). That study provides strong support
for the hypothesis that the two phenomena are separated.
That the gap size is larger than we predict is also possibly
evidence that at strong coupling the fermions do not de-
couple sharply from the running below their mass scale,
but continue to slow the running to the IR Yang Mills
theory pole. This should be caveated by the possibility
the theory is rather walking above the chiral symmetry
breaking scale [52] which makes lattice simulations hard
- [51] may not have corresponded to the continuum limit.

SU(2) theories with Nf=2 [53–55] and Nf=1 [56] have
also been simulated each showing some signs of fixed
point beahviour but as yet no concrete obeservation of
chiral symmetry breaking has been reported.

We also note that the case of a single Weyl adjoint
degree of freedom is the N = 1 super Yang-Mills theory
which has also been studied on the lattice [57] - here the
second order transition with temperature for both the
Polyakov loop and the chiral condensate appear to occur
at the same scale (within the errors). That this case is
di↵erent is not surprising because the supersymmetry ties
glueballs and gluino balls into the same supersymmetric
multiplets [58] so the supersymmetry will naturally bring
the two scales together, physics our computations totally
miss.

Sextet Matter: here we predict a potentially observable
gap between confinement and chiral symmetry breaking
as for the adjoint matter fields. There has been consider-
able interest in the SU(3) Nf = 2 theory since it might be

rather walking above the chiral symmetry breaking scale.
In [59] with Wilson fermions a gap between confinement
and chiral symmetry breaking was not observed. On the
other hand in [60] with staggered fermions a gap was ob-
served. Work since these papers [61–63] has centred on
determining how walking the dynamics is with su�cient
suggestion of slow running to make lattice results hard
to confidently interpret at this stage. The focus to date
has been on looking for walking dynamics but it might
be interesting to study for example SU(6) with Nf = 2
which is likely away from the edge of the conformal win-
dow. That theory might clarify the size of the gap if one
is interested in the confinement versus chiral symmetry
breaking separation.

More exotic representations: We also have predictions
for representations that have not been studied yet on the
lattice. The R2 and R3 representations are only asymp-
totically free for particular choices of Nc and then likely
in the conformal window. The predictions here would
be for gaps between confinement and chiral symmetry
breaking like that for the adjoint representation. The
SU(4) Nf = 1, R1 theory is of more interest since that
theory is predicted to have a gap of over 11 which could
be straightforward to see on the lattice at finite temper-
ature where one might observe chiral symmetry breaking
but no sign of confinement even at quite low tempera-
tures. Finally the S3 theories stand out for having gaps
above 20. Only the SU(2) theory with a single Weyl
fermion is likely outside the conformal window though.
That theory where the S3 is only 4 dimensional might
though also be of interest to study.

The interesting theories with large gaps between con-
finment and chiral symmetry breaking are likely (or have
already proven) hard to study in lattice simulations be-
cause of the potentially slow running above the chiral
symmetry breaking scale and the closeness of the critical
coupling to the fixed point value. For example consider
the following data for four of the theories

SU(3), F , Nf = 3 b0 = 1.43 ↵c = 0.79 ↵⇤ = 1

SU(3), G, Nf = 2 b0 = 0.48 ↵c = 0.35 ↵⇤ = 0.42

SU(4), R1, Nf = 1 b0 = 0.64 ↵c = 0.17 ↵⇤ = 0.22

SU(2), S3, Nf = 0.5 b0 = 0.64 ↵c = 0.28 ↵⇤ = 1.97

The first is QCD and has fast running from the per-
turbative regime (large b0) and a critical coupling below
the fixed point value (which is formally infinite). It has
a very clear distinction in phase between the perturba-
tive regime and the strong coupling regime and the chiral
symmetry breaking scale is associated with fast running
so clear cut. The SU(3) model with adjoints and the
SU(4) model with R1 both run more slowly from the per-
turbative regime but crucially have the critical coupling



SU(2) with Nf=1/2       S3 4d
looks interesting… 
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Do I believe these simple models have a gap?  Really not sure… the operators that cause 
confinement and chiral symmetry breaking will interact at strong coupling and may trigger 
each other to condense…

But the very largest gap theories may be weakly enough coupled at the chiral symmetry 
breaking scale to avoid this…

So…

Two Representation Theories

Lattice studies already propose a 20% 
difference in the gaps in multi-rep theories… 
can we use the walking nature of fermions 
between the two scales to delay 
confinement?

Now the red lines are the scales at which the 
two different representations condense…

Confinement is lower yet…



I’m not the first….
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Proposed that if a gap of 100 could be generated then a 
higher dimension rep of QCD could condense to break the 
electroweak symmetry…

QCD = technicolour!

(I wish this was true!)



Consider SU(Nc) with NfR = 1, ½ of some higher rep + 
NfF fundamentals….

We use the 2-loop results to run from gc(R) to gc(F)

We tune NfF to maximize the gap whilst keeping the 
full theory out of the conformal window…

Note one could argue the gap to confinement is 
Q(R) . R(R)
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very close to the fixed point value making the chiral sym-
metry breaking scale indistinct. This has actually been
the motivation to study the adjoint theory but neccesar-
ily makes the job on the lattice extremely hard. From
the perspective of just observing the gap between con-
finement and chiral symmetry breaking the SU(2) theory
with an S3 looks much easier to study since the critical
coupling lies quite below the fixed point value so the chi-
ral symmetry breaking scale should be easier to identify.

III. TWO-REPRESENTATION THEORIES

In this section we will move to considering gauge theo-
ries with the matter fields distributed in two distinct and
inequivalent representations of the gauge group. Such
theories are starting to become of interest because they
may play role in composite higgs [64], composite dark
matter [65] and composite inflation [66] models. As a
result there are already some lattice simulation of such
theories. Here our interest began as whether we could
construct a model where a higher dimension representa-
tion condenses at one scale leaving a conformal window
theory below the scale where the higher representation
was integrated out. Such a theory essentially would never
confine although it would have chiral symmetry breaking.
In fact at the level of the approximations we use we have
not found any examples of this behaviour.

In spite of this one can achieve theories where a higher
dimension representation condenses leaving a theory with
a somewhat slow running coupling at lower scales that
generates a sizable gap before the lower dimensional rep-
resentation condenses and then presumably confinement
sets in. We will concentrate on theories where the lowest
dimension representation is the fundamental since every
added flavour here has the smallest possible change on
the beta function coe�cients, giving the most ability to
tune the running. Further since we want to be able to
add as many as we possibly can to bring the theory with
just fundamentals towards the conformal window, we add
the minimum number of flavours of the higher dimension
representation. That is one Dirac spinor for complex rep-
resentations and one Weyl spinor for real representations
(we label this as 1/2 a Dirac spinor in plots) - in fact we
will also show results for 1 Dirac flavour in the case of
the adjoint representation to highlight the di↵erence.

We proceed to perform another straightforward com-
putation based on the perturbative running results in a
gauge theory with Nf fields in the fundamental represen-
tation plus one (or a 1/2) in the higher representations
from the previous section. Again here we assume that if
the confinement scale lies far below the confinement scale
then we can neglect the axial anomaly. We compute b0
(1) and b1 (9) in the theory with both representations
present to check the theory is asymptotically free, but
also that the IR fixed point value (10) lies above the crit-
ical coupling for the higher dimension representation ↵R

c
(4). We then ask what is the maximum value of Nf such
that ↵⇤ > ↵R

c . In that theory we assume that at some

scale ⇤�SB R the coupling has run equal to ↵R
c and the

heavy fermions are integrated out. Next we run the cou-
pling numerically into the IR for the theory with just
the (maximal number of Nf ) fundamentals. We ask at
what scale, ⇤�SB F it reaches the critical coupling for
the fundamental fields.
The ratio of these two scales which we denote by Q(R)

Q(R) =
⇤�SB R

⇤�SB F
(13)

is the gap between the two condensation scales for the
given representation R. Since we expect the confinement
scale to lie below ⇤�SB F , this also measures the gap
between the chiral symmetry breaking scale for R and
the confinement scale. Note that the gap to the pole of
the theory is given by R(R)Q(R) and using the results
of Figure 1 the gap to confinement could be bigger than
just Q(R).
We present our results in Figure 2, where we display

the maximum value of Q(R) we can find by varying NF
f

as a function of Nc for each possible representation R.
We label the points by the number of Dirac fermions in
the fundamental representation which has been used to
maximize the gap.
One immediately sees that there are many theories

with adjoint, S2 or A2 representations that have gaps
in excess of a factor of ten. Adding four fundamentals
to the SU(2) theory with an S3 raises the gap to over a
factor of 30. The convincing discovery of such a gap in a
lattice simulation would certainly show confinement and
chiral symmetry breaking to be totally separate phenom-
ena.
We must be careful though because by tuning the gap

large we are also potentially making life harder for lattice
simulations. As an example lets consider SU(3) with a
single Weyl fermion in the adjoint. This is just N=1 super
Yang Mills. Now we can consider adding fundamental
fermions (which breaks supersymmetry) to observe the
gap growing - here our b0, ↵c and ↵⇤ are for the theory
with both representations present above the first chiral
symmetry breaking transition for the adjoint:

NF
f =0 b0=1.43 ↵c=0.35 ↵⇤=1

NF
f =4 b0=1.01 ↵c=0.35 ↵⇤=1 ⇤�SB R

⇤�SB F
= 2.6

NF
f =8 b0=0.58 ↵c=0.35 ↵⇤=0.97 ⇤�SB R

⇤�SB F
=5.8

NF
f =10 b0=0.37 ↵c=0.35 ↵⇤=0.40 ⇤�SB R

⇤�SB F
=20.3

The NF
f = 0 theory is QCD-like with fast running

(large b0) and ↵c ⌧ ↵⇤. As we add in fundamental fields
we slow the running (b0 decreases) and ↵⇤ falls, as the
gap between chiral symmetry breaking for the two rep-
resentations widens. The NF

f = 10 theory has ↵c very
close to ↵⇤ and the lattice will most likely struggle to
identify the point. The NF

f = 8 theory might represent



Big gaps in lots of cases!!!



But a lot of these theories 
are very walking above the 
highest scale…
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just fundamentals towards the conformal window, we add
the minimum number of flavours of the higher dimension
representation. That is one Dirac spinor for complex rep-
resentations and one Weyl spinor for real representations
(we label this as 1/2 a Dirac spinor in plots) - in fact we
will also show results for 1 Dirac flavour in the case of
the adjoint representation to highlight the di↵erence.

We proceed to perform another straightforward com-
putation based on the perturbative running results in a
gauge theory with Nf fields in the fundamental represen-
tation plus one (or a 1/2) in the higher representations
from the previous section. Again here we assume that if
the confinement scale lies far below the confinement scale
then we can neglect the axial anomaly. We compute b0
(1) and b1 (9) in the theory with both representations
present to check the theory is asymptotically free, but
also that the IR fixed point value (10) lies above the crit-
ical coupling for the higher dimension representation ↵R

c
(4). We then ask what is the maximum value of Nf such
that ↵⇤ > ↵R

c . In that theory we assume that at some

scale ⇤�SB R the coupling has run equal to ↵R
c and the

heavy fermions are integrated out. Next we run the cou-
pling numerically into the IR for the theory with just
the (maximal number of Nf ) fundamentals. We ask at
what scale, ⇤�SB F it reaches the critical coupling for
the fundamental fields.
The ratio of these two scales which we denote by Q(R)

Q(R) =
⇤�SB R

⇤�SB F
(13)

is the gap between the two condensation scales for the
given representation R. Since we expect the confinement
scale to lie below ⇤�SB F , this also measures the gap
between the chiral symmetry breaking scale for R and
the confinement scale. Note that the gap to the pole of
the theory is given by R(R)Q(R) and using the results
of Figure 1 the gap to confinement could be bigger than
just Q(R).
We present our results in Figure 2, where we display

the maximum value of Q(R) we can find by varying NF
f

as a function of Nc for each possible representation R.
We label the points by the number of Dirac fermions in
the fundamental representation which has been used to
maximize the gap.
One immediately sees that there are many theories

with adjoint, S2 or A2 representations that have gaps
in excess of a factor of ten. Adding four fundamentals
to the SU(2) theory with an S3 raises the gap to over a
factor of 30. The convincing discovery of such a gap in a
lattice simulation would certainly show confinement and
chiral symmetry breaking to be totally separate phenom-
ena.
We must be careful though because by tuning the gap

large we are also potentially making life harder for lattice
simulations. As an example lets consider SU(3) with a
single Weyl fermion in the adjoint. This is just N=1 super
Yang Mills. Now we can consider adding fundamental
fermions (which breaks supersymmetry) to observe the
gap growing - here our b0, ↵c and ↵⇤ are for the theory
with both representations present above the first chiral
symmetry breaking transition for the adjoint:

NF
f =0 b0=1.43 ↵c=0.35 ↵⇤=1

NF
f =4 b0=1.01 ↵c=0.35 ↵⇤=1 ⇤�SB R

⇤�SB F
= 2.6

NF
f =8 b0=0.58 ↵c=0.35 ↵⇤=0.97 ⇤�SB R

⇤�SB F
=5.8

NF
f =10 b0=0.37 ↵c=0.35 ↵⇤=0.40 ⇤�SB R

⇤�SB F
=20.3

The NF
f = 0 theory is QCD-like with fast running

(large b0) and ↵c ⌧ ↵⇤. As we add in fundamental fields
we slow the running (b0 decreases) and ↵⇤ falls, as the
gap between chiral symmetry breaking for the two rep-
resentations widens. The NF

f = 10 theory has ↵c very
close to ↵⇤ and the lattice will most likely struggle to
identify the point. The NF

f = 8 theory might represent

EG SU(3) N=1 SQCD plus susy breaking fundamentals….

Nf = 4,8 look easier to study than 10…



EG SU(3) Nf=1 sextet plus fundamentals….

Nf
F=0        b0 = 1.220        ac=   0.314       a*= infinity     

Nf
F=4        b0 = 0.796        ac=   0.314       a*= 1.96              Q(R) = 3.15         

Nf
F=8        b0 = 0.371        ac=   0.314       a*= 0.354            Q(R) = 8.2         
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   1 adjoint + NfF fundamentals

An alternative measure of how 
walking the UV theory is

SHEP-09-**

Stu↵

Nick Evans1

1
School of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ, UK

evans@soton.ac.uk, k.kim@soton.ac.uk

S =
⇤↵c/2

⇤↵c

�̈x = �!2�x

!2 =
V

00

m

(x+ �x)n = xn + nxn�1�x+ ...

df(x)

dx
=

lim

�x ! 0

xn + nxn�1�x� xn

�x

df(x)

dx
=

lim

�x ! 0

f(x+ �x)� f(x)

�x

d cosx

dx
=

lim

�x ! 0

cos(x+ �x)� cosx

�x

=
cosx cos �x� sinx sin �x� cosx.

�x

=
cosx� sinx �x� cosx.

�x

= � sinx

MEarth
v2Earth

REarth
=

G MEarth MSun

R2
Earth

v2Earth =
G MSun

REarth
=

(2⇡REarth)2

(365 days)2

L = m+
c

⇢2

0

BBBBBB@

Ur

Ug

U b

UR

UB

UG

1

CCCCCCA
!

0

BBBBBB@

tr

tg

tb

UR

UB

UG

1

CCCCCCA

y LtRh ! g2

M2
 ̄LtRŪR L
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Finite T signal: 

Introduce finite T and there should be a deconfined massive quark phase…

It’s possible that all these theories have such a phase at the right T, mu…

cSBing scale

Temperature scale

confinement scale



Decoupling at Strong Coupling 

In this analysis we have assumed that quarks decouple 
at IR scales below their (dynamical)  mass.

Holography hints that decoupling at strong coupling may 
be less sharp… if the effect of the quark loops persist 
further into the IR then gaps may grow…

Help from the lattice needed – again the size of the gaps 
in the theories above will help dis-entangle this issue…



Conclusion 

We’ve made some very naïve arguments here based on perturbative 
results extended beyond their regime of true validity… the dynamics may 
close these gaps (interesting!)…

But the questions are very pertinent and interesting (and influence our 
view of QCD)... And we may have shown the lattice where to look to 
resolve these issues...

Studies are under way:  Lucini SU(3) with 1 adjoint.
Rummukainen, Kari.  SU(2) with 1 adjoint
Bergner & Piemonte: ½ adjoint + fundamental

We simply seek to encourage these studies – they are very interesting!!

And maybe QCD at finite µ has a deconfined massive quark phase… quark 
cores of neutron stars… LIGO/Virgo signals… see NEs holographic work…
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Curator: Nick Evans (University of Southampton),...

Asymptotically free, non-abelian gauge theories with fermionic matter underly our understanding
of quantum theories of force. The strong nuclear force is described by an SU(3) gauge theory; the
weak nuclear force by an SU(2) gauge theory. The catagorisation of these theories is likely to be
important for understanding physics beyond the Standard Model but is in anycase an interesting
field theoretic problem in itself. There are potentially theories which behave rather differently than
QCD and understanding these theories will help test our understanding of QCD. Here we provide
links that overview the state of knowledge in the field.
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|X| = L   is now the  dynamical field whose solution will determine the 
condensate as a function of m  - the phase is the pion.

We use the top-down IR boundary condition on mass-shell:      X’(r=X) = 0

X enters into the AdS metric to cut off the radial scale at the value of m or the 
condensate – no hard wall

The gauge DYNAMICS is input through a guess for Dm

The only free parameters  are Nc, Nf, m, L

Dynamic AdS/YM Timo Alho, NE, KimmoTuominen    
1307.4896



Formation of the Chiral Condensate

We solve for the vacuum 
configuration of L

Shoot out with

L’(r =L) = 0

Read off m 
and  qq in 
the UV…

3 Two-flavour QCD

To demonstrate the Dynamic AdS/YM model and the role of HDOs, we begin with a study

of Nc = 3, Nf = 2 QCD. We first determine the vacuum of the theory for the massless theory

by finding the function L(⇢) using eq. (2.4). Then we compute the spectrum of the model by

looking at fluctuations, study the quark mass dependence and the n dependence of excited

states. Finally we consider introducing a cut o↵ where the theory runs to a perturbative

regime and include HDOs at that scale to improve the IR description.

The key input for any theory we study is the form of � we input in eq. (2.6). The formulae

for the one and two-loop coe�cients of the �-function and the one-loop anomalous dimension

for QCD are, with Nf the number of Weyl flavours in the fundamental and N̄f the number

in the anti-fundamental representations

b0 =
1

6⇡

�
11Nc � (Nf + N̄f )

�
,

b1 =
1

24⇡2

✓
34Nc

2
� 5Nc(Nf + N̄f )�

3

2

Nc
2
� 1

Nc
(Nf + N̄f )

◆
,

� =
3(Nc

2
� 1)

4Nc⇡
↵ .

(3.1)

We choose an initial value for ↵(µ = 1) = 0.65 for the numerical analysis but will set the

scale with the ⇢-meson mass below. The resulting running of �m2 in the Dynamic AdS/QCD

model is shown in fig. 1 on the left - the BF bound is violated close to the scale r = µ = 1.

We can now compute the vacuum for the theory by solving eq. (2.4) subject to the

boundary conditions in eq. (2.10). We solve the equation numerically and show the results

on the right in fig. 1 for di↵erent asymptotics of L(⇢) corresponding to di↵erent UV masses.

-5 5 10
ln(�)
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-0.5

�m2

2 4 6 8 10
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0.5

1.0
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Figure 1: The Nc = 3, Nf = 2 QCD model: on the left we display the running of the AdS

scalar mass �m2 against log RG scale (we use µ =
p
⇢2 + L2 in the holographic model). On

the right we show the the vacuum solution for |X| = L(⇢) against ⇢. The 45� line is where

we apply the on mass shell IR boundary condition in eq. (2.10). The L(⇢) with a massless

UV quark has LIR = 0.43. The quark masses from top to bottom are 1, 0.75, 0.5, 0.25, 0.05,

0. Here units are set by ↵(⇢ = 1) = 0.65.
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Meson Fluctuations

The source free solutions pick out 
particular mass states… the s and its 
radial excited states…

The gauge fields let us also study  the operators and states 



Sp(4) 4 F 6 A2 Consider our quenched model against 
the lattice quenched results of

AdS/Sp(4) AdS/Sp(4) AdS/Sp(4) lattice [78] lattice [79] AdS/Sp(4)

no decouple A2 decouple quench quench unquench + NJL

f⇡A2 0.120 0.120 0.103 0.1453(12) 0.120

f⇡F 0.0569 0.0701 0.0756 0.1079(52) 0.1018(83) 0.160

MV A2 1* 1* 1* 1.000(32) 1*

fV A2 0.517 0.517 0.518 0.508(18) 0.517

MV F 0.61 0.814 0.962 0.83(19) 0.83(27) 1.03

fV F 0.271 0.364 0.428 0.411(58) 0.430(86) 0.449

MAA2 1.35 1.35 1.28 1.75 (13) 1.35

fAA2 0.520 0.520 0.524 0.794(70) 0.520

MAF 0.938 1.19 1.36 1.32(18) 1.34(14) 1.70

fAF 0.303 0.399 0.462 0.54(11) 0.559(76) 0.449

MSA2 0.375 0.375 1.14 1.65(15) 0.375

MSF 0.325 0.902 1.25 1.52 (11) 1.40(19) 0.375

MBA2 1.85 1.85 1.86 1.85

MBF 1.13 1.53 1.79 1.88

Table 4: AdS/Sp(4) 4F, 6A2. Ground state spectra and decay constants for our various

holographic models and comparison to lattice results - we use the subscript A2 and F for the

quantity in each of the two di↵erent representation sectors. Note here for the unquenched

lattice results, which do not include the A2 fields, we have normalized the F vector meson

mass to that of the quenched computation.

Similarly we split the normalizations for the external currents in eq. (2.17).

We show the resulting spectrum for each of the cases we consider in Table 4 for the case

where all fermion representations are massless.

In each case, without a NJL term, the bound states of the A2 fields are heavier and

have higher decay constants than those made of the fundamental fields F , reflecting the A2s’

higher condensation scale. The separation in scale between the two sectors does depend quite

strongly on the decoupling assumptions. If the A2s are not decoupled at all, the separation,

as measured by the vector meson masses, is almost a factor of two whilst in the quenched

limit it barely exists. The slowing of the running of the gauge coupling with the inclusion of

flavours is important. The case where the A2s are integrated out at their IR mass scale lies

between these two extremes.

The greatest impact in the spectrum shows up in the scalar meson (S) masses. The rate

of running measures the departure from conformality which shows up in the flatness of the

e↵ective potential for the quark condensates. The slower the running the lighter the resultant

scalar - here there is as much as a factor of four in the prediction.

When the NJL term is used to enforce equal IR mass scales for the two fermion species

the bound states of the fundamental fields become just slightly heavier than those with A2
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holographic model over estimates the top partner mass by 30%.

There is lattice data for an additional spin zero state made of four quarks (either all

F s or all A2s), that we refer to as a tetraquark, and denote as the J in table 5. We have

computed the mass of such a state using eq. (2.23) - here the holographic prediction is that

the F and A2 tetraquarks’ masses lie within 10%. In contrast the lattice prediction suggests

a factor of two between the masses of the states. It is hard to understand how such a large

separation could occur when the constituent quark masses are very similar for the F s and A2

as measured by the vector meson masses. It would be interesting to look into the origin of

the splitting in the lattice simulations further.

Finally in fig. 16 we display the M⇡ dependence of the spectrum in the non-decoupling

scenario although here we do not have lattice data for comparison.

Lattice [80] AdS/SU(4) AdS/SU(4) AdS/SU(4) AdS/SU(4) AdS/SU(4) AdS/SU(4)

4A2, 2F, 2F̄ 4A2, 2F, 2F̄ 4A2, 2F, 2F̄ 5A2, 3F, 3F̄ 5A2, 3F, 3F̄ 5A2, 3F, 3F̄ 5A2, 3F, 3F̄

unquench no decouple decouple no decouple decouple quench + NJL

f⇡A2 0.15(4) 0.0997 0.0997 0.111 0.111 0.102 0.11

f⇡F 0.11(2) 0.0949 0.0953 0.0844 0.109 0.892 0.139

MV A2 1.00(4) 1* 1* 1* 1* 1* 1*

fV A2 0.68(5) 0.489 0.489 0.516 0.516 0.517 0.516

MV F 0.93(7) 0.933 0.939 0.890 0.904 0.976 1.02

fV F 0.49(7) 0.458 0.461 0.437 0.491 0.479 0.495

MAA2 1.37 1.37 1.32 1.32 1.28 1.32

fAA2 0.505 0.505 0.521 0.521 0.522 0.521

MAF 1.37 1.37 1.21 1.23 1.28 1.46

fAF 0.501 0.504 0.453 0.509 0.492 0.489

MSA2 0.873 0.873 0.684 0.684 1.18 0.684

MSF 1.03 1.02 0.811 0.798 1.25 0.815

MJA2 3.9(3) 2.21 2.21 2.21 2.21 2.22 2.21

MJF 2.0(2) 2.07 2.08 1.97 2.00 2.17 2.24

MBA2 1.4(1) 1.85 1.85 1.85 1.85 1.86 1.85

MBF 1.4(1) 1.74 1.75 1.65 1.68 1.81 1.88

Table 5: SU(4) theories - the spectrum in a variety of scenarios and lattice data for com-

parison.
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The pattern is 
right…

The A2-F gap is 
very well 
described…

Adding extra 
flavours is not a 
huge change…

Scalar masses get 
lighter as add 
extra flavours
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