

Pushing to New Particle Energy Frontiers with Plasma Wakefield Acceleration

Physics Colloquium Johannes Gutenberg University Mainz December 7, 2021

Edda Gschwendtner, CERN

Outline

- Motivation
- Introduction to Plasma Wakefield Acceleration
- State of the Art
- The AWAKE Experiment
 - Results of AWAKE Run 1
 - AWAKE Run 2
- Applications with AWAKE-Like Scheme
- Outlook

Motivation: High Energy Accelerators

• Large list of unsolved problems:

- Understand the origin of the universe
 - What is dark matter made of? What is the reason for the baryon-asymmetry in the Universe? etc...
 - → With increasing particle energies, we can probe earlier times in the evolution of the Universe.

→ Need particle accelerators with new energy frontier

ERANCI

and the second state of th

12005

LHC 27 km

CERN Prevessi

Higgs Particle discovery in 2012 at CERN Nobel Prize 2013

ATLAS

E. Gschwendtner, CERN

CMS

Discover New Physics

→ Bigger accelerators: circular colliders

Future Circular Collider: FCC

Limitations of conventional circular accelerators:

- For hadron colliders, the limitation is magnet strength. Ambitious plans like the FCC call for 16 T magnets in a 100 km tunnel to reach 100 TeV proton-proton collision energy.
- For electron-positron colliders: Circular machines are limited by synchrotron radiation in the case of positron colliders. These machines are unfeasible for collision energies beyond ~350 GeV.

$$P_{synchr} = \frac{e^2}{6\pi\varepsilon_0 c^7} \frac{E^4}{R^2 m^4}$$

Discover New Physics

Linear colliders are favorable for acceleration of low mass particles to high energies.

CLIC, electron-positron collider with 3 TeV energy

Limitations of linear colliders:

 Linear machines accelerate particles in a single pass. The amount of acceleration achieved in a given distance is the *accelerating gradient*. This number is limited to 100 MV/m for conventional copper cavities.

Why Plasma Wakefield Acceleration?

Conventional Acceleration Technology: Radiofrequency Cavities

LHC Cavity

(invention of Gustav Ising 1924 and Rolf Wideroe 1927)

- Very successfully used in all accelerators (hospitals, scientific labs,...) in the last 100 years.
- Typical gradients:
 - LHC: 5 MV/m
 - ILC: 35 MV/m
 - CLIC: 100 MV/m
- However, accelerating fields are limited to <100 MV/m
 - In metallic structures, a too high field level leads to break down of surfaces, creating electric discharge.
 - Fields cannot be sustained; structures might be damaged.
- several tens of kilometers for future linear colliders

Plasma Wakefield Acceleration

→ Acceleration technology, which obtains ~1000 factor stronger acceleration than conventional technology.

Outline

- Motivation
- Introduction to Plasma Wakefield Acceleration
- State of the Art
- The AWAKE Experiment
 - Results of AWAKE Run 1
 - AWAKE Run 2
- Applications with AWAKE-Like Scheme
- Outlook

Plasma Wakefield

What is a plasma?

What is a plasma wakefield?

Quasi-neutrality: the overall charge of a plasma is about zero.

Collective effects: Charged particles must be close enough together that each particle influences many nearby charged particles.

Electrostatic interactions dominate over collisions or ordinary gas kinetics.

Fields created by collective motion of plasma particles are called plasma wakefields.

Seminal Paper 1979, T. Tajima, J. Dawson

Use a plasma to convert the transverse space charge force of a beam driver into a longitudinal electrical field in the plasma

VOLUME 43, NUMBER 4

PHYSICAL REVIEW LETTERS

23 JULY 1979

Laser Electron Accelerator

T. Tajima and J. M. Dawson Department of Physics, University of California, Los Angeles, California 90024 (Received 9 March 1979)

An intense electromagnetic pulse can create a weak of plasma oscillations through the action of the nonlinear ponderomotive force. Electrons trapped in the wake can be accelerated to high energy. Existing glass lasers of power density 10¹⁸W/cm² shone on plasmas of densities 10¹⁸ cm⁻³ can yield gigaelectronvolts of electron energy per centimeter of acceleration distance. This acceleration mechanism is demonstrated through computer simulation. Applications to accelerators and pulsers are examined.

Collective plasma accelerators have recently received considerable theoretical and experimental investigation. Earlier Fermi¹ and McMillan² considered cosmic-ray particle acceleration by moving magnetic fields¹ or electromagnetic waves.² In terms of the realizable laboratory technology for collective accelerators, present-day electron beams³ yield electric fields of ~10⁷ V/cm and power densities of 10¹³ W/cm². the wavelength of the plasma waves in the wake:

$$L_t = \lambda_w / 2 = \pi c / \omega_p. \qquad (2)$$

An alternative way of exciting the plasmon is to inject two laser beams with slightly different frequencies (with frequency difference $\Delta \omega \sim \omega_p$) so that the beat distance of the packet becomes $2\pi c/\omega_p$. The mechanism for generating the wakes can be simply seen by the following approximate

How to Create a Plasma Wakefield?

Analogy: water → plasma

Boat \rightarrow particle beam (drive beam)

Surfer → accelerated particle beam (witness beam)

E. Gschwendtner, CERN

Plasma Wakefield, Linear Theory

$$\omega_{pe} = \sqrt{\frac{n_{pe} e^2}{m_e \epsilon_0}} \Rightarrow \lambda_{pe} = 2\pi \frac{c}{\omega_{pe}} \Rightarrow \lambda_{pe} \approx 1 \text{ mm} \sqrt{\frac{10^{15} \text{ cm}^{-3}}{n_{pe}}}$$
plasma frequency
plasma wavelength
Example: $n_{pe} = 7 \times 10^{14} \text{ cm}^{-3}$ (AWAKE) $\Rightarrow \omega_{pe} = 1.25 \times 10^{12} \text{ rad/s} \Rightarrow \frac{c}{\omega_{pe}} = 0.2 \text{ mm} \Rightarrow k_{pe} = 5 \text{ mm}^{-1}$
 $\lambda_{pe} = 1.2 \text{ mm} \Rightarrow \text{Produce cavities with mm size!}$

 n_{pe} = 10¹⁶ cm⁻³ $\rightarrow \lambda_{pe}$ = 0.3 mm

Introduction – Accelerating Field, Energy in PWA

The maximum accelerating field (wave-breaking field) is:

$$e E_{WB} = 96 - \frac{V}{m} \sqrt{\frac{n_{pe}}{cm^{-3}}}$$

Example: $n_{pe} = 10^{16} \text{ cm}^{-3} \rightarrow E_{WB} = 10 \text{GV/m}$ Increase gradient by increasing density.

→ Advantage of beam-driven PWFA

→ For LWFA: **dephasing**: laser group velocity depends on plasma density, is slower than c.

- Electron energy reach is limited by dephasing: \rightarrow move to lower densities and longer accelerators
- Lower density needs higher laser power (Significant progress since Chirped Pulse Amplification, CPA, Nobel Prize 2018 to D. Strickland & G. Mourou)

Drive beams:

In order to create plasma wakefields efficiently, the drive bunch length has to be short compared to the plasma wavelength.

→ Relatively easy for Laser and Electron bunches.
 → Proton beam relies on Self-Modulation.

$$E_{acc} = 110 \frac{MV}{m} \frac{N/(2 \times 10^{10})}{(O_z / 0.6 \text{mm})^2}$$

Introduction – Beam Quality in PWA

Different regimes:

- lower wakefields
- transverse forces not linear in r
- + Symmetric for positive and negative witness bunches
- + Well described by theory

Blow-out regime: n_{beam} >> n_{pe}

- + Higher wakefields
- + transverse forces linear in r (emittance preservation)
- + High charge witness acceleration possible
- Requires more intense drivers
- Not ideal for positron acceleration

Beam loading

Sufficient charge in the witness bunch to flatten the accelerating field

 \rightarrow reduce energy spread

Outline

- Motivation
- Introduction to Plasma Wakefield Acceleration
- State of the Art
- The AWAKE Experiment
 - Results of AWAKE Run 1
 - AWAKE Run 2
- Applications with AWAKE-Like Scheme
- Outlook

Laser-Driven Plasma Acceleration Facilities

Facility	Institute	Location	Energy	Peak power	Rep. rate
			(J)	(PW)	(Hz)
ELBE [16]	HZDR	Dresden, Ge	30	1	1
GEMINI [17]	STFC, RAL	Didcot, UK	15	0.5	0.05
LLC [18]	Lund Univ	Lund, Se	3	0.1	1
Salle Jaune [19]	LOA	Palaiseau, Fr	2	0.07	1
UHI100 [20]	CEA Saclay	Saclay, Fr	2	0.08	1
CALA* [21]	MPQ	Munchen, Ge	90	3	1
CILEX* [22]	CNRS-CEA	St Aubin, Fr	10-150	1-10	0.01
ELIbeamlines* [23]	ELI	Prague, TR	30	1	10
ILIL* [24]	CNR-INO	Pisa, It	3	0.1	1
SCAPA* [25]	U Strathclyde	Glasgow, UK	8	0.3	5
ANGUS	DESY	Hamburg, Ge	5	0.2	5

Table 2.3: Laser facilities (≥ 100 TW) performing LWFA R&D in Asia

Facility	Institute	Location	Energy	Peak power	Rep. rate
			(J)	(PW)	(Hz)
CLAPA	PKU	Beijing, PRC	5	0.2	5
CoReLS [28]	IBS	Gwangju, Kr	20-100	1-4	0.1
J-Karen-P* [29]	KPSI	Kizugawa, Jn	30	1	0.1
LLP [30]	Jiao Tong Univ	Shanghai, PRC	5	0.2	10
SILEX*	LFRC	Myanyang, PRC	150	5	1
SULF* [31]	SIOM	Shanghai, PRC	300	10	1
UPHILL [32]	TIFR	Mumbai, In	2.5	0.1	
XG-III	LFRC	Myanyang, PRC	20	0.7	

Table 2.1: US laser facilities (>100 TW) performing LWFA R&D.

Facility	Institute	Location	Gain	Energy	Peak power	Rep. rate
8748 1			media	(J)	(PW)	(Hz)
BELLA [7]	LBNL	Berkeley, CA	Ti:sapphire	42	1.4	1
Texas PW [8]	U. Texas	Austin, TX	Nd:glass	182	1.1	single-shot
Diocles [9]	U. Nebraska	Lincoln, NE	Ti:sapphire	30	1	0.1
Hercules [10]	U. Michigan	Ann Arbor, MI	Ti:sapphire	9	0.3	0.1
Jupiter [11]	LLNL	Livermore, CA	Nd:glass	150	0.2	single-shot

E. Gschwendtner, CERN

Beam-Driven Plasma Acceleration Facilities

Table 3.1: Overview of PWFA facilities

	AWAKE	CLEAR	FACET-II	FF >>	SparcLAB	EuPR@Sparc	CLARA	MAX IV
operation start	2016	2017	2019	2018	2017	2022	2020	tbd
					PWFA, LWFA			
unique contribution	protons	rapid access and operation cycle	high energy peak-current electrons, positrons	MHz rep rate 100kW average power 1 fs resolution bunch diagn. FEL gain tests	PWFA with COMB beam, LWFA external injection, test FEL	PWFA with COMB beam, X-band Linac LWFA ext. inj. test FEL	ultrashort e bunches	low emittance, short pulse, high-density e ⁻ beam
research topic	HEP	instrumentation irradiation AA technology	high intensity e ⁻ , e ⁺ beam driven exp.	high average power e beam driven exp.	PWFA LWFA FEL	PWFA, LWFA, FEL, other applications	FEL	PWFA, Soft X-FELs
user facility	no	yes	yes	no	no	yes	partially	no
drive beam driver energy ext. inject. witness energy	p ⁺ 400 GeV yes 20 MeV	e [—] 200 MeV no na	e 10 GeV no/yes tb ugraded	e ⁻ 0.4-1.5 GeV yes?? 0.4-1.5 GeV	e 150 MeV no 150 MeV	e 600 MeV no 600 MeV	e [—] 240 MeV no na	e ⁻ 3 GeV no 3 GeV
plasma density [cm ⁻³] length plasma tapering	Rb vapour 1-10E14 10 m yes	Ar, He capillary 1E16-1E18 5-20 cm na	Li oven 1E15-1E18 10-100 cm yes	H, N, noble gases 1E15-1E18 1-30 cm yes	H, capillary 1E16-1E18 3 cm yes	H, capillary 1E16-1E18 > 30 cm yes	He, capillary 1E16-1E18 10-30 cm	H, gases 1E15-1E18 10-50cm yes
acc. gradient exp. E gain	1 GeV/m average 1+ GeV	na na	10+ GeV/m peak ≈10 GeV	10+ GeV/m peak ≈1.5 GeV	>1 GeV/m?? 40 MeV ??	>1 GeV/m?? > 500 MeV	na na	10+ GeV/m peak 3 GeV

FACET, SLAC, US – Electrons as Driver SLAC

Premier R&D facility for PWFA: Only facility capable of e⁺ acceleration

- Timeline:
 - Commissioning (2011)
 - Experimental program (2012-2016)
- Key PWFA Milestones:
- \checkmark Mono-energetic e $^{\text{-}}$ acceleration
- \checkmark High efficiency e $^{\text{-}}$ acceleration
- \checkmark First high-gradient e⁺ PWFA
- \checkmark Demonstrate required emittance, energy spread

→ FACET-II starts in 2021

Energy doubling of 42 GeV electrons in a metre-scale plasma wakefield accelerator I. Blumenfeld et al, Nature 455, p 741 (2007) → gradient of 52 GV/m

High-Efficiency acceleration of an electron beam in a plasmas wakefield accelerator, 2014

M. Litos et al., doi, Nature, 6 Nov **2014**, d 10.1038/nature 13882

70 pC of charge accelerated, 2 GeV energy gain, 5 GeV/m gradient → Up to 30% transfer efficiency, ~2% energy spread

- Facility hosted more than 200 users, 25 experiments
- One high profile result a year
- Priorities balanced between focused plasma wakefield acceleration research and diverse user programs with ultrahigh fields
- Unique opportunity to develop future leaders

9 GeV energy gain in a beamdriven plasma wakefield accelerator *M Litos et al* **2016** *Plasma Phys. Control. Fusion 58 034017*

Positron Acceleration, FACET

Positrons for high energy linear colliders: high energy, high charge, low emittance.

Electron-driven blowout wakes:

But the field is defocusing in this region.

First demonstration of positron acceleration in plasma (FFTB) B.E. Blue et al., Phys. Rev. Lett. 90, 214801 (**2003**) M. J. Hogan et. al. Phys. Rev. Lett. 90 205002 (2003).

Energy gain of 5 GeV. Energy spread can be as low as 1.8% (r.m.s.).

S. Corde et al., Nature **524**, 442 (2015)

Hollow plasma channel: positron propagation, wake excitation, acceleration in 30 cm channel. *S. Gessner et. al. Nat. Comm. 7, 11785 (2016)*

There is no plasma on-axis, and therefore no complicated forces from plasma electrons streaming through the beam.

Measurement of transverse wakefields in a hollow plasma channel due to off-axis drive bunch propagation.
C. A. Lindstrøm et. al. Phys. Rev. Lett. 120 124802 (2018).
Image: the state of the state o

→ Emittance blow-up is an issue! → Use hollow-channel, so no plasma on-axis, no complicated forces from plasma electrons streaming through the plasma → but then strong transverse wakefields when beams are misaligned.

BELLA, Berkeley Lab, US– Laser as Driver

Laser Driven Plasma Wakefield Acceleration Facility: Today: PW laser!

Multistage coupling of independent laserplasma accelerators

S. Steinke, Nature **530**, 190 (2016)

Petawatt laser guiding and electron beam **acceleration to 8 GeV** in a laserheated capillary discharge waveguide

A.J.Gonsalves et al., Phys.Rev.Lett. 122, 084801 (2019)

FLASHForward>>, DESY

- 10% of beam time dedicated to generic accelerator research and development
- → FLASHForward → is a beam line for PWFA research
- → Both share the same superconducting accelerator based on ILC/XFEL technology. Typical electron beam parameters:
 - ≤ 1.25 GeV energy with a few 100 pC at ~100 fs rms bunch duration, up to 1MHz repetition rate, few kW average power

450 MeV

BC → Bunch compressors

BC2 ACC23 BC3 ACC45ACC6

ACC \rightarrow SCRF modules

1250 MeV

25 TW laser 📕

A. Aschikhin et al., NIM A 806, 175 (2016)

C.A. Lindstrøm et al., Phys.Rev.Lett. 126, 014801 (2021)

Transfer efficiency 42+/-4% with 0.2% energy spread, Up to 70% when allowing energy spread increase

5 MeV

Photo

cathode

150 MeV

ACC39

1.25 GeV

FLASH

ASHFORWARD

E. Gschwendtner, CERN

What about a proton beam as a driver?

Energy Budget for High Energy Plasma Wakefield Accelerators

Drive beams: Lasers: ~40 J/pulse Electron drive beam: 30 J/bunch Witness beams: Electrons: 10¹⁰ particles @ 1 TeV ~few kJ

To reach TeV scale:

- Electron/laser driven PWA: need several stages, and challenging wrt to relative timing, tolerances, matching, etc...
 - effective gradient reduced because of long sections between accelerating elements....

Energy Budget for High Energy Plasma Wakefield Accelerators

Drive beams:

Lasers: ~40 J/pulse Electron drive beam: 30 J/bunch Proton drive beam: SPS 19kJ/pulse, LHC 300kJ/bunch Witness beams: Electrons: 10¹⁰ particles @ 1 TeV ~few kJ

- **Proton drivers**: large energy content in proton bunches \rightarrow allows to consider single stage acceleration:
 - A single SPS/LHC bunch could produce an ILC bunch in a single PDWA stage.

State of the Art and Goals for HEP Collider

	Current	FEL (Intermediate Goal)	Collider (Final Goal)
Charge (nC)	0.01-0.1	0.01 - 0.1	0.1– <mark>1</mark>
Energy (GeV)	9	0.1 - 10	1000
Energy spread (%)	0.1	0.1	0.1
Emittance (um)	>50-100 (PWFA), 0.1 (LFWA)	0.1-1	0.01
Staging	single, two	single, two	multiple
Wall plug efficiency (%)	0.1	<0.1 - <mark>10</mark>	10
Rep Rate (Hz)	10	10 ¹ - 10 ⁶	10 ⁴ - 10 ⁵
Avg. beam power (W)	10	10 ¹ - 10 ⁶	10 ⁶
Acc. Distance (m)/stage	1	1	1 – 5
Continuous run	24/1	24/1 <mark>- 24/7</mark>	24/365
Parameter stability	1%	0.1%	0.1%
Simulations	days	days - 10 ⁷	improvements by 10 ⁷
Positron acceleration	acceleration		emittance preservation
Plasma cell (p-driver)	10 m		100s m
Proton drivers	SSM, acceleration		emittance control

Various important milestones have been and will be achieved in internationally leading programmes at: CERN, CLARA, CNRS, DESY, various centres and institutes in the Helmholtz Association, INFN, LBNL, RAL, Shanghai XFEL, SCAPA, SLAC, Tsinghua University and others.

New European research infrastructures involving lasers and plasma accelerator technology have been driven forward in recent years, namely ELI and EuPRAXIA, both placed on the ESFRI roadmap.

The distributed RI EuPRAXIA as well as the aforementioned internationally leading programmes will pursue several important R&D milestones and user applications for plasma accelerators.

ESPP Roadmap for Accelerator R&D

- As an outcome of the European Strategy for Particle Physics 2020, CERN Council has mandated the Laboratory Directors Group (LDG) to define and maintain a prioritised accelerator R&D roadmap towards future large-scale facilities for particle physics.
- Expert Panels are convened, which are steered by the 'Extended Laboratories Directory Group (LDG)'.
- In autumn 2021: prepare a report on the strategic roadmap for the Council meeting in December 2021.

	CERN Yellow Reports: Monographs, CERN-2021-XXX
European Strategy for Particle Physics - Accelerator R&D Roadmap Final Report	Expert Panel 3 High-gradient Plasma and Laser Accelerators
Editor: N. Mounet ^a	
Steering committee: D. Newbold ^{b,*} (Chair), S. Bentvelsen ^c , F. Bossi ^d , N. Colino ^e , AI. Etienvre ^f , F. Gianotti ^a , K. Jakobs ^g , M. Lamont ^a , W. Leemans ^h , J. Mnich ^a , E. Previtali ⁱ , L. Rivkin ^j , A. Stocchi ^k , E. Tsesmelis ^a Expert panel chairs: R. Assmann ^{d,h} , S. Bousson ^k , M. Klein ^l , D. Schulte ^a , P. Védrine ^f	Editors: R. Assmann ^{a,b} , E. Gschwendtner ^c , R. Ischebeck ^d Panel members: R. Assmann ^{a,b,*} (Chair), E. Gschwendtner ^c (Co-Chair), K. Cassou ^e , S. Corde ^f , L. Corner ^g , B. Cros ^h , M. Ferrario ^b , S. Hooker ⁱ , R. Ischebeck ^d , A. Latina ^c , O. Lundh ^j , P. Muggli ^k , P. Nghiem ^l , J. Osterhoff ^a , T. Raubenheimer ^m , A. Specka ⁿ , J. Vieira ^o , M. Wing ^p
Expert panel editors: R. Assmann ^{a,u} , B. Baudouy ^J , L. Bottura ^a , E. Gschwendtner ^a , M. Klein ⁱ , R. Ischebeck ^j , C. Rogers ^b , D. Schulte ^a	Associated members: C. Geddes ^q , M. Hogan ^m , W. Lu ^r , P. Musumeci ^s

- Proposed delivery plan for the required R&D roadmap :
 - Minimal plan: Plasma Collider and Particle Physics Facility Feasibility and Pre-CDR Study and four Experimental Demonstration of highly Important Technical R&D Milestones
 - Aspirational plan: Four additional highly important experimental demonstrations of R&D Milestones
 - Ongoing projects and facilities

"The expert panel considers those activities of very high priority and fully endorses them."

	D	1e Title	Description	
	DEL2.1 6/	24 Report Electron	Plasma accelerator from 175 GeV to 190 GeV, including	
		High Energy Case	full lattice, in/out-coupling, all magnetic elements, cor- rectors diagnostics collective effects synchrotron radia-	
		Study	tion, estimate of realistic performance, estimate of realis-	Ö
			tic footprint, estimate of realistic benefits in cost and size,	as
			understanding of scaling with beam energy for different technologies (laser driven, electron driven, proton driven	÷
			DLA/THz).	Ľ.
	DEL2.2 6/	24 Physics Case of an	Report from common study group with particle physicists	Ī
		Advanced Collider	on physics cases of interest at the energy frontier $(e^+ - e^-)$	
			matter search,).	ne l
	DEL2.3 6/	25 Report Positron	Equivalent to 2024 report on electron accelerator (see	ā
		High Energy Case Study	above).	Ρ
	DEL2.4 6/2	25 Report Low En-	Assessing the low energy regime around 15-50 GeV,	ค
		ergy Study Cases	achievable performance, foot print and cost, schemes and	
		for Electrons and Positrons	designs for first particle physics experiments with novel ac- celerators needed R&D demonstration topics for low en-	
			ergy design and needed test facilities. Includes studies on	R
			a low energy, high charge plasma injector.	Ś
	DEL2.5 12	Collider Feasibility	Input for decision point of European strategy, brings to- gether work/reports achieved (see earlier). Complemented	È
		Report	by report on Technical Readiness Levels (TRL report) for	d
			collider components and systems. Comparison of perfor-	<
			tron, proton driven plasma, DLA/THz) for a possible focus	
			on the most promising path for particle physics. Design	
			of a staging experiment. Report on intermediate steps and	
			advanced collider.	
DEI	2 1 12/25	High Depatition	At least 1 kHz characterized reduct lifetime (> 10^9	abota)
DEI	23.1 12/23	Rate Plasma Ac-	at least 1 KHZ characterised, robust method (> 10 only the plasma cell, without full repetition rate bea	m test
		celerator Module	include cooling and power handling assessment	Long-
		colorador module	term goal: 15 kHz repetition rate.	Long
DEI	4.1 12/25	High-Efficiency,	Beam demonstration of high efficiency PWFA n	nodule.
		Electron-Driven	50% transfer efficiency from stored energy beam dr	river to
		Plasma Accelerator	stored energy beam witness	
		Module with High		
		beam Quality)	
DEI	12/25	Scaling of	Staged dielectric laser/THz accelerator with 10M	eV en-
		DLA/THz Ac-	ergy gain, with transverse and longitudinal focusir	ng with
		celerators) at least two stages. Long-term goal: Massively sca	le-able
	6.1 10/05		design printed on a chip.	1
DEI	12/25	Spin-Polarised	Demonstration of polarised electron beams from	plasma
		Accelerators	with 1020% polarization fraction. Long-term go	ai: Po-
		Accelerators	/ Iarization 85%.	

4 Exp. Demo. of R&D Milestones

ESPP R&D Roadmap Delivery Plan

Торіс	Milestones to be achieved by	Far term goal
	2025	
Scalable plasma	Several metres long prototype	10s to 100s metres
source	with required plasma density	of plasma source
	and stability	
High-charge,	Detailed specification of the pa-	Accelerator mod-
high-quality	rameters for a self-consistent	ule with 1 nC high
plasma accel-	demo remain to be finalised	quality beam (out-
erator module		come feasibility
driven by laser		study)
pulses		
Stable low-	Electron beam extracted with	15 kHz, >500 pC,
emittance	50-250 MeV, 10-100 Hz, sub-	<100nm emittance,
electron source	micron emittance, 30-100 pC	fs bunch length,
		sub % energy
		spread
High-rep rate,	Demonstration of kW average	15 kHz rep rate,
high peak	power (e.g. 100Hz, 10J,	>100 Tera-Watt,
power laser	<100fs or 1kHz, 1J , <100fs	30% wall plug
	or another combination/scheme)	efficiency

28

Outline

- Motivation
- Introduction to Plasma Wakefield Acceleration
- State of the Art
- The AWAKE Experiment
 - Results of AWAKE Run 1
 - AWAKE Run 2
- Applications with AWAKE-Like Scheme
- Outlook

AWAKE at CERN

Advanced WAKEfield Experiment

- Proof-of-Principle Accelerator R&D experiment at CERN to study proton driven plasma wakefield acceleration.
- Collaboration of 23 institutes world-wide
- Approved in August 2013

AWAKE Run 1 (2016-2018):

- ✓ 1st milestone: Demonstrate seeded self-modulation of the proton bunch in plasma (2016/17)
- ✓ 2nd milestone: Demonstrate electron acceleration in plasma wakefield driven by a self-modulated proton bunch. (2018)

AWAKE Run 2 (2021 – ~2029):

Accelerate an electron beam to high energies (gradient of 0.5-1GV/m) while preserving the electron beam quality and demonstrate scalable plasma source technology.

Once AWAKE Run 2 demonstrated: First application of the AWAKE-like technology:

Fixed target experiments for e.g. dark photon search.

E. Gschwendtner, CERN

AWAK

AWAKE at CERN

AWAKE installed in CERN underground area

AWAKE

AWAKE Collaboration: 23 institutes world-wide:

- University of Oslo, Oslo, Norway
- CERN, Geneva, Switzerland
- University of Manchester, Manchester, UK
- Cockcroft Institute, Daresbury, UK
- Lancaster University, Lancaster, UK
- Oxford University, UK
- Max Planck Institute for Physics, Munich, Germany
- Max Planck Institute for Plasma Physics, Greifswald, Germany
- UCL, London, UK
- UNIST, Ulsan, Republic of Korea
- Philipps-Universität Marburg, Marburg, Germany
- Heinrich-Heine-University of Düsseldorf, Düsseldorf, Germany
- University of Liverpool, Liverpool, UK
- ISCTE Instituto Universitéario de Lisboa, Portugal
- Budker Institute of Nuclear Physics SB RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
- GoLP/Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- TRIUMF, Vancouver, Canada
- Ludwig-Maximilians-Universität, Munich, Germany
- University of Wisconsin, Madison, US
- Uppsala University, Sweden
- Wigner Institute, Budapest
- Swiss Plasma Center group of EPFL, Lausanne, Switzerland

AWAKE Experiment

AWAKE Run 1: Proof-of Concept 2016/17: Seeded Self-Modulation of proton beam in plasma 2018: Electron acceleration in plasma

AWAKE Proton Beam Line

The AWAKE beamline is designed to deliver **a high-quality beam** to the experiment. The proton beam must be steered around a mirror which **couples a terawatt class laser** into the beamline.

Further downstream, the **witness electron beam** will injected into the same beamline.

AWAKE Plasma Cell

- 10 m long, 4 cm diameter
- Rubidium vapor, field ionization threshold ~10¹² W/cm²
- Density adjustable from 10¹⁴ − 10¹⁵ cm⁻³ → 7x 10¹⁴ cm⁻³
- Requirements:
 - density uniformity better than 0.2%
 - Fluid-heated system (~220 deg)
 - Complex control system: 79 Temperature probes, valves
 - Transition between plasma and vacuum as sharp as possible

maximum acceleration

defocusing

 $n=n_0$

10 m

Plasma density profile

 $-eE_{\pi}$

few cm

Plasma density

Downstream Expansion Chamber

direction of beam

few cm

propagation

deceleration

electron beam

AWAKE Plasma Cell

Laser and Laser Line

AWAKE uses a short-**pulse Titanium:Sapphire laser** to ionize the rubidium source.

 \rightarrow Seeding of the self-modulation with the ionization front.

The laser can deliver up to 500 mJ in a 120 fs pulse envelope.

Electron Beam System

Electron source system

A Photo-injector originally built for a CLIC test facility is now used as electron source for AWAKE producing short electron bunches at an energy of ~20 MeV/c.

A completely new 12 m long electron beam line was designed and built to connect the electrons from the e-source with the plasma cell.

Challenge: cross the electron beam with the proton beam inside the plasma at a precision of ~100 μ m.

Electron Acceleration Diagnostics

Electrons will be accelerated in the plasma. To measure the energy the electrons pass through a **dipole spectrometer and the dispersed electron impact on the scintillator screen.** The resulting light is collected with an intensified CCD camera.

Outline

- Motivation
- Introduction to Plasma Wakefield Acceleration
- State of the Art
- The AWAKE Experiment
 - Results of AWAKE Run 1
 - AWAKE Run 2
- Applications with AWAKE-Like Scheme
- Outlook

Seeded Self-Modulation of the Proton Beam

In order to create plasma wakefields efficiently, the drive bunch length has to be in the order of the plasma wavelength.

CERN SPS proton bunch: very long! ($\sigma_z = 12 \text{ cm}$) \rightarrow much longer than plasma wavelength ($\lambda = 1 \text{ mm}$)

N. Kumar, A. Pukhov, K. Lotov, PRL 104, 255003 (2010)

Self-Modulation:

- a) Bunch drives wakefields at the initial seed value when entering plasma.
 - Initial wakefields act back on the proton bunch itself. → On-axis density is modulated. → Contribution to the wakefields is ∝ n_b.
- b) Density modulation on-axis \rightarrow micro-bunches.
 - Micro-bunches separated by plasma wavelength λ_{pe} .
 - drive wakefields resonantly.

AWAKE: Seeding of the instability by

Placing a laser close to the center of the proton bunch

short bunch:

- Laser ionizes vapour to produce plasma
- Sharp start of beam/plasma interaction
- \rightarrow Seeding with ionization front

⇒ Seeded self-modulation (SSM)

E. Gschwendtner, CERN

41

laser

Results: Direct Seeded Self-Modulation Measurement

- Effect starts at laser timing → SM seeding
- Density modulation at the ps-scale visible
- Micro-bunches present over long time scale from seed point
- **Reproducibility** of the µ-bunch process against bunch parameters variation
- **Phase stability** essential for e⁻ external injection.

→ 1st AWAKE Milestone reached

AWAKE Collaboration, Phys. Rev. Lett. 122, 054802 (2019).

- M. Turner et al. (AWAKE Collaboration), 'Phys. Rev. Lett. 122, 054801 (2019).
- M. Turner, P. Muggli et al. (AWAKE Collaboration), Phys. Rev. Accel. Beams 23, 081302 (2020)
- F. Braunmueller, T. Nechaeva et al. (AWAKE Collaboration), Phys. Rev. Lett. July 30 (2020).
- A.A. Gorn, M. Turner et al. (AWAKE Collaboration), Plasma Phys. Control Fusion, Vol. 62, Nr 12 (2020).
 F. Batsch, P. Muggli et al. (AWAKE Collaboration), Phys. Rev. Lett. 126, 164802 (2021).

AWAKE Run 1: Electron Acceleration Results

Electron acceleration after 10m: What we expect with the AWAKE Run 1 setup:

Electron Acceleration Results

44

Outline

- Motivation
- Introduction to Plasma Wakefield Acceleration
- State of the Art
- The AWAKE Experiment
 - Results of AWAKE Run 1
 - AWAKE Run 2
- Applications with AWAKE-Like Scheme
- Outlook

AWAKE Run 2

→ Demonstrate possibility to use AWAKE scheme for high energy physics applications in mid-term future!

→ Start 2021, program goes beyond CERN Long Shutdown 3 (2027+)!

Goals:

Accelerate an electron beam to high energy (gradient of 0.5-1GV/m)

Preserve electron beam quality as well as possible (emittance preservation at 10 mm mrad level)

Demonstrate scalable plasma source technology (e.g. helicon prototype)

AWAKE Run 2 Program

During CERN Long Shutdown 3: dismantling of CNGS area Installation of 2nd plasma source, 2nd electron beam system...

AWAKE Run 2a

Goal: Electron bunch seeding:

 \rightarrow Modulates entire proton bunch with phase reproducibility

→ Physics Program 2021/2022

Run 2a: Demonstrate electron seeding of selfmodulation in first plasma cell.

Run 2a: experimental demonstration: electron-seeded SSM of the entire proton bunch

Run 1: Front-part of proton beam is not self-modulated

Run 2: \rightarrow This can cause issues when the proton beam enters into the second plasma source For Run 2: need fully self-modulated proton bunch

AWAKE Run 2b

- In constant-density plasma, wakefield amplitude decreases after saturation.
- In a plasma with density step within the SM grow: wakefield amplitude **maintains larger** after saturation.

→ Physics Program 2023/2024

Run 2a: Demonstrate electron seeding of selfmodulation in first plasma cell.

Run 2b: Demonstrate the stabilization of the micro-bunches with a density step.

- → new plasma source with density step capability
- → novel plasma diagnostics to allow measurement of plasma 'wave' directly

MPP Munich

AWAKE Run 2c

Laser beam

• Accelerate an electron beam to high energy (gradient of 0.5-1GV/m)

Electron source system

• Preserve electron beam quality as well as possible (emittance preservation at 10 mm mrad level)

1st plasma cell: 20 MeV NEW: higher energy RF struc Electron source system self-modulator Electron bear To house the full length of the Run 2 10 m Rb Plasma ~150 Me RF gur experiment, the AWAKE area must be NEW: density step 2nd plasma cell: RF structur Proton beam extended into the former CNGS target accelerator Electron beam area (radioactive!) 10 m Rb Plasma NFW Imaging station 1 OTR, CTR screens fully self-modulated proton bunch Laser beam Electron acceleration NEW: back-propagating in plasma wakefiel Electron spectrometer driven by protons Laser dump Imaging station 2

- New electron source and beam line, reuse run 1 e-source
- New plasma cell (Accelerator cell), reuse 2b self-modulator
- New laser to 2nd plasma cell (back-propagating)
- New diagnostics
- Expand the experimental facility (CNGS dismantling)

- → Facility extension and installation: 2025/26/27
- → Physics program: 2027/28/...

AWAKE Run 2c: Demonstrate Electron Acceleration and Emittance Preservation

New electron beam: 150 MeV, 200 fs, 100 pC, σ = 5.75 µm Blow-out regime: Beam loading: reach small $\partial E/E$, Match electron beam transverse properties to the plasma

AWAK

New electron source:

- → based on X-band
- \rightarrow Prototyping together with CLEAR

New electron line:

- → Requirement of β = 5 mm at injection.
- \rightarrow Require achromatic module, with no bunch lengthening.
- \rightarrow Limit of ~ 3m width set by tunnel width
- \rightarrow Dipole bending angle > 15°
- \rightarrow Dipole-quadrupole spacing > 1 m
- → Matching conditions at merging: $\sigma = \sqrt{4.87 \text{ mm} \times \epsilon}$

New laser system:

IR laser beams to ionize the 2nd rubidium vapour source will be injected from downstream counter-propagating to the p-beam. UV laser beams for producing two electron beams

New beam instrumentation:

Co-propagating e- and p+ beams: position, size measurement (e- beam).

200 fs electron bunches: bunch length measurement. Witness e- beam injected in 2^{nd} plasma cell: measurement of small (6 μ m σ) beam in Rb vapour.

New 2nd plasma cell:

AWAKE Run 2d: Demonstrate Scalable Plasma Sources

Today: Laboratory developments of scalable plasma sources in dedicated plasma labs
Aim: Propose a design for a scalable, several meter-long plasma cell for Run 2d.
Final Goal: Use this technology to build a 50-100m long plasmas source and use it for first applications (~2029)

E. Gschwendtner, CERN

Outline

- Motivation
- Introduction to Plasma Wakefield Acceleration
- State of the Art
- The AWAKE Experiment
 - Results of AWAKE Run 1
 - AWAKE Run 2
- Applications with AWAKE-Like Scheme
- Outlook

Applications with AWAKE-Like Scheme

> Requirements on emittance are moderate for fixed target experiments and e/p collider experiments, so first experiments in not-too far future!

First Application: Fixed target test facility:

 \rightarrow Deep inelastic scattering, non-linear QED, search for dark photons

→ Use bunches from SPS with 3.5 E11 protons every ~5sec, → electron beam of up to O (50GeV), 3 orders of magnitude increase in electrons (compared to NA64)

electrons and even more for 1 TeV electrons

A WAKE CERN

Applications with AWAKE-Like Scheme

- **PEPIC:** Low-luminosity version of LHeC (50 GeV electrons)
 - Use the SPS to drive electron bunches to 50 GeV and collide with protons from the LHC
 - Modest luminosity \rightarrow only interesting should the LHeC not go ahead

• EIC:

• use the RHIC-EIC proton beam to accelerate electron

• 3 TeV VHEeP

- use the LHC protons to accelerate electrons to 3 TeV and collide with protons from LHC with 7 TeV
- Yields centre-of-mass energy of 9 TeV, Luminosity is relatively modest ~1028 10²⁹ cm⁻² s⁻¹, i.e. 1bp⁻¹/yr.
- New energy regime means new physics sensitivity even at low luminosities.
- **Fixed target** variants with these electron beams

LHC, p 7 TeV

SPS. p 450 GeV

protons 7 TeV

plasma accelerated electrons, 50-70 Ge

Summary and Outlook

 \rightarrow Plasma wakefield acceleration is an exciting and growing field with many encouraging results and a huge potential.

- → AWAKE: Proton-driven plasma wakefield acceleration interesting because of large energy content of driver. Modulation process means existing proton machines can be used.
- → Current and planned facilities (Europe, America, Asia) explore different advanced and novel accelerator concepts and proof-of-principle experiments and address beam quality challenges and staging of two plasmas.
- → Coordinated R&D program for dedicated international facilities towards addressing HEP challenges are needed over the next 5 to 10 years.
 - As follow-up from the Update of the European Strategy on Particle Physics, the Plasma wakefield acceleration community has prepared a roadmap towards a highenergy collider based on advanced acceleration technologies.

Outlook:

→ Near-term goals: the laser/electron-based plasma wakefield acceleration could provide near term solutions for FELs, medical applications, etc.

 \rightarrow Mid-term goal: the AWAKE technology could provide particle physics applications.

→ Long-term goal: design of a high energy electron/positron/gamma linear collider based on plasma wakefield acceleration.