

DISTINGUISHED LECTURE SERIES

Summer Term 2021

Prof. Dr. Felix TUCZEK Christian-Albrechts-Universität zu Kiel

Spin-state switching of iron complexes adsorbed on surfaces

The Fe(II) spin-crossover molecules (SCMs) [Fe(bpz)2(bipy)] and [Fe(bpz)2(phen)] (bpz = dihydrobis(pyrazolyl)borate) could be deposited on various substrates from the gas phase, leading to the first high-quality films of Fe(II) SCMs that exhibit both thermal spin crossover (SCO) and light-induced excited spin state trapping (LIESST).[1] Ultrathin (~7 nm) films of [Fe(bpz)2(phen)] on Au(111) were investigated using valence-band photoemission spectroscopy (UPS). LIESST as well as vacuum UV-induced excited spin state trapping (VUVIESST) were observed.[2]. By thermal evaporation also mono- and submonolayers of [Fe(bpz)2(phen)] could be prepared. Through high-resolution STM applied at 5 K reversible electron-induced excited spin state trapping (ELIESST) was induced in single SCMs on Au(111).[3] Submono- and monolayers of [Fe(bpz)2(phen)] on highly oriented pyrolytic graphite (HOPG) could be spin-switched by light with high efficiency, as evidenced by NEXAFS and XMCD.[4]

In order to evaluate the influence of cooperative effects on the spin-switching properties of surface-adsorbed SCMs, [Fe(bpz)2(bipy)] was deposited on HOPG and investigated with x-ray absorption spectroscopy.[5] Molecules within submonolayers exhibit an apparent anticooperative behavior, which is also reflected by HS \rightarrow LS decay curves deviating from monoexponential behaviour. On increasing the coverage, the width of the temperature-induced spin transition curve narrows significantly, evidencing the buildup of cooperative effects.

As Fe(II) SCMs supported by bidentate ligands disintegrate in the first layer on Au(111), more robust, vacuum-evaporable Fe(II) complexes supported by tridentate ligands have been developed.[6] Recent results regarding the spin-state switching of these 2nd generation SCMs on surfaces are reported.

References:

- 1. Naggert, H., Bannwarth, A.; Chemnitz, S.; v. Hofe, Th.; Quandt, E., Tuczek, F. Dalton 2011, 40, 6364.
- 2. Ludwig, E.; Naggert, H.; Kalläne, M.; Rohlf, S.; Kröger, E.; Bannwarth, A.; Quer, A.; Rossnagel, K.; Kipp, L.; Tuczek, F. Angew. Chem. Int. Ed. 2014, 53, 3019.
- 3. Gopakumar, T. G.; Matino, F.; Naggert, H.; Bannwarth, A.; Tuczek, F.; Berndt, R. Angew. Chem. Int. Ed. 2012, 51, 6262.
- Bernien, M.; Naggert, H.; Arruda, L. M.; Kipgen, L.; Nickel, F.; Miguel, J.; Hermanns, C. F.; Krüger, A.; Krüger, D.; Schierle, E.; Weschke, E.; Tuczek, F.; Kuch, W. ACS Nano 2015, 9(9), 8960.
- 5. Kipgen, L.; Bernien, M.; Ossinger, S.; Nickel, F.; Britton, A. J.; Arruda, L. M.; Naggert, H.; Luo, C.; Lotze, C.; Ryll, H.; Radu, F.; Schierle, E.; Weschke, E.; Tuczek, F.; Kuch, W., Nat. Comm. 2018, 9, 2804.
- 6. Ossinger, S.; Näther, C.; Buchholz, A.; Schmidtmann, M.; Mangelsen, S.; Beckhaus, R.; Plass, W.; Tuczek, F. Inorg. Chem. 2020, 59, 7966.

Date: Monday, June 21, 2021 Time: 04:00 pm Venue: Online via Zoom (Webinar ID: TBD)