

Annihilating kaons into a dark sector at the KOTO experiment

Matheus Hostert

University of Minnesota & Perimeter Institute

In collaboration with

Maxim Pospelov & Kunio Kaneta

arXiv: 2005.07102

Outline

- New $K \to \pi \overline{\nu} \nu$ results an excess at KOTO?
- Completely annihilating K_L into dark states
- Possible connections to Dark Matter

Exciting times in HEP

KONKERS DE CALENCOMUNANS fet

DENNIS the MENACE

*LOTS OF THINGS ARE INVISIBLE, BUT WE DON'T KNOW HOW MANY BECAUSE WE CAN'T SEE THEM ."

Time to explore

G. Raffelt, 9712538

FCNC loops, CP-violating & GIM suppressed s ightarrow d

Robust SM predictions:

BR
$$(K^+ \to \pi^+ \overline{\nu} \nu) = (0.84 \pm 0.10) \times 10^{-10},$$

BR $(K_L \to \pi^0 \overline{\nu} \nu) = (0.34 \pm 0.06) \times 10^{-10}.$

A. J. Burjas et al, , JHEP11, 033 (2015)

Negligible long-distance contributions. Theoretically, a very clean process.

Grossman-Nir Bound

Simply Isospin + total lifetime (QED corrections are small.)

$$BR\left(K_{L} \to \pi^{0}\overline{\nu}\nu\right) < 4.4 \times BR\left(K^{+} \to \pi^{+}\overline{\nu}\nu\right).$$

Y. Grossman, Y. Nir, PLB 398 (1997) 163-168

FCNC loops, CP-violating & GIM suppressed $s \rightarrow d$

Robust SM predictions:

BR
$$(K^+ \to \pi^+ \overline{\nu} \nu) = (0.84 \pm 0.10) \times 10^{-10},$$

BR $(K_L \to \pi^0 \overline{\nu} \nu) = (0.34 \pm 0.06) \times 10^{-10}.$

A. J. Burjas et al, , JHEP11, 033 (2015)

Negligible long-distance contributions. Theoretically, a very clean process.

	past	current	future
K^+	E787/E949 (40 - 60% measurement)	NA62 (2016/17 data) BR < 1.85e-10 @ 90 C.L.	NA62 (full) towards 10%
K_L	KOTO (2015 data) @ J-PARC BR < 3e-9 @ 90 C.L.	KOTO (2016/18) unblinding in progress	KOTO (2019 data) (S.E.S. ~ 2x SM BR by 2024) KLEVER @ CERN (?)

NA62 @ CERN

Kaon decay-in-flight 75 GeV/c kaons

$$m_{\rm miss}^2 = (p_{K^+} - p_{\pi^+})^2$$

2016 ($1.2 \times 10^{11} K^+$ decays) analysed 2017 ($2 \times 10^{12} K^+$ decays) analysed 2018 ($4 \times 10^{12} K^+$ decays) in progress

NA62 results presented @ KAON19

Double-sided 1 sigma region

 $\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu}) = (0.47^{+0.72}_{-0.47}) \times 10^{-10}$

Full 2016+2017 dataset:

3 candidate events with

2.4 signal prediction and1.65 ± 0.31 background

NA62 results presented @ KAON19

 $\mathcal{B}(K_L \to \pi^0 \nu \bar{\nu}) < 8.14 \times 10^{-10}$

$$\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu}) = (0.47^{+0.72}_{-0.47}) \times 10^{-10}$$

KOTO @ J-PARC (beam)

2016-18: $\sim 7.1 \times 10^{12} K_L$ at beam exit KOTO @ KAON19

Future experiments for rare kaon decays - C. Lazzeroni and M. Moulson - F

30 GeV protons

16 degrees off-axis neutral kaon beam

6x (7x) more neutrons (photons) than kaons

KOTO @ J-PARC (detector and analysis)

2015: $\sim 4.7 \times 10^{12} K_L$ at beam exit KOTO coll., PRL 122, 021802 (2019)

2016-18: $\sim 7.1 \times 10^{12} K_L$ at beam exit KOTO @ KAON19

- hermetic charge and γ vetoes
- large rec PT
- decay region rec Zvtx
- pencil beam → assumes (x,y)=(0,0
- No 3-momenta directly measured*

KOTO unblinding @ KAON19

4 "observed" events 0.05 ± 0.02 backgrounds

1 event attributed to overlapped pulse bkg

3 events still under study

BR $(K_L \to \pi^0 \overline{\nu} \nu) = (2.1^{+4.1}_{-1.7}) \times 10^{-9}$ If taken seriously, implies

(unofficial BR)

Mild tension ($\geq 1\sigma$) with NA62 (GN) bound.... but 60x larger BR than the SM prediction

ADDENDUM TO THE TALK POSTED IN FEB. 2020

@KAON19 by KOTO collaboration

- In blind analysis, the standard way is to give a result regardless of the contents inside the signal box.
- However, the number of events in the signal box was beyond our reasonable expectation.
- To be scientifically correct, we decided to do further checks on the events, detector status, and background estimations before announcing a result.
- To be honest to the scientific community, we should not hide the fact that we had opened the signal box.
- To be scientifically correct and to be honest, at the KAON2019 Conference, we showed the events and explained exactly what had happened.

KOTO further checks reported@ FCPC (Jun, 2020)

KOTO further checks reported@ FCPC (Jun, 2020)

	Prelimin				
		#BG			
	KLpi0pi0	<0.18 *			
	KLpi+pi-pi0	<0.02			
	KL3pi0 (overlapped pulse)	<0.04			
	Ke3 (overlapped pulse)	<0.09			
Box-opening	KL2gamma	0.00 ± 0.00		\rightarrow	
	Upstream π ⁰	0.00 ± 0.00			
	Hadron cluster	0.02 ±0.00			
	CV-pi0	<0.10			
	CV-eta	0.03±0.01			
	Total	0.05±0.02 *			+
	liminary	#B0	3		
Pr	^{∂™™} K∟→2π ⁰	<0.0	9 *		
	$K_L \rightarrow 3\pi^0 + accid.$	<0.0	4		
ftor more checke	Ke3 + accid.	<0.0	9		•
	Hadron cluster	0.02±0	0.00		-
	$K^{\pm} \rightarrow \pi^0 e^{\pm} y$	0.03±0	08 *		

Total

S.E.S : 6.9 × 10⁻¹⁰ 0.07 0.00

* change

extra channels investigated, but negligible.

0.34±0.08 *

KOTO further checks reported@ FCPC (Jun, 2020)

Analysis still in progress, but new checks suggest

1 observed event w/ 0.34 ± 0.08 bkg

On the theory side...

Several explanations put forward

T. Kitahara et al, PRL124.071801, + citing refs.

Fooling the Grossman-Nir bound:

- 1. Emission of invisible light particles (X) alongside a pi0 ($K \rightarrow \pi X$ or πXX)
 - A. Particle X may decay visibly at NA62, but be stable at KOTO (tension w/ beam dumps)
 - B. Particle X is truly invisible, and may fake background kinematics at NA62.
- 2. Long-lived *a* produced at the target decaying inside detector ($a \rightarrow \gamma \gamma$, unrelated to kaons!)
- 3. Isospin breaking from heavy new mediators and light scalars.
- 4. Pair production of dark states (this talk) see also, R. Ziegler, 2005.00451, S. Gori et al, 2005.05170

K. Tobioka/Florida State University

Minimal model w/ singlet scalar: $\mathcal{L} \supset \lambda |H|^2 |\varphi|^2$

 $K \to \pi X$

w/ X invisible

A minimal singlet scalar

D. Egana-Ugrinovic et al, PRL 124 19, 191801 (2020)

K. Tobioka/Florida State University

Minimal model w/ singlet scalar: $\mathcal{L} \supset \lambda |H|^2 |\varphi|^2$

 $K \to \pi X$

w/ X invisible

A minimal singlet scalar

Most studied scenario:

- T. Kitahara et al, PRL 124, 071801 (2020)
- D. Egana-Ugrinovic et al, PRL 124 19, 191801 (2020)
- B. Dev et al, PRD 101 (2020) 7, 075014
- Y. Jho et al, JHEP 04 (2020) 197
- J. Liu et al, JHEP 04 (2020) 197
- J. Cline et al, JHEP 05 (2020) 039
- + many others.

D. Egana-Ugrinovic et al, PRL 124 19, 191801 (2020)

K. Tobioka/Florida State University

Minimal model w/ singlet scalar: $\mathcal{L} \supset \lambda |H|^2 |arphi|^2$

 $K \to \pi X$

w/ X invisible

A minimal singlet scalar

Most studied scenario:

- T. Kitahara et al, PRL 124, 071801 (2020)
- D. Egana-Ugrinovic et al, PRL 124 19, 191801 (2020)
- B. Dev et al, PRD 101 (2020) 7, 075014
- Y. Jho et al, JHEP 04 (2020) 197
- J. Liu et al, JHEP 04 (2020) 197
- J. Cline et al, JHEP 05 (2020) 039
- + many others.

1) $m_arphi \sim m_\pi$ hides under bkgs at NA62

 $K^+ \to \pi^0 \varphi \sim K^+ \to \pi^+ \pi^0(\gamma)$

2) Beam dump constraints do not even apply when scalar is invisible, eg., $\varphi \rightarrow \text{long-lived HNLs}$

P. Ballett, MH, S. Pascoli, PRD 101 (2020) 11, 115025

23

 $K, B \rightarrow X_1 + X_2 + Y_{\rm SM}$

SM singlets

Dark states that are weakly coupled to matter, If X_1 is stable, it may be a dark matter candidate.

1. Y_{SM} may be \emptyset for <u>neutral</u> mesons (2-body) vs Y_{SM} charged for <u>charged</u> mesons (3-body).

charge conservation.

1. Y_{SM} may be \emptyset for <u>neutral</u> mesons (2-body) vs Y_{SM} charged for <u>charged</u> mesons (3-body).

2. If X₁ and X₂ stable, very weak bounds ($\mathcal{B}(K_L \to \overline{\nu}\nu) < 6.3 \times 10^{-4}$)

S, N. Gninenko, PRD91 (2015) 1,015004

- 1. Y_{SM} may be \emptyset for <u>neutral</u> mesons (2-body) vs Y_{SM} charged for <u>charged</u> mesons (3-body).
- 2. If X₁ and X₂ stable, very weak bounds ($\mathcal{B}(K_L \to \overline{\nu}\nu) < 6.3 \times 10^{-4}$)
- 3. If X₂ <u>unstable</u>, still challenging, but may produce π^0 , $\ell^+\ell^-$, $\gamma\gamma$,...

Meson \rightarrow dark sector \rightarrow back to SM.

1. Y_{SM} may be \emptyset for <u>neutral</u> mesons (2-body) vs Y_{SM} charged for <u>charged</u> mesons (3-body).

2. If X₁ and X₂ stable, very weak bounds ($\mathcal{B}(K_L \to \overline{\nu}\nu) < 6.3 \times 10^{-4}$)

3. If X₂ <u>unstable</u>, still challenging, but may produce π^0 , $\ell^+\ell^-$, $\gamma\gamma$,...

4. Note the f_B/m_B suppression in 2-body B decays. Instead, $B \to KX_1X_2$ may be relevant as $|V_{tb}^*V_{ts}| \gg |V_{ts}^*V_{td}|$

Are there models for these scenarios, and would them be able to contribute to the signal

$$K_L \to \pi^0 \overline{\nu} \nu$$
 ?

Sketching an idea

SM FCNC loops generate
$$K_L \rightarrow \overline{\nu}\nu$$
, but BR \rightarrow 0 as $m_v \rightarrow$ 0.

"Type-I Seesaw" heavy neutral leptons

 ν_{τ} K_L

BR $(K_L \to \nu_\tau \nu_4) \approx |U_{\tau 4}|^2 4.6 \times 10^{-9}$ for m₄ ~ 400 MeV e.g., only tau-4 mixing *A. Abada et al, PRD 95, 075023 (2017)*

Dominant BR: $\nu_4 \rightarrow \nu_{\tau} \pi^0$ w/ $c \tau^0_{\nu_4} \approx \frac{20 \,\mathrm{cm}}{|U_{\tau 4}|^2}$

BR ~ few x 10 $^{-11}$ once the constraints on the mixing are included

Lesson: search for models with new 100's of MeV states and weak-strength couplings to SM FCNC loops.

Generic features of our study

<u>Mediator scale (e.g., 10 GeV) >> meson masses:</u> integrate out vector/scalar mediator.

$$O_{sd}^V = g_{sd}^V(\bar{s}_L\gamma_\mu d_L) \times J_X^\mu; \qquad O_{sd}^S = g_{sd}^S m_s(\bar{s}_R d_L) \times J_X$$

Dark current contains products of X_1 and X_2 particles, depending purely on the dark sector.

SM-like FCNC

 $g_{sd}^V(\bar{s}_L\gamma_\mu d_L) \subset a\bar{Q}_L Y_U Y_U^{\dagger}\gamma_\mu Q_L; \qquad g_{sd}^S m_s(\bar{s}_R d_L) \subset b\bar{D}_R M_D^{\dagger} Y_U Y_U^{\dagger} Q_L.$

Minimal Flavour Violation ansatz

Assumptions:

In practice, for some constants *a* and *b*, we have:

 $\langle 0|O_{sd}^{V}|K_{L}\rangle \propto a \operatorname{Re}(y_{t}^{2}V_{ts}^{*}V_{td} + y_{c}^{2}V_{cs}^{*}V_{cd}), \quad \langle 0|O_{sd}^{S}|K_{L}\rangle \propto b \operatorname{Im}(y_{t}^{2}V_{ts}^{*}V_{td} + y_{c}^{2}V_{cs}^{*}V_{cd}), \\ \langle \pi^{0}|O_{sd}^{V}|K_{L}\rangle \propto a \operatorname{Im}(y_{t}^{2}V_{ts}^{*}V_{td} + y_{c}^{2}V_{cs}^{*}V_{cd}), \quad \langle \pi^{0}|O_{sd}^{S}|K_{L}\rangle \propto b \operatorname{Re}(y_{t}^{2}V_{ts}^{*}V_{td} + y_{c}^{2}V_{cs}^{*}V_{cd}).$

Generic features of our study

Same coupling in prod. controls decay.

 $\mathcal{L} = \frac{\mu}{2} \,\overline{\psi_1} \sigma_{\mu\nu} \psi_2 \, F^{\mu\nu}$

Uncorrelated photons.

C) π^0 impostor $K_L \bigoplus_{S_1}^{\gamma} S_2$

Production via Higgs portal

Decay via eff coupling to photons:

$$\lambda_{\Psi}\overline{\Psi}i\gamma_{5}\Psi S_{2}$$

$$\mathcal{L}_{eff} = \frac{\alpha \lambda_{\Psi}}{4\pi m_{\psi}} S_2 F_{\mu\nu} \tilde{F}_{\mu\nu},$$

Different inv mass.

A simple higgs portal example

Consider 1 heavy scalar S3, and two light scalars S1, S2, all real:

 $\mathcal{L} \supset \mu \, H^{\dagger} H S_3 + \mu_S \, S_1 S_2 S_3$

In most Higgs portals models, one will automatically generate a prediction for $H \rightarrow inv$.

$$BR(K_L \to S_1 S_2) = 2 \times 10^{-8} \times \frac{\Gamma_{h \to S_1 S_2} / \Gamma_h^{SM}}{0.1} \left(\frac{10 \,\text{GeV}}{m_{S_3}}\right)^4 \quad \checkmark$$

Pair production is large enough... now how to obtain the signal?

Pion production scenario (A)

Take, e.g., Type-II 2HDMs $\mathcal{L}_{\Phi} = \lambda^{\Phi} i (\Phi^{\dagger} H - H^{\dagger} \Phi) S_1 S_2 + y_d^{\Phi} (\overline{d_L} d_R \Phi^0 + \overline{d_R} d_L (\Phi^0)^*)$

$$\Gamma_{S_2 \to S_1 \pi^0} = \frac{1}{c\tau_{S_2}} \simeq \frac{1}{3.5 \,\mathrm{m}} \times \left(\frac{y_d^{\Phi} \lambda^{\Phi}}{10^{-3}}\right)^2 \left(\frac{\mathrm{TeV}}{m_A}\right)^4 \frac{300 \,\mathrm{MeV}}{m_2} \times \lambda^{1/2} (1, y_1^2, y_\pi^2)$$

Using a vector portal for pair production

Kinematically mixed vector contributes via *photon-penguin:*

kinetic mixing

 $\overline{s_L}\gamma^{\mu}d_L \times \partial^{\nu}F_{\mu\nu}$ vanishes as $\overline{s_L}\gamma^{\mu}d_L \to p_K^{\mu}$ and $\partial^{\mu}\partial^{\nu}F_{\mu\nu} = 0$

Hypercharge mixing is suppressed by (mZ'/mZ)² and is also leading to no enhacement.

Mass mixing, on the other hand, leads to large Z-Z' mixing:

" $\varepsilon_Z m_Z^2 X_\mu Z^\mu$ "

mass mixing

$$\mathcal{L} \supset g_X X^{\mu} i \left(H^{\dagger} \overleftrightarrow{D_{\mu Z}} H \right) \xrightarrow{\text{EWSB}} \varepsilon_Z m_Z^2 X_{\mu} Z^{\mu}, \quad \text{with} \quad \varepsilon_Z = \frac{g_X v}{m_Z}.$$

effective coupling to NC + arbitrary dark sector

$$\mathcal{L} \supset \frac{\varepsilon_Z g}{2\cos\theta_W} J^{\mathrm{NC}}_{\mu} Z'^{\mu} + g_X Z'_{\mu} \left(c_V \overline{\psi_2} \gamma^{\mu} \psi_1 + c_A \overline{\psi_2} \gamma^{\mu} \gamma_5 \psi_1 + \mathrm{h.c.} \right)$$

$$\mathbf{Gx} \sim \mathbf{Gf} \,, \, \mathbf{as \, expected.}$$

$$\mathrm{BR} \left(K_L \rightarrow \psi_1 \psi_2 \right)_{\mathrm{D}} = 3 \times 10^{-7} \left(\frac{G_X}{G_F} \right)^2 \left[\dots \text{mass ratios...} \right] \checkmark \qquad \frac{G_X}{\sqrt{2}} = \frac{\varepsilon_Z g \, g_X}{4 \varepsilon_F m_2^2}$$

 $\overline{\sqrt{2}} \equiv \overline{4c_W m_{z'}^2}$

Kinematics — point 1

Signal reconstruction assumes decay has happened exactly along the beam.

Need to understand beam size & its spread in momentum.

Kinematics — point 2

Signal reconstruction assumes photons with a pi0 invariant mass

Not satisfied in dipole (B) or pion impostor (C) cases.

Belle @ 90 C.L.

 $BR(B \to K\nu\overline{\nu}) < 1.6 \times 10^{-5}$

All plots assume same efficiency as SM KL decays

Phys.Rev.D 96 (2017) 9, 091101

Phys.Rev.D 96 (2017) 9, 091101

Belle @ 90 C.L.

 $BR(B \to K\nu\overline{\nu}) < 1.6 \times 10^{-5}$

But beam dump constraints can be alleviated if new dark decays exist (relaxed assumption about inv BR)

Phys.Rev.D 96 (2017) 9, 091101

Future tests at beam dump facilities (FASER)

Dark Matter connection

- 1. In all models, except pion impostor (C), X1 is stable and can be DM candidate
- 2. Thermal equilibrium is guaranteed (weak-strength interactions with SM)
- 3. Unfortunately, X1 weak-strength couplings to SM at 10's and 100's MeV scale is not sufficient to achieve correct relic density additional annihilation channels required.

Secluded annihilation into light unstable particles + velocity dependence to avoid CMB limits

Fermionic dark matter:
$$\psi_1 + \overline{\psi_1} \to \phi + \phi \to SM, \quad m_\phi < m_1$$

p-wave annihilation fermions -> scalars

$$\mathcal{L} \supset y_{\phi} \phi \overline{\psi_1} \psi_1.$$

$$\sigma \mathbf{v} = \mathbf{v}^2 \frac{3y_{\phi}^4}{64\pi m_1^2} F(m_{\phi}^2/m_1^2) \simeq 1 \, \text{pbn} \times c \times \frac{\mathbf{v}^2}{0.1} \times \left(\frac{y_{\phi}}{0.01}\right)^4 \left(\frac{100 \,\text{MeV}}{m_1}\right)^2$$

new scalar decays via higgs portal coupling ($~~ heta^2 \sim 10^{-9}$)

41

Dark Matter connection

- 1. In all models, except pion impostor (C), X1 is stable and can be DM candidate
- 2. Thermal equilibrium is guaranteed (weak-strength interactions with SM)
- 3. Unfortunately, X1 weak-strength couplings to SM at 10's and 100's MeV scale is not sufficient to achieve correct relic density additional annihilation channels required.

Secluded annihilation into light unstable particles + velocity dependence to avoid CMB limits

Bosonic dark matter : $S_1 + S_1 \rightarrow \phi + \phi \rightarrow SM, m_{\phi} > m_1.$

"Forbidden" annihilation scalars -> scalars (otherwise, s-wave and no v-dependence)

$$\mathcal{L} \supset \lambda_{\phi} S_1^2 \phi^2$$

 $\sigma \mathbf{v} = \frac{\lambda_{\phi}^2}{32\pi E_1^2} \times \sqrt{1 - m_{\phi}^2/E_1^2}. \qquad \text{suppressed by} \quad \exp(-2\Delta m/T)$

R.T. D'Agnolo and J. Ruderman, PRL. 115, 061301 (2015)

new scalar decays via higgs portal coupling ($~~ heta^2 \sim 10^{-9}$)

Dark Matter connection

1. In all models, e		ite			
2. Thermal equili	Broad range of parameters that predict DM.				
 Unfortunately, to achieve corr 	Existence of new scalar is motivated as the real part of scalar that generates mass splitting	le is not sufficient			
Secluded annihilat	between X1 and X2	oid CMB limits			
Bosonic	For further connections between KOTO & DM see W. Altmannshofer et al, 2006.05064	$> m_1.$			
"Forbidder		v-dependence)			
$\sigma { m v} = rac{\lambda_{\phi}^2}{32\pi E_1^2} imes \sqrt{1-m_{\phi}^2/E_1^2}.$ suppressed by $\exp(-2\Delta m/T)$					
	R.T. D'Agnolo and J. Ruderman, PRL. 1	15, 061301 (2015)			

new scalar decays via higgs portal coupling ($~~ heta^2 \sim 10^{-9}$)

CONCLUSIONS

- Hints from the **KOTO**? possible violation of GN bound? **Still waiting final results.**
- New loophole to avoid GN: pair production of dark states
 - Scalar portals typically require new (DS SM) interactions, but are possible.
 - Vector portals require ONE coupling combination ~ $g_X \varepsilon_Z$
 - Achieve large pT by mis-reconstruction.
- Very testable scenario beam dumo exps and $B \to K \not\!\!\!\! E$
- Proposed a few connections to **dark matter**, but all in non-minimal realisations.

Appendix

Scalar-pseudoscalar production via Z-Z' mixing

 $m_{Z'}/{
m GeV}$

NA62 compared with previous measurements

Branching ratios in vector portal model

Revisiting other scenarios and validation

Singlet scalar

Two invisible majorana fermions

Dipole distributions

