

The low energy electronic recoil excess in the XENON1T experiment

Matteo Alfonsi (J. Gutenberg Universität Mainz) on behalf of XENON Collaboration & X. Mougeot

XENON Technical Meeting, May 12-14, 2020

Andrii Terliuk (MPIK/Uni He...

Ethan Brown

Alexey Elykov

Christopher Hils (JGU-Mai...

Michele lacovacci

XENON Collaboration: ~170 scientists

The XENON1T detector at LNGS

The XENON1T detector searching for Dark Matter was operated in the underground

E. Aprile et al., "The XENON1T

O N

Dark Matter Project

Cryogenics &

The Time Projection Chamber (LXe TPC)

M. Alfonsi

LXe TPC: principle of operation

• Interaction in LXe produces prompt scintillation light (S1) and free electrons

LXe TPC: principle of operation

- Interaction in LXe produces prompt scintillation light (S1) and free electrons
- Electrons drifts towards the gas buffer, where they produce a delayed, proportional scintillation signal (S2)

- S2 distribution on top array provides the X-Y information of the interaction
- S2 delay from S1 provides Z information
 - Full 3D reconstruction of interaction point

LXe TPC: particle ID & background suppression

- S2 delay from S1 provides Z information
 Volume "fiducialisation" (Xe no long-lived unstable isotopes)
- The ratio S2/S1 provides particle ID (nuclear vs. electron recoil)
 WIMPs are searched among
 - nuclear recoils (but also neutrons are there!)

(typical: >99.5% ER cut, keeping ~50% NR)

M. Alfonsi

WIMP

(or neutron?)

Nuclear recoils searches in XENON1T

But this talk will focus on electronic recoils

- Search for excess events over known background in XENON1T:
 - Low background in [1; 30] keV
 < 100 events / tonne / year / keV_{ee}
 - Low threshould
 ~ 1 keV_{ee} (~5 keV_{nr})
 - Large exposure
 ~ 1 tonne · year

(Late) Outline of the talk

- Who & Where? Introduction on XENON1T and LXe Time Projection Chambers
- What? Excess electronic recoil events found over known background. Let's see:
 - Exposure, data analysis and energy reconstruction
 - Background model & excess below 7 keV
- Sure?
- So?
- And then?

Science Run 1 (SR1) exposure & data selection

- Exposure 0.65 tonne year, 226.9 live days from Feb '18 to Feb '19
- Single-scattering events within [1, 210] keV
- Same selections of published analyses, just higher S2 threshold
- Slightly smaller fiducial volume, 1 tonne cylinder
- Same methods for efficiency assessment

1.0

∞n_{ph} ∞n_e

S1

$$\mathbf{E} = (\mathbf{n}_{\rm ph} + \mathbf{n}_{\rm e}) \cdot W = \left(\frac{S1}{g1} + \frac{S2}{g2}\right) \cdot W$$

Energy reconstruction

S2

JGU

E[keV]

Energy reconstruction

Energy reconstruction

Background model (B_o), 10 components!

Internal (uniform in volume):
 ²¹⁴Pb (main contribution)

 β emitter from the 222Rn decay chain. The other steps of the chain provide robust consistency checks for the ²¹⁴Pb rate.

Background model (B_o), 10 components!

- Internal (uniform in volume):
 - ²¹⁴Pb (main contribution)

• ⁸⁵Kr

This β emitter has been largely removed by means of cryogenic distillation before the beginning of SR1

Background model (B_o), 10 components!

- Internal (uniform in volume):
 - ²¹⁴Pb (main contribution)
 - ⁸⁵Kr (distilled out)
 - ¹³⁶Xe, ¹²⁴Xe [Nature 568, 532]

Ultra long lived isotopes (interestingly half-lifes measured with LXe TPC, EXO and XENON1T itself!)

Background model (B_o), 10 components!

- Internal (uniform in volume):
 - ²¹⁴Pb (main contribution)
 - ⁸⁵Kr (distilled out)
 - ¹³⁶Xe, ¹²⁴Xe [Nature 568, 532]

• ^{83m}Kr

Unfortunately a defective valve allowed traces from the rubidium source (from which the calibration source ^{83m}Kr is obtained) to arrive to the gas system

Background model (B_o), 10 components!

- Internal (uniform in volume):
 - ²¹⁴Pb (main contribution)
 - ⁸⁵Kr (distilled out)
 - ¹³⁶Xe, ¹²⁴Xe [Nature 568, 532]
 - ^{83m}Kr (calibration source issue)
- Neutron induced
 - ^{131m}Xe, ¹³³Xe, ¹²⁵I

• Time-dependency required!

Background model (B_o), 10 components!

- Internal (uniform in volume):
 - ²¹⁴Pb (main contribution)
 - ⁸⁵Kr (distilled out)
 - ¹³⁶Xe, ¹²⁴Xe [Nature 568, 532]
 - ^{83m}Kr (calibration source issue)
- Neutron induced
 - ^{131m}Xe, ¹³³Xe, ¹²⁵I
- Solar neutrinos
- Materials (radio-essay & GEANT4)
- Time-dependency required

SR1 partitioned due to neutron calibrations

- Two partitions to account for the activation during neutron calibration
- Simultaneous fit of the two datasets

 10^{6}

evolution

rate

I31mXe

X E N O N Dark Matter Project

The fit to the data & the excess

Unbinned profile likelihood analysis

The fit to the data & the excess

- Unbinned profile likelihood analysis
- (76 ± 2) events / (tonne·year·keV) in [1,30] keV
 Lowest background rate ever achieved in this energy range!

The fit to the data & the excess

- Unbinned profile likelihood analysis
- (76 ± 2) events / (tonne·year·keV) in [1,30] keV Lowest background rate ever achieved in this energy range!

PRISMA

M. Alfonsi

285 events observed vs.
232 ± 15 expected (best fit) between 1-7 keV

(3.3σ fluctuation in a naive estimate without proper likelihood ratio tests)

Space & time uniformity of the excess

• These events are uniformly distributed with the fiducial volume and the rate stays constant all along the SR1

Next in the outline of the talk

- Who & Where? Introduction on XENON1T and LXe Time Projection Chambers
- What? Excess electronic recoil events found in the energy range 1-7 keV

• Sure? Let's check for:

- Mis-modeling of energy reconstruction or efficiencies
- Mis-modeling of background shape
- Instrumental background

• So?

• And then?

PRISMA+ Colloquium, 25/11/2020

28

Mis-modeling: energy reconstruction / threshold

- The excess is not at our threshold fall-off. It persists:
 - if analysis threshold is doubled
 - with a profile likelihood in (S1, S2) space
 - if efficiencies are different within $\pm 1 \sigma$
- High statistics ²²⁰Rn calibration data (²¹²Pb β spectrum similar to background ²¹⁴Pb) are reconstructed as expected
 - The good agreement (g.o.f. p=0.50) with the same analysis framework validates efficiencies & energy reconstruction

M. Alfonsi

- Atomic screening and exchange effects can increase rate at low energies
- Theoretical calculation uncertainty on the ²¹⁴Pb beta decay shape < 6%
- >50% uncertainty required to explain the excess

Instrumental background

 Instrumental effects such as accidental coincidence (AC) between unrelated S1 and S2, or "surface event" (in which part of S2 is lost) are well-known and far from the ER band

Next in the outline of the talk

- Who & Where? Introduction on XENON1T and LXe Time Projection Chambers
- What? Excess electronic recoil events found in the energy range 1-7 keV
- Sure? Checked for detector response or B_0 mis-modeling, or instrumental artifacts
- **So?** We interpreted the results as:
 - Unexpected traces of other isotopes, e.g. tritium
 - Observation of solar axions or an enhancement of neutrino magnetic moment
 - Others...
- And then?

We observed... ... unexpected traces of tritium?

Unexpected traces of tritium

• Long-lived (12.3 y) low energy β emitter (Q-value 18.6 keV)

Unexpected traces of tritium

- Long-lived (12.3 y) low energy β emitter (Q-value 18.6 keV)
- Favored over B_o at 3.2σ

Best fit rate (159±51) ev. / (t·y·keV)

2.5

5.0

7.5

10.0

Energy [keV]

12.5

15.0

17.5

20.0

• ³H/Xe concentration: $(6.2\pm2.0) \times 10^{-25} \text{ mol/mol}$

10000

8000

4000

2000

0.0

Rate [a.u.] 6000

Fewer than 3 tritium atoms per kg of xenon!

Tritium from cosmogenic activation of xenon?

- Cosmogenic activation of xenon produces ~32 tritium atoms / kg / day (Zhang, 2016)
- 1 ppm of water in xenon bottles implies formation of HTO
- Efficient removal (99.99%) in purification system (SAES getter with hydrogen removal unit)
- Xenon handling and purification makes this hypothesis unlikely

• Emanation from materials, in form of HTO or HT, in equilibrium with removal

Required ³H:Xe to explain excess ~10⁻²⁴ mol/mol

PRiSMA⁺

• Emanation from materials, in form of HTO or HT, in equilibrium with removal

Required ³H:Xe to explain excess ~10⁻²⁴ mol/mol

Known atmospheric HTO:H2O ~10⁻¹⁷ mol/mol

> Required H2O:Xe >30 ppb

• Emanation from materials, in form of HTO or HT, in equilibrium with removal

Required ³H:Xe to explain excess ~10⁻²⁴ mol/mol

Known atmospheric HTO:H2O ~10⁻¹⁷ mol/mol

> Required H2O:Xe >30 ppb

Ruled out by light yield measurement H2O:Xe ~1 ppb

• Emanation from materials, in form of HTO or HT, in equilibrium with removal

Required ³H:Xe to explain excess ~10⁻²⁴ mol/mol

Known atmospheric HTO:H2O ~10⁻¹⁷ mol/mol

> Required H2O:Xe >30 ppb

Ruled out by light yield measurement H2O:Xe ~1 ppb Assuming similarly^(*) HT:H2 ~10⁻¹⁷ mol/mol

> Required H2:Xe ~100 ppb

• Emanation from materials, in form of HTO or HT, in equilibrium with removal

Required ³H:Xe to explain excess ~10⁻²⁴ mol/mol

Known atmospheric HTO:H2O ~10⁻¹⁷ mol/mol

> Required H2O:Xe >30 ppb

Ruled out by light yield measurement H2O:Xe ~1 ppb Assuming similarly^(*) HT:H2 ~10⁻¹⁷ mol/mol

> Required H2:Xe ~100 ppb

No constraints on H2:Xe

• Emanation from materials, in form of HTO or HT, in equilibrium with removal

Required ³H:Xe to explain excess ~10⁻²⁴ mol/mol

Known atmospheric HTO:H2O ~10⁻¹⁷ mol/mol

> Required H2O:Xe >30 ppb

Ruled out by light yield measurement H2O:Xe ~1 ppb Assuming similarly^(*) HT:H2 ~10⁻¹⁷ mol/mol

> Required H2:Xe ~100 ppb

No constraints on H2:Xe

We cannot neither confirm nor completely rule out tritium hypothesis

(*) No direct measurements

We observed... ...solar axions?

JGU

Observation of solar axions: signal model

- QCD axions address strong CP problem
- No Dark Matter axions detectable in XENON1T (here we look at axions from the Sun!)

Observation of solar axions: result of the fit

Results in tension with astrophysical constraints from stellar cooling

(tough in arXiv:2006.14598 Gao et al. shows that this is alleviated by taking into account the inverse Primakoff effect as detection process)

and in case of tritium contamination?

JGU

B_o + ³H null hypothesis

- Solar axion + ${}^{3}H$ + B_o still favored over ${}^{3}H$ + B_o, but at 2.0 σ instead of 3.4 σ
- Despite that, the best fit results still in a negligible tritium contamination

We observed... ... a larger neutrino magnetic moment?

Enhanced μ_{v} : implications & signal in XENON1T

- If the Standard Model is extended to allow for neutrino masses, then neutrinos can have also magnetic moments, order of 10⁻²⁰ $\mu_{\rm B}$ for Dirac v.
- Larger values implies new physics ($\mu_v > 10^{-15} \mu_B$ suggests Majorana neutrinos)

Enhanced μ_{ν} : implications & signal in XENON1T

- In tension again with astrophysical observation (if no tritium can be confirmed)
- Dark Matter experiments have access also to neutrino physics!

Other hypotheses...

JG U

Searching for mono-energetic peaks

 Bosonic dark matter (ALPs, dark photons, ...) generating mono-energetic peaks

Axion-like particles

Many new papers on arXiv

M. Alfonsi

Dark photons

Last section of the talk

- Who & Where? Introduction on XENON1T and LXe Time Projection Chambers
- What? Excess electronic recoil events found in the energy range 1-7 keV
- Sure? Checked for detector response or B_o mis-modeling, or instrumental artifacts
- **So?** Either tritium contamination, and/or observation of solar axions or enhanced neutrino magnetic moment
- And then?
 - Further checks (Science Run 2, S2-only analysis, ³⁷Ar traces)
 - XENONnT!

Cross check with S2-only analysis

 No S1 signal required, so lower energy threshold at the cost of the no particle ID from S1/S2 ratio

- $g_{ae} < 4.8 \times 10^{-12}$
- $\mu_{\nu} < 3.1 \times 10^{-11} \,\mu_{\rm B}$
- Rate ³H < 2256 events/t/y
- Consistent with this work

Cross-check tritium with Science Run 2 (SR2)

SR2 is an R&D science run with 20% improved background level, faster purification speed but reduced exposure

 $(320 \pm 160) \text{ ev./t/y in SR2}$ $(159 \pm 51) \text{ ev./t/y in SR1}$ Consistent each other

Traces of ³⁷Ar contamination (2.8 keV)

- Best mono-energetic line fit at 2.3±0.2 keV, instead of 2.8 keV
- Argon content in Xe bottles completely removed before the beginning of SR1 by the cryogenic distillation campaign for the ⁸⁵Kr removal, even more effective with argon (proven by the ³⁷Ar calibration test in SR2 at the end of XENON1T)
- Next possibility, slowly introduced by an air leak:
 - XENON1T air leak < 1 liter / year, based on rare gas mass spectrometer measurements.
 - The ³⁷Ar abundance in the ventilation air of the LNGS has been measured < 3.2 mBq / m³.
 Even a contamination of 5 mBq / m³ is a factor 13 too low to explain the excess.

But XENONnT is coming soon!

JGU

XENONnT already under commissioning

1/6 background

Based on best-fit from XENON1T, XENONnT will discriminate axions from tritium in few months

xe-pr@lngs.infn.it

www.xenonexperiment.org

